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ABSTRACT The health monitoring prediction of power devices is vital for power electronics applications
such as renewable converters, electric vehicles, and machine drives. One significant failure mode in the power
cycle degradation of Insulated Gate Bipolar Transistor (IGBT) modules is bond wire lift-off. This study uses
the gate voltage waveform (V) as an input to an artificial intelligence (Al) model with the Convolutional
Neural Network (CNN). The CNN was demonstrated to accurately estimate the IGBT bond wire lift-off,
categorizing it into four levels: no damage, light damage, medium damage, and heavy damage. The Digital
Gate Driver (DGD) IC was implemented to generate the V. and collect the data waveforms by two switching
modes: Conventional Vector Control (CVC) and 2-step Vector Control (2-sVC). The experiment evaluated
the accuracy of the four-level estimation in several aspects. These aspects include switching modes, the
number of datasets, and parts of the waveform The results show that the CNN model achieved high accuracy
in estimating the wire lift-off trend. The V,, waveform generated by the 2-sVC switching mode showed
better estimation accuracy compared to the CVC mode. Furthermore, it also obtained an effective switching
performance Ejygs5-Vee—surge Trade-off curve. Therefore, the DGD is suitable for application and useful for

health monitoring and achieving effective switching performance.

INDEX TERMS IGBT power module, health monitoring, power cycle degradation, bond wire.

I. INTRODUCTION

Power cycling degradation of power electronic devices is
an important problem for highly reliable power electronic
systems such as renewable energy transmission lines, electric
vehicles, machine driving, and many other applications [1].
Insulated Gate Bipolar Transistors (IGBTs) are wildly used
in power electronic converters, making the IGBT module a
necessary component for the reliability of power electronic
converters. There are many reasons for IGBT degradation
and failure, including thermal cycling, mechanical factors,
and material factors [2], [3], [4]. Bond wire lift-off on the
IGBT module is a major failure caused by mechanical factors.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhehan Yi

Aging monitoring has been proposed for investigating IGBT
based on the relationship between monitoring parameters and
the IGBT aging waveform, serving as a real-time indicator of
aging condition [5], [6], [7].

The detection of IGBT bond wires have been proposed
using many methods which can be classified into three
types: current-based methods, voltage-based methods, and
other signal-based methods [16]. First, current-based [17],
[18] have shown that short-circuit current is sensitivity to
bond wire failures; however, this method requires complex
driver circuit and monitoring. Second, voltage-based methods
are usually used to measure bond wire faults by detecting
increased on-state V., caused by bond wire lift-off. However,
this method has low sensitivity and requires a complex cir-
cuit for measurement. The third includes other signal-based
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methods such as resistance, gate Miller platform duration
time, etc. [4], [5], [20]. However, these methods still have low
sensitivity for detecting bond wire faults [16].

The parasitic emitter inductance L.g is a phenomenon that
increases in value due to bond wire lift-off [8] and is affected
by switching waveform, which can be used to indicate degra-
dation caused by bond wire lift-off. Online monitoring using
the gate waveform Vg, with the Digital Gate Control (DGC)
influences the parasitic inductance parameter of the IGBT
module. The monitoring method was discussed and proposed
for detecting the number of bond wire lift-off [9], [10]. The
results show that the V,, waveform can serve as an indicator
of the number of wire lift-offs and degradation during online
switching operations. Therefore, it is very safe and easy to
design the measurement operation.

In the previous work, the bond wire lift-off detection based
on turn-on gate voltage was proposed [16]. The result shows
that changes in parasitic inductance reflect wire bond lift-off
with the turn-on gate voltage overshoot. In contrast, the sen-
sitivity of wire lift-off detection can be expressed by features
such as voltage spike peak ( Vge_spike_peak )» gate voltage spike
amplitude (AVy,), and timing shift (A#,) as demonstrated
in our previous works [9], [10]. Notably, the turn-off wave-
form exhibits higher Vg, spike_pear and AV, compared with
turn-on waveform, as shown in an experiment results [22].
Therefore, the turn-off waveform was chosen for detecting
by these features.

Many experiments have applied machine learning to
estimate degradation and failures in power devices. A feed-
forward neural network (FFNN) was used for the prognosis
of power MOSFET resistance degradation trend, achieving a
correction accuracy was 84.13% [26]. The emitter resistance
(Rg) is a key parameter that determines the degradation esti-
mation in power devices. Refs. [12] and [27] proposed Rg
estimation by using CNN model with Vi, turn-on waveform
as the input signal, achieving an accuracy rate of 99.5%.
Estimation of reliable remaining useful lifetime (RUL) using
parameters V.o, and a thermal circuit with long short-term
memory (LSTM) network models attained maximum accura-
cies of 97.5% [28] and 97.7% [29], respectively. Deep Neural
Networks (DNNs) achieved an accuracy of 96.2% [29], while
Random Forest (RF) achieved 96.95% accuracy [29].

This work focuses on Vg, turn-off waveform to utilize the
phenomena of parasitic inductance to induce voltage influ-
ence on gate voltage V., including sensitivity features [9],
[10] corresponding to voltage overshoot in the turn-off pro-
cess. Especially, Vg offers advantages such as a simple
measurement circuit and safety with low voltage compared
with other methods. Additionally, the CNN model has a sig-
nificant impact on V,, waveform learning, achieving a very
high prediction accuracy rate as shown in [12] and [27].

Furthermore, we present the estimated trends in the number
of bond wire lift-off by utilizing Al technology to categorize
Vge waveforms. Convolutional Neural Network (CNN-based
algorithms) was chosen due to its highly efficient image pro-
cessing capability, high accuracy rates [11], and applicability
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for learning waveforms to estimate the degradation of power
devices.

In addition, DGC not only obtained the waveform for
detection bond wire lift-off but also provided precise con-
trol of switching behavior and enhanced the trade-off
switching characteristics between collector voltage overshoot
(Vee—surge) and switching loss Ej,g [13], [14]. Moreover,
this paper reports a comparison between conventional vector
control (CVC) and 2-step vector control (2-sVC) to achieve
both precise control of IGBT switching performance and
accurate detection as discussed in this work.

Il. EXPERIMENT SETUP AND MONITORING

A. TEST CIRCUIT

The double pulses testing circuit was set to measure the
IGBT switching characteristics as shown in Fig. 1. The testing
conditions included Vy. = 300V, I, = 100A, and inductor of
100 H, and a capacitor of 3900 i F, with testing conducted at
a junction temperature of 25 °C. The DGC was implemented
to employ a switching step vector control by 6-bit signal
control, which consisted of 63 P-type MOSFETs (PMOSs)
and 63 N-type MOSFETs (NMOSs) [13].

The gate waveform V. is influenced not only by the bond-
ing wire effect, but also by the operation voltage, current [10],
and temperature [15]. However, parasitic inductance induces
a voltage with a large influence on Vg, at the high oper-
ation current [10]. Therefore, bond wire lift-off detection
with parasitic inductance sensitivity should be conducted at
a high current and controlled temperature conditions. In this
experiment, the operation conditions were fixed at a room
temperature of 25 °C, an operating voltage of V4,300 V and
test current of 100 A.

Digital gate driver IC

----------------------- . Supply
§ 21115V 43 pmoss 300 Ve
& B — *
= g .o{ - (‘)
s .
%1) lg Qpy
—_
e
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S Q -»{ _yc
O | Qu

63 NMOSs

FIGURE 1. Double pulse testing experiment setup and IGBT equivalent
circuit.

B. MODULE SETTING FOR MEASUREMENT
The digital gate drive IC can improve the trade-off curve
between voltage/current overshoot and switching loss charac-
teristics through step vector control [13]. As a result, digital
gate IC can reduce overshoot and switching loss. In this
work, we use 2-sVC to improve both trade-offs and increase
sensitivity for the reasons mentioned in section III.

This experiment used clock generator supplies a clock
signal with a frequency 25MHz to the DGD. A 6-bit input
signal is generated by the digital pattern PXIe-6570 module
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FIGURE 2. Experimental equipment and set-up 1) PXle-6570 digital
pattern 2) Digital Gate Driver IC 3) Clock Generator 4) PXle-5162
oscilloscope 5) LabView Program.
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FIGURE 3. Vge turn-off waveform data collection process.

to determine the numbers of vectors within the range of
0 to 63. The waveform was measured by the PXle-5162
oscilloscope module (Specification: Maximum sample rate
of 2.5G/s, bandwidth of 300 MHz (1 M), and bandwidth
of 1.5GHz (50 €2). The experiment setup is shown in Fig. 2.

The LabView program is used to capture waveform data by
storing waveform length in memory. The program is config-
ured to command the 6-bit DGC to drive the double pulses,
measure the Vg, waveforms, and capture turn-off waveform.
This process is repeated until the determination round is
reached as shown in Fig. 3.

To enable CNN to classify gate voltage waveforms, high-
speed sampling is required. In this experiment, a sampling
rate of 2.5 GS/s was used. Changes in classification accuracy
with respect to the sampling rate need to be examined in the
future. Additionally, it is necessary to consider implementing
the sampling circuit for gate voltage waveforms, the A/D
converter circuit of sampling data, and memory within the
gate drive circuit.

The IGBT module ODTMDO01250H100 (1250V/100A),
made by ODT, was tested in this experiment. The bond wire
lift-off was equivalently represented by complete wire lift-off
into at four levels of various L.g conditions by cutting 1-3
wires as shown in Fig. 4, corresponding to no damage, light
damage, medium damage, and heavy damage. As we repeat-
edly tested many IGBT modules, we obtained the feature of
detection sensitivity, consistent with the result reported in our
previous work in [9] and [10]. Therefore, it is applicable for
practical use in IGBTs.

Number of wire lift-off representation

= 0 wire-cut is 6 bond wires (No damage)
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FIGURE 4. IGBT module setup and wire-cut sequence.

» 1 wire-cut is 5 bond wires (Light damage)
= 2 wire-cut is 4 bond wires (Medium damage)
= 3 wire-cut is 3 bond wires (Heavy damage)

Ill. IGBT TURN-OFF SWITCHING WAVEFORM USING
DIGITAL GATE DRIVER

The DGC utilizes a clocked gate driver integrated circuit
(IC) to generate an arbitrary gate waveform [13]. DGC was
implemented using a programmable gate driver with 63-level
drivability, 63 parallel transistors are connected to the gate
of IGBT, and a 6-bit control signal is applied to specify the
number of activated Npysos for turn-on and Nyysos for turn-
off [14]. This means that the gate current increases with a
larger vector number, resulting in increased switching speed
and change in switching characteristics Ve, I, Vee, and I,
[10]. Two modes of switching were employed to control the
turn-off process: (Mode-1) CVC, which involves one-step
control with N-level vectors only once, as shown in Fig. 5
(CVC black line); and (Mode-2) 2-sVC, which allows for
adjustments in the number of vectors (Nyg, N2yg) and dura-
tion time (T, T2,4) [9], [10], as shown in Fig. 5 (2-sVC red
line). N1y operates during the duration time Ty, and Nopg
operates during the duration time 73,4, allowing for changes
in the waveform within a 2-step process. As noted in Refs. [9]
and [10], the 2-step control enhances switching performance
and wire lift-off detection; therefore, 2-sVC was used in this
research.

The characteristics of the turn-off waveform are described
in four periods [15] as shown in Fig. 6.

-1% period [tg-t;] is the turn-off delay, during which the
input capacitor Cjes discharges.

-ond period [t;-tp] is the Miller term.

-3 period [t2-t3] sees arapid increase in V., with Cg. and
C¢. drastically decreasing.

-4th period [t3-t3] involves V. rising to the DC bus voltage,
followed by a rapid decrease in emitter current /,, which
induces the voltage Vi g and V.

The parasitic emitter inductance L.g performs in the Vg
during the " period due to rapid decrease in I,. The Vge spike
increases as a result of the presence of a large L.g, as given
by Eq. (1).

U g de_p, %

Vee = Vo=l dt dr dr
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FIGURE 5. The DGC turn-off vectors control pattern.

This experiment proposes two modes of switching con-
trol: CVC and 2-sVC, to enhance switching characteristics.
CVC is a typical gate driver control method that can change
gate current using resistance. However, previous works have
found that 2-sVC is useful for enhancing the sensitivity
of wire lift-off detection, and the surge voltage (Vie—surge)
induced by the L.-dic/dt (Fig.6) can be suppressed [9], [10].
In 2-sVC, the first vector number (Nig), being large, can
reduce switching loss (Ej,ss) that occurs during the transi-
tions between the on-state and off-state. Then, the second
vector number (N2,4), being small, is used when the emitter
current rapidly decreases to suppress Vee_surge and increase
Vge—spike, resulting in enhanced sensitivity. Therefore, wave-
form enhancement, it achieves an effective trade-off between
Vee—surge and Ejog. Furthermore, the V. waveform has been
improved to enhance sensitivity for high detection accu-
racy [9], [10].

IV. CONVOLUTIONAL NEURAL NETWORK
METHODOLOGY

A. CNN-BASE ARCHITECTURE LAYER

This experiment utilized a deep learning algorithm, Convo-
lutional Neural Network (CNN), to estimate the bond wire
lift-off trend, which was categorized into four levels: no
damage, light damage, medium damage, and heavy damage,
represented by values O to 3, respectively. The V,, waveform
served as the input dataset, which was obtained through
double pulse testing as mentioned in Section II.

The CNN deep learning software is implemented using
Python and Keras. The network architecture layer for clas-
sifying V,, waveform into four-level categories is shown in
Fig. 7. The CNN model uses the following parameter settings:

o Optimizer (iterative optimization algorithm used to min-
imize the loss function during the training of neural
networks) = ‘adam’ [24]

o Loss (calculated the cross-entropy loss between the true
labels and predicted probabilities) = ’sparse_categorical
_crossentropy [25]
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FIGURE 6. Influence of parasitic inductances on turn-off switching.

o Metrics=‘accuracy’ (Percentage of correct prediction)
given by Eq. (2).

Number of Correct Predictions
Accuracy = — 2)
Total Number of Predictions

Model Derivation: The CNN model consists of the follow-
ing layers:

1) Reshape Layer: Reshapes the input data for the 1D
convolutional layer.

2) Convl1D Layers: Extract features using 1D convolution
with ReLU activation.

3) MaxPooling1D Layers: Reduce the dimensionality by
taking the maximum value over a window.

4) Flatten Layer: Flattens the input to create a single long
feature vector.

5) Dense Layers: Perform the final classification, with the
last layer using softmax activation to output probabili-
ties for the four classes.

The parameter coding is shown below:
model = keras.Sequential([
layers.Reshape(target_shape=(length, 1),
input_shape=(length,)),
layers.ConvID(32, 3, activation="relu’,
input_shape=(length, 1)),
layers.MaxPooling1D(2),
layers.ConviD(64, 3, activation="relu’),
layers.MaxPooling1D(2),
layers.Flatten(),
layers.Dense(128, activation="relu’),
layers.Dense(4, activation="softmax’)
D
The training process used batch_size =32, epoch = 40 for
all cases to approach the training accuracy at 100%.
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FIGURE 7. Convolutional neural network (CNN) architecture layer.

TABLE 1. DGC vectors control condition.

Number
N vector control of
datasets
Conventional control (CVC)

e N=63 10,000

o N=30 10,000

e N=8§8 10,000

e N=4 10,000

2-steps vector control (2-sVC)
®2-sVC-1 (N;u= 63, T1=320ns, Nayy= 1, Tr,a= 4000ns) 10,000

©2-sVC-2 (N1y= 31, Tjy,= 480ns, N3uy= 1, T5,g=4000ns) 10,000
©2-sVC-3 (Nyy= 21, Tjy= 720ns, Nawg= 1, Tong=4000ns) 10,000

B. DATASETS AND WAVEFORM SELECTION

This experiment collected data with 2500 datasets for each
level (four levels bond wire lift-off) and under DGC vector
control conditions. Thus, the data collection resulted in 4 x
2500 = 10,000 datasets for each vector control condition as
shown in Table 1. The selected conditions were determined
based on the Ejys5-Vee—surge trade-off.

In the CVC condition, the number of vector N was varied
to cover a trade-off range from the minimum to maximum
Vsurge level. This range included small vector (N = 4),
medium vector (N = 8), and large vector (N = 30) and
maximum (N = 63) vector levels. At the maximum Ve
level, N = 63 represents the highest level of vector control.
However, it was observed that V... decreased due to the
dynamic avalanche (DA) phenomenon [23].

Typically, turn-off switching behavior is the relationship
of Ejyss decrease with increased V.. Thus, 2-sVC needs to
improve this trade-off by suppressing V¢, and decreasing
Ejyss compared to CVC. Therefore, different vector control
conditions were considered to achieve minimal Ej,s, as
shown by the dotted red line in Fig. 8, while providing various
Vsurge 1evels. The 2-sVC-3 condition begins at the minimum
Vsurge level because below this point, Ve is suppressed to
a very small level, resulting in minimal sensitivity for wire
lift-off detection [9]. 2-sVC-2 was chosen for the highest
Visurge level, while 2-sVC-1 exhibited small Ejyg5. In 2-sVC-1,
N1 = 63 represents the maximum vector level, resulting in
the smallest waveform among all 2-sVC conditions.

To evaluate the accuracy of the CNN model in select-
ing the best input waveform conditions under various DGC
conditions, each dataset for each condition was divided into
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FIGURE 8. Ejog5-Vce—surge Trade-off curve of CVC and 2-Svc.

training and testing sets. Specifically, 80% of the datasets
were allocated for training the CNN model, while the remain-
ing 20% were used for testing the accuracy of the model as
shown in Fig. 9. The most significant influence on learning
performance depends on the training data, and accurate model
evaluation corresponds to the testing data. Therefore, the pro-
portion for splitting data into training and testing datasets was
decided to be 80% and 20%, respectively, which is typical
practice for ensuring good machine learning performance and
accurate model evaluation.

The input data length depends on measurement sampling
points used with various vector controls. A varying number
of vector controls changes the switching characteristics; for
example, when the number of vectors is large, the switching
delay time becomes small, and the waveform data points
decrease, resulting in a small size of the Vg, waveform,
as shown in Fig. 10 for CVC and Fig. 11 for 2-sVC. In con-
clusion, the number of data points can be determined by
the number of vector controls (N) with fewer data points
observed when the Nin large. The V,, waveform generated by
CVC at different duration times and spike voltage indicator
AVge_spike. Another Vg, waveform generated by 2-sVC is
shown in Fig. 11, where the switching waveform has been
enhanced to increase sensitivity and switching performance
as mentioned in [9] and [10].

V. RESULT AND DISCUSSION

The discussion aims to consider the dependences of several
aspects to evaluate the accuracy of wire lift-off trend estima-
tion. Thus, this section will be divided into three parts: the
aspects of switching control modes, the number of datasets,
and the part of waveform that will be significant for achieving
high estimation accuracy.

A. ACCURACY OF ESTIMATION DEPENDENCE BY VECTOR

CONTROL

The V,, waveform depends on the DGC as mentioned in
Section III, with two switching modes: CVC and 2-sVC.
The waveform indicator AV, _spike is affected by bond wire
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FIGURE 9. Datasets splitting for training and testing CNN model.
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FIGURE 10. Conventional vector control (CVC) waveform input.
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FIGURE 11. 2-steps vector control (2-sVC) waveform input.
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lift-off as described in Eq. (1). Therefore, Figure 12 com-
pares the estimation accuracy between dl./dt, waveform,
and indicator AVg,_gpire. Since bond wire lift-off affects the
waveform indicator differently from dlI,/dt, parasitic induc-
tance induces the gate voltage, as given by Eq. (1). Large
dl./dt has a greater impact on estimation accuracy of the
four-level wire lift-off than AVg._gpire, especially when the
DA phenomenon occurs, as shown in Fig.12. The maximum
accuracy achieved by CVC is 95.25%, and by 2-sVC is
99.60%. As a result, 2-sVC exhibited better accuracy than
CVC due to the waveform indicator AVg, ke by 2-sVC-
1 and 2-sVC-2 were larger than CVC N = 63 and N =
30 respectively.

This experiment used sparse cross-entropy loss [24], which
provide output as a probability for classification into value
levels and evaluated the output using the accuracy metric as
shown in Fig.13. Therefore, CNN output represents the prob-
ability of the four-level (0-3) classification of the waveform
category as shown in the boxplots in Fig. 14 and Fig. 15. The
accuracy of prediction can be assessed by the probability val-
ues shown in Figs.14 and Fig.15, which indicate that correct
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predictions fall within the square box and incorrect predic-
tions fall outside the square box. Therefore, accuracy can be
calculated as the percentage of correct predictions from the
entire dataset, as given by Eq. (2). Comparison the input V.
waveform datasets obtained through the two switching modes
of vector control, namely CVC with N = 63 and 2-sVC-1
with maximum accuracies. The confusion matrix is shown in
Figs. 16 and 17, with the F1 score also calculated for each
class to evaluate overall accuracy. Comparing the input Vi,
waveform datasets obtained through the two switching modes
of vector control, namely CVC with N = 63 and 2-sVC-1
with maximum accuracies of 95.25% (Fig.16) and 99.60%
(Fig.17) respectively. The accuracy presented in the confu-
sion matrix can calculate the F1 score to evaluate each class,
as shown in Table 2. It was found that the accuracy with 2-
sVC-1 is better than CVC for all classes. The results indicate
that the input V,, waveform obtained through CVC with N =
63 exhibits a greater distribution (outliers) compared to the
Ve waveform obtained through 2-sVC. This observation will
be further investigated and discussed in Section V Parts C.

B. ACCURACY OF ESTIMATION DEPENDENCE ON THE
NUMBER OF DATASETS

The number of datasets is a crucial factor affecting the accu-
racy and completeness of learning with deep learning CNN
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FIGURE 15. CNN testing output probability result by 2-sVC-1 (Accuracy
99.60%).

models. The results show that the Vg, waveform obtained
through 2-sVC achieved high accuracy with fewer data com-
pared to CVC as shown in Fig. 18. This means that the
Vee waveform generated by 2-sVC is highly effective for
estimating the trend of bond wire lift-off, owing to its large
AVge_spike and large dI./dt as mentioned before.

C. WAVEFORM PART SENSITIVITY FOR DETECTION
This section investigated the significance of sensitivity for
wire lift-off detection by analyzing separate Vg, waveforms
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Target class
6Wire SWire | 4Wire | 3Wire
o [OWire | 481 1 1 0 99.59%
§ SWire 0 491 13 13 | 9497%
g [4Wire 0 14 499 16 | 94.33%
~ [3wire 0 27 10 434 | 92.14%
100.00% | 92.12% | 95.41% | 93.74% | 95.25%
FIGURE 16. Confusion matrix of CVC N=63.
Target class
6Wire SWire | 4Wire | 3Wire
o (Wi 0 0 0 100.00%
;:; SWire 0 531 0 0 100.00%
B [awire | o 2 519 | 2 99.24%
" [3Wire 0 0 4 461 99.14%
100.00% | 99.62% | 99.24% | 99.57% |  99.60%

FIGURE 17. Confusion matrix of 2-sVC-1.

TABLE 2. F1 score calculation result.

N vector control Fl score
CVC N=63
® 6 Wire 0.9979
® 5 Wire 0.9352
® 4 Wire 0.9487
® 3 Wire 0.9293
(2-sVC-1)
* 6 Wire 1
® 5 Wire 0.9981
o 4 Wire 0.9924
® 3 Wire 0.9935

into four parts. The investigation aimed to understand the
influence of wire lift-off on changes in the Vg, waveform,
which results from parasitic emitter inductance L.g. It was
found that the waveform exhibits a significant parasitic induc-
tance effect in waveform parts 1-3, and the accuracy achieved
with 2-sVC-1 as seen in Fig. 20, is better than that with
CVC N = 63 as seen in Fig.19. Especially in part 3, 2-
sVC-1 achieved a very high accuracy of 98.45% as shown
in Fig. 21. The sensitivity was enhanced by 2-sVC-1 with
a larger sensitivity compared to CVC N = 63 as shown
in Fig.22. This suggests that 2-sVC is a good option for
enhancing sensitivity to parasitic inductance.

Moreover, 2-sVC achieved effective switching perfor-
mance as evidenced by the Ejgg-Vee—surge trade-off curve in
Fig. 8, with small Ej,g and suppressed Vee_surge. Because
the Vee—surge is induced by the L.-di./dt as shown in Fig.6,
the second vector in 2-sVC was set to small number of 1 to
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FIGURE 19. Part of waveform sensitivity estimating accuracy (CVC N=63).

suppress the Vie_guge. Although small di./dt degrades the
detection accuracy in CVC, as shown in Fig. 12, 2-sCV-
1 obtained high accuracy even with small die/dt. This is
because a large AVg._gpike €nhances the sensitivity for wire
number. Therefore, 2-sVC can provide both high switching
performance and good wire lift-off detection.

The test conditions in this experiment were fixed at room
temperature, with an operating current of 100 A and an
applied voltage of 300 V. However, in real operation, the
switching waveform varies with the operating conditions.
Therefore, as future work, detection under various temper-
atures and diverse operating conditions will be investigated
to approach real applications.
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FIGURE 22. Comparison of CVC (N=63) and 2-sVC-1 (N, = 63,
Nopg = 1)-

VI. CONCLUSION

In this work, we present a deep-learning algorithm based on
CNN for estimating the trend of IGBT bond wire lift-off,
which is categorized into four levels of damage. V,, wave-
forms generated by CVC and 2-sVC under various conditions
were used as input waveform data for the CNN model to
evaluate the best estimation accuracy. The results show that
the CNN model achieved good accuracy in estimating the
four levels of bond wire lift-off at 95.25% and 99.60% with
CVC and 2-sVC input waveform, respectively. Particularly,
the 2-sVC condition exhibited better estimation accuracy than
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CVC, considering the smaller number of datasets required
for training and the sensitivity of waveform detection. More-
over, DGD with 2-sVC achieved not only high accuracy
in estimating the trend of IGBT bond wire lift-off but also
effective switching performance, as demonstrated by the
Ejoss-Vee—surge trade-off curve.
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