
Received 17 June 2024, accepted 9 July 2024, date of publication 15 July 2024, date of current version 25 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3427668

Development Life Cycle for Using a DNN to
Complete the Autonomous Aerial
Refueling Task
DANIELLE CLEMENT1, SARAH MOTTINO1, AND DONALD H. COSTELLO III 2
1Aeronautics Division at the Lockheed Martin Corporation, Fort Worth, TX 76108, USA
2Weapons, Robotics, and Control Engineering Department, United States Naval Academy, Annapolis, MD 21402, USA

Corresponding author: Donald H. Costello III (dcostell@usna.edu)

This work was supported by the Office of Naval Research.

ABSTRACT The future of aviation is unmanned and ultimately autonomous. As part of this effort the
Office of Naval Research, in partnership with the Naval Air Systems Command, has initiated the advanced
autonomous air-to-air refueling system (A4RS) future naval capability (FNC). The A4RS FNC intends to set
the interface requirements for any uncrewed aerial system to receive fuel from a United States Navy (USN)
aircraft. Additionally, the A4RS FNC will be the first time that a system will be authorized to complete
autonomous behavior without a human in or on the loop. However, a method to certify this behavior safe for
flight does not currently exist. This paper details the method that has been proposed as part of the FNC to
the naval flight certification authorities for approving a deep neural network to complete the aerial refueling
task.

INDEX TERMS Autonomy, autonomy certification, DNN.

I. INTRODUCTION
United States naval aviation is becoming increasingly
uncrewed. It is anticipated that the number of uncrewed
aircraft systems (UAS) in a carrier airwing will dramatically
increase over the next decade [1]. Leadership will require that
carrier-based UASs have the ability to aerial refuel. In an
effort to enable autonomous aerial refueling by a UAS, the
Office of Naval Research (ONR) has sponsored the FY24
new start advanced autonomous air-to-air refueling system
(A4RS) future naval capability (FNC). Part of the FNC
deals with the certification of a system to perform tasks
when a human is not in or on the loop. This paper was
generated in response to tasking from the ONR and defines
an approach to develop, assure, and generate representative
evidence in support of airworthiness for a DNN to perform
object detection in an aerial refueling scenario.

At the IEEE 2023 International Automated Vehicle Valida-
tion Conference (IAVVC), the authors presented a high-level
discussion on certifying a deep neural network (DNN) to

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry .

build situational awareness for an autonomous vehicle to
complete the aerial refueling task through object detection
verification and validation (V&V) [2]. This work expands on
the IAVVC work. In particular, it details the developmental
life cycle that has been proposed to certification officials.
This process has been briefed to the National Airworthiness
Council Artificial Intelligence Working Group and a group
within the Naval Air Systems Command (NAVAIR) that has
been tasked to identify a method for certifying a DNN to
complete the Aerial Refueling task.

Naval aviation has a history of findingways to innovate and
expand the capabilities of its deployed air wing. One example
of this is aerial refueling, which is considered a high-gain
task requiring a skilled pilot to complete. Aerial refueling
allows a pilot to extend the endurance and range of their
aircraft. Before a naval aviator (pilot) can be ready to deploy
with their squadron they must first qualify in aerial refueling.
The aerial refueling certification process for an aircraft is
designed to ensure that a pilot can safely maneuver their
aircraft providing they maintain multiple parameters (i.e.,
closure rate, off-center engagement, lateral drift at contact.
During the last 10 feet of an intercept, the naval aviator of

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 99163

https://orcid.org/0000-0003-3495-7655
https://orcid.org/0000-0002-1939-4842


D. Clement et al.: Development Life Cycle for Using a DNN

the receiving aircraft uses their experience and situational
awareness (SA) to complete the task. They constantly update
their interpretation of the situation by assessing closure rates
and updating the predicted contact point during the refueling
process. The refueling process is described in more detail in
Section II-B.

The future of naval aviation is unmanned and ultimately
autonomous. Before autonomous aircraft are fielded, a path
needs to be defined to certify the SA their sensors build
to ensure they are adequate for making sound aeronautical
decisions [3]. To complete the autonomous aerial refueling
task an autonomous system will require some form of
computer vision to assess what is happening around the
vehicle as it attempts to make contact. The systemwill use the
sensors to build SA during the autonomous aerial refueling
task.

Currently, there are multiple efforts underway to field
various levels of machine learning algorithms in United
States naval aviation systems. In particular, multiple papers
have been published documenting the process of allowing a
machine learning algorithm, a deep neural network (DNN),
to make safety-critical decisions without a human in or
on the loop in the autonomous aerial refueling task [4],
[5], [6]. While this work appears to be giving promising
results, a standard or method of compliance does not exist
for airworthiness officials to use for assuring the decision
made by the DNN is a sound risk decision. This includes
questions such as: how is assurance provided that the system
is accurately detecting the aerial refueling objects? How is
assurance provided that the bearing and range the system will
pass to the flight controller are accurate enough to enable the
system to make contact and safely refuel?

One of the main obstacles in developing an assurance
plan for a DNN to perform without a human in or on the
loop is the lack of understanding of how a DNN works,
is trained, or verified by the airworthiness community. While
neural networks have been the best-of-breed solution in the
object detection domain for the past 20 years and are used
in several applications from self-driving cars [7], [8], [9],
[10] to inspection robots [11], [12], established processes and
techniques for assuring software and systems development do
not translate well to these types of systems.

A critical difference between developing software and
developing a neural network model is that when you
develop a model, the functional software requirements are
not implemented in the code – they reside in the curated
datasets used to train the model and the associated weights.
From an assurance perspective, the source code that runs
on the platform only executes the matrix math to repeatedly
apply the activation functions to the weighted inputs. This
means that standard software processes assurance steps such
as code reviews, code coverage, and unit tests are assuring
the mechanics of inference (are the weights loaded correctly,
is the math implemented correctly), and not the component
functionality (are the right objects detected in the right

FIGURE 1. Model development process and development artifacts
available to support airworthiness.

places). For this reason, alternate approaches for assurance
are necessary when incorporating neural networks, including
DNNs into systems.

To address these differences, this approach uses a combina-
tion of traditional and non-traditional techniques to generate a
series of artifacts to support airworthiness for the DNN. The
Video Processing Component (VPC) – a software package
that runs on the receiving aircraft and executes the DNN –
is developed via a traditional software development process.
The DNN – a configuration file that is provided to the
VPC – is developed via the model development process
shown in Figure 1. Major steps in the model development
process include: domain characterization, which scopes and
bounds the input domain for the aerial refueling application,
data management, which focuses on the data used to train
the model, model training and evaluation, which establishes
the process to build the DNN from the data and assess its
performance, and model deployment and evaluation, which
structures the process used to transform the model into the
data file that executes onboard the vehicle and the evaluation
of the system in the target environment.

The major contribution of this paper is a definition of a
baseline model development process to aid the airworthiness
community in their generation of a risk-based decision to
allow a DNN to participate in the autonomous aerial refueling
task. If the process is not developed and vetted with the
cooperation of the safety of flight clearance authorities prior
to the acquisition process, it will be highly unlikely for the
autonomous system to be successful when an attempt is made
for safety of flight certification.

II. BACKGROUND
A. APPLICABLE DOCUMENTS
A major challenge in airworthiness certification for DNNs
is that standards for airworthiness such as the Department
of Defense Handbook Airworthiness Certification Crite-
ria, MIL-STD-516C (Reference [13]), reference processes
and best practices contained in safety standards such as

99164 VOLUME 12, 2024



D. Clement et al.: Development Life Cycle for Using a DNN

FIGURE 2. Probe-and-drogue aerial refueling of an EA-18G from a
F/A-18E with key components labeled.

Department of Defense Standard Practice: System Safety,
MIL-STD-882E (Reference [14]), and software specific
standards such as the Software Considerations in Airborne
Systems and Equipment Certification, DO-178C (Refer-
ence [15]), as of this writing have not been updated to address
DNN systems.

While this means alternative methods for use of DNNs are
required, the documents listed are still valuable to understand
this plan.

B. AERIAL REFUELING USE CASE
This approach focuses on an aerial refueling use case [6],
[16], [17], specifically for a probe-and-drogue system (shown
in Figure 2). In probe-and-drogue refueling, the probe is
mounted on the receiving aircraft and the drogue is a conical
object attached via a coupler to a hose, which connects to an
aerial refueling store on a tanker aircraft. During the refueling
process, the receiving aircraft maneuvers the probe tip into
the drogue to make a connection with the coupler and start
the flow of fuel.

The drogue is free-floating in the airstream behind the
tanker aircraft, making the precise position of the drogue
incredibly challenging to compute with any degree of accu-
racy, requiring real-time information about platform speeds,
hose length, turbulence, etc. This provides an excellent use
case for a computer vision object detection neural network
which can provide an effective means to detect and localize
the drogue object visually.

Object detection neural networks are an instance of
supervised learning, which uses labeled datasets to train
algorithms to classify data and/or predict outcomes [18], [19],
[20]. The neural network for the aerial refueling use case
is provided with labeled instances (images with objects of
interest identified via bounding boxes, as shown in Figure 3).
Based on those labeled instances, the network learns a
mapping between input images and where the objects are
located. The model then produces a set of bounding boxes
(that enclose an object), labels (that identify the class of
the object), and confidence scores (that reflect the DNN’s
confidence that the object is of the identified class). Detecting
these refueling objects using an object detection neural

FIGURE 3. Classes of aerial refueling objects labeled in an image of an
EA-18G refueling from a KC-10.

FIGURE 4. DNN structure and training process.

network provides a way to localize them more precisely in
a dynamic environment.

C. DNN OVERVIEW
ADNN (also called amodel) is made up of layers of nodes (or
neurons). Each node receives inputs from one or more other
nodes in the network. Each of those inputs is weighted. The
input data starts at the input layer and is then passed through
a series of hidden layers until the data reaches the outer layer.
At each individual node, a similar processing activity occurs:
the weighted sum of the node’s inputs determines if a node
will ‘‘activate’’ or not, based on the activation function (such
as ReLU or sigmoid) for that node.

1) MODEL TRAINING AND EVALUATION
The basic concepts behind training a neural network using
a supervised learning process are summarized in Figure 4.
To train a neural network, a set of inputs with labeled outputs
are provided to the network. For this use case, the inputs
are images, and the labeled outputs are the named bounding
boxes around the objects of interest associated with each
image. The network calculates its outputs using a process
called inference, or a ‘‘forward pass’’ through the network.
The difference between the calculated outputs and the known
outputs is called the loss or the error. Ameasure such asMean
Squared Error can be used as a loss function. The weights
in the neural network are updated using a process called
backpropagation (or a ‘‘backwards pass’’) that attempts to
minimize the loss across all the provided input samples. One
training cycle of inference and backpropagation is called an

VOLUME 12, 2024 99165



D. Clement et al.: Development Life Cycle for Using a DNN

epoch, and over the course of many epochs, the error between
the true labels and the predicted labels is expected to approach
0. The variables used to orchestrate the training process, for
example: the number of layers of the network, the learning
rate (how big an adjustment is made to reduce the error in
each backwards pass), and the activation functions are called
hyperparameters. Hyperparameters are adjusted during the
model development process to improve the quality of the
model output.

2) MODEL DEPLOYMENT
For the aerial refueling use case, when the model is used
operationally (deployed), it will only perform inference (the
forward pass). All the model training happens prior to
deployment, and the certification will be for the combination
of the deployed model and the software and configuration
data used to execute that model.

III. SYSTEM OVERVIEW
This document describes the planned certification approach
for a computer vision object detection function embedded
in a vendor-provided video processing pipeline (the Video
Processing Component (VPC)) that is part of the larger
Drogue Tracking System (DTS), and the process used
to generate and evaluate the performance of a DNN for
object detection. This approach covers the unique aspects
of certification associated with the VPC. This component is
responsible for the detection of key aerial refueling objects
using a DNN and runs on the receiving aircraft. The plan
for certification described here is intended to be applicable
to any receiving aircraft platform that might integrate this
component.

The VPC is deployed as a part of a larger DTS,
as shown in Figure 5. The deployed DTS contains processing
hardware, including a graphics processing unit (GPU)
and central processing unit (CPU) resources and storage,
a camera, and additional platform-specific software. The
VPC communicates video and data through the platform
adaptation software to other system components. The VPC
is made up of several software subfunctions, notably: Video
Decoding, Object Detection, Object Tracking, and Video
Encoding. Configuration data and the DNN are loaded into
the VPC from local storage at startup. The platform-specific
adaptation software and other aircraft system components
are out of scope for this document. They are included here
to provide some general system context and to call out any
expectations for their behavior or capabilities as they relate
to the DNN.

The VPC is a software component that has two major
parts: (1) the VPC executable source, which is developed by
the vendor and (2) the VPC configuration data. This VPC
configuration data defines the input, output and behavioral
properties of each of the VPC subfunctions. A special
instance of the configuration data for the Object Detection
subfunction is the executable model, which is also referred to
broadly as the DNN.

FIGURE 5. High-level deployment approach.

The development of a DNN begins with assessing datasets
and selecting an appropriate model architecture for training.
Once this selection is made, the model is trained on the
datasets, metrics are captured, and if model performance
meets the established criteria to deploy, the model is prepared
for deployment. The resulting executable DNN is used as a
configuration file for the video processing object detection
subfunction, which executes the model on input frames
extracted from video streams. Process assurance is applied
to the data used to train the model.

It is important to reiterate that the DNN is configuration
data provided to a video processing component: the DNN
requires a software application (the VPC) in order to execute.
This DNN ‘‘configuration file’’ differs from many traditional
software configuration files, in that it is not human-readable
or human-editable. The proposed deployment approach for
certification is to test and certify the deployed VPC on
its GPU hardware combined with static configuration data
(including a ‘‘frozen’’ DNN).

If the DNN is retrained in the future, this would result
in a different input file to the VPC, which would trigger
an evaluation and potential recertification of the VPC.
Recertification could be required because the object detection
functionality is maintained in the DNN configuration file, not
in the software. Changes to that file could change the system
functionality, which would require an evaluation. Updates to
the VPC are scheduled and coordinated based on the release
tempo for that software package and in line with planned
airworthiness evaluations. Each platform that uses the VPC
will determine if and when a software update should be
deployed per their defined software maintenance and update
approaches.

IV. DEVELOPMENT LIFE CYCLE
A. ORGANIZATION
There are 3 groups responsible for the development of the
VPC: the model development team, the model integration
team, and the Data Set Control Board (DSCB). The model
development team is made up of data scientists and artificial
intelligence (AI)/machine learning (ML) developers focused
on the accuracy and performance of the model. The model
integration team is a more traditional software development
team focused on configuring the VPC and integrating the

99166 VOLUME 12, 2024



D. Clement et al.: Development Life Cycle for Using a DNN

developed model with the VPC. The DSCB is an oversight
body responsible for assuring the data development lifecycle.

Themodel development team is responsible for developing
the Operational Design Domain (ODD) based on the require-
ments and the concept of operations (ConOps), collecting
and managing the data, and developing and analyzing the
performance of the model. The model development team is
focused on data analysis and the construction of a model
that best fits the aerial refueling use case. The model
development team is made up of individuals with AI, data
science and computer vision backgrounds. Work instructions
for job-specific activities such as data labeling will need to
be provided, and detailed descriptions of the training process
and tools used for model training are included in the DNN
Training Plan.

The model integration team is responsible for integrating
the developed model with the VPC and the other aircraft
components. This team is focused on traditional software
integration and test. Members of this team have a software
engineering or computer science background.

The DSCB is a multifunctional review board that acts as
a quality cross-check for data management activities. The
DSCB is responsible for coordinating and controlling the
datasets associated with model training and evaluation.
The DSCB has approval authority for all aspects of data
management, including ODD definition, data collection and
preparation plans, data quality requirements, all datasets
(training, validation, and test), the metrics definition used to
evaluate the quality of the training process, and the model
evaluation approach. The board’s purpose is to involve key
stakeholder communities, including safety and airworthiness,
in the data management process.

The mapping of high-level process steps to different teams
is reflected in Figure 6, and details on the process steps
are provided in the following sections. All teams and the
DSCB are involved in the planning process. The model
integration team is responsible for the software development
of the VPC, while the model development team focuses on
managing the data and training the DNN. The planning and
model development process phases are informed by feedback
and interactions with the DSCB. All process steps address
configuration management (CM), quality assurance (QA),
and verification.

B. PLANNING
The planning process defines the primary structure and
overall standards for the model development process. The
planning phase generates the following artifacts that describe
in more detail the approach for implementing and deploying
the DNN model within the VPC:

• CM Plan describes how data, models, hyperparameters,
and evaluation results will all be configured and traced
to one another. It will specify the overall requirements
for the Version Description Document (VDD). It will
include information about how third-party software

FIGURE 6. DNN development process mapped to organizations.

packages will be controlled for both the training
environment and the deployment space. If a higher-level
CM plan exists that supports the unique aspects of DNN
development, those plans will be adopted.

• Information Security Approach is a critical aspect of
the process. There are unique attack vectors for neural
network training and deployment environments com-
pared to traditional software. The Information Security
Approach will provide an assessment of the threat
vectors specific to this project and methods to mitigate
those threats. It will describe how access to data, models,
and results will be protected and secured.

• Software Bill ofMaterials (SBoM)will define by version
the software used in (a) model training and (b) model
deployment, including all dependencies. The SBoM is
different from a VDD in that the SBoM defines the
tooling environment for training and deployment, while
the VDD includes more detailed information about
specific configuration details associated with model
deployment. The SBoM is expected to remain mostly
static during the duration of the project, while the VDD
will be updated with every development increment.

• Data Preparation Description documents the process
of converting collected video data into images and
then labeling those images with metadata and bounding
boxes. This will include information about flight data
preparation, lab/ground data preparation, and synthetic
image generation as required.

• Data QA Approach will be used to review and verify
the quality of labeled images (primarily: the accuracy
of the bounding boxes). This includes the identification
of any support tooling or requirements for the Data
QA process. For example, it may be preferred to use a
unique person or process to conduct a final review of
the data, to increase the likelihood of identifying errors.
Expectations such as those will be defined in the Data
QA Approach.

• DNN Training Plan describes in detail the planned
process to train the model, including relevant training
pipelines and toolchains, training environment specifi-
cations, criteria for configuring the training process, and
the approach for mechanizing CM, experiment tracking,

VOLUME 12, 2024 99167



D. Clement et al.: Development Life Cycle for Using a DNN

and training repeatability. If tools are used for model
optimizations (such as model pruning) those tools are
identified and the process to maintain those tools is
established.

• Deployment Approach specifies the deployment hard-
ware environment, software stack for execution, any
containerization or partitioning approaches, and config-
uration specifics of third-party tooling, including the
VPC configuration. This document also includes details
about the software load process for VPC software and
associated configuration data.

To support CM, the CM Plan defines the approach
for storing and maintaining DNN-unique artifacts. The
planning artifacts described above will be baselined and
configuration-controlled.

To maintain QA, the artifacts developed in this phase are
reviewed by the team for completeness and alignment with
the overall effort’s goals.
Verification. The plans are reviewed for alignment with

best practices of DNN development.

C. SOFTWARE DEVELOPMENT PROCESS (VPC)
The VPC is the software application that will execute the
DNN onboard the receiving aircraft. The VPC software is
a executable with plugins that implement each of the VPC
subfunctions. Plugin source code can be extended ormodified
if needed. Each plugin is independently parameterized via
human-readable configuration data, and the executablemodel
created by the model development process is a binary
configuration file for the VPC Object Detection plugin.

The structure of the non-DNN configuration files is
defined by a Interface Control Description (ICD) and the
corresponding parameter settings are populated by the system
integrator. These configuration files contain parameters that
shape the behavior of the VPC plugins, for example,
information about the format of the input video stream, the
rate at which video frames are extracted for object detection,
and the number of frames missing the object before the
track is dropped. The process used to populate these files
will include requirements generation and testing of the VPC
component, configuration settings, and plugins to achieve
the desired system video processing performance. As part
of the software integration process, a set of functional VPC
requirements, a Requirements Verification Cross-Reference
Matrix (RVCM) and a Test Plan are developed for the VPC
software.

The products developed in this step, including the VPC
executable, the plugin source code, and the configuration
data, are maintained per the CM Plan.

The requirements, RVCM, and Test Plan generated in this
step are reviewed by the team for consistency with the System
Requirements.

The requirements developed for the VPC are inspected
for: alignment with system-level requirements, accuracy and
consistency, and compatibility with the target hardware. The

FIGURE 7. Domain characterization process.

RVCM and Test Plan are inspected for traceability to the
requirements, accuracy, and consistency.

D. MODEL DEVELOPMENT PROCESS (DNN)
The following four subsections describe the model develop-
ment process in more detail and provide insight into how
different artifacts are created to support learning process
assurance and airworthiness.

1) DOMAIN CHARACTERIZATION
The domain characterization step establishes the approach
for data management, model development and evaluation
in the context of the system requirements (Figure 7). The
first step in domain characterization is to define the ODD
through an ODD Taxonomy. The system requirements and
ConOps are used to develop the ODD Taxonomy for the
system as well as a Data Dictionary that defines the different
cases for ODD parameters. These documents are used to plan
data collection activities and create the Bounded Operational
Domain (BOD) which is the subset of that ODD that
focuses on current capabilities of interest. Based on that
work, a high-level model design is completed. This includes
establishing key metrics for evaluating model performance
as well as identifying potential model architectures that are
well-suited to the current problem. As the final step in
domain characterization, the approach to evaluate the model
is defined.

The ODD Taxonomy (example shown in Figure 8) defines
the overall relevant features of the ODD through relative
categories of interest for the dataset. The ODD is the
space of potential operationally relevant inputs. Defining the
ODD helps to bound and scope the input set, as well as
provide design documentation of the dataset assumptions
built into the model. The ODD has its roots in the Automotive
Safety community who realized that defining requirements
for a perception system involved a complex set of state
variables and a relatively unlimited set of input states. The
National Highway Traffic Safety Administration published a
report [21] using the ODD to bound and define test cases for
automated driving.

During the development of the ODD Taxonomy, the
Data Dictionary is defined to establish metadata conventions

99168 VOLUME 12, 2024



D. Clement et al.: Development Life Cycle for Using a DNN

FIGURE 8. An example ODD taxonomy for aerial refueling.

and guidance for applying metadata to the frames as they
are processed. For example, the ‘‘Dirt/Grime’’ category in
the ODD Taxonomy can be one of five categories: None,
Minimal, Minor, Major, or Extreme. The Data Dictionary
provides definitions for each of those categories and visual
examples of images in those categories, to help the humans
that are assigning the images to parts of the ODD. Other
metadata about the datasets is also defined in the Data
Dictionary, for example, file naming conventions and the
structure used to store collection dates and times. Establishing
this consistency early in themodel development process helps
with the analysis of the datasets in future model development
process phases.

The BOD and the Collection Plan are developed based
on the system requirements and the ODD Taxonomy.
A graphical example of the ODD and its mapping to the
BOD is shown in Figure 9. While the ODD describes
the complete potential operating environment for the DNN,
as the DNN is developed, it may only cover a subset of
the ODD – for example, it may only train on data about a
small selection of the potential tanker types or only a few
environmental conditions – this subset is called the BOD.
The BOD reflects the part of the ODD that will be used
for training and evaluated for performance in a relevant
operational environment for a given DNN. While the ODD
Taxonomy is expected to be static across all iterations of the
DNN, the capabilities of the DNN will expand over time
through additional iterative training cycles, and the BOD
is the specification of the to-be-implemented capabilities
for a given iteration. For example, an early version of the
BOD might use only daytime images for training, which
would result in (most likely) better performance of the DNN
on daytime images than for nighttime images. In the next
iteration of DNN development, nighttime capability could be
added to the BOD, impacting that iteration’s Collection Plan
so that nighttime images would be collected and the DNN
could be updated.

The Collection Plan uses the ODDTaxonomy and the BOD
to define the approach to collect data to train and verify the
computer vision component. It includes information about

FIGURE 9. Example of operational design domain relationship to
bounded operational domain.

howmuch data in each category should be collected, the types
and properties of the data, and information about collection
environments.

The system requirements have an impact on the potential
model architectures used in training. For example, some
model architectures are better at finding small objects than
others, meaning they would be more performant when
identifying objects at far distances. The time it takes to
execute a model can also vary by architecture type. Once
the system requirements have been established, they are used
to identify which object detection architectures might be
best suited to the problem at hand. These candidate model
architectures and the design rationales in selecting them are
defined in the Model Architecture Description. In addition to
identifying potential model architectures, the model design
step establishes which metrics will be used to assess model
performance and what the thresholds are for those metrics.
A model is evaluated over a suite of images, resulting in
statistical performance outcomes, as opposed to a binary
pass/fail. The thresholds that are established in this step
define what ranges constitute a ‘‘pass’’ across the V&V test
suite of images. These metrics and thresholds are defined in
the Metrics Definition and Description.

Model evaluation planning establishes the approach to
evaluate model performance through the definition of test
cases (image and video test cases). This includes test cases
that represent what the model should expect to see in the
conditions that it was trained for, as well as robustness cases
to evaluate model performance in conditions it may rarely (or
never) encounter. These unlikely inputs are included in testing
to characterize the boundaries and limits of the model’s
performance.

Figure 10 extends Figure 9’s representation of the ODD
and the BOD by including a depiction of these test cases.
Test cases selected from within the BOD (yellow shape in
Figure 10) make up the primary V&V set. These V&V

VOLUME 12, 2024 99169



D. Clement et al.: Development Life Cycle for Using a DNN

FIGURE 10. Operational design domain alignment to test cases.

test cases come from a similar dataset as the training
data but are not used in model training. Figure 10 uses
synthetic images as an example, however, in the DNN
development process all V&V images will be from real-world
environments.

Additional robustness test cases are selected from within
the ODD but outside the BOD (green shape in Figure 10) –
these may be test cases against untrained-on drogue types,
for example. These robustness cases serve to characterize the
potential operating capabilities of the DNN outside the BOD
boundaries. For example, the DNN may be able to detect
drogue types it has not been trained upon but may do so
with less localization accuracy than the trained-on objects,
potentially impacting the ranging function implemented by
other system components. Images that map to identified
sensor failure modes or environmental degradations, for
example, overly bright or dark images, images with dead
pixels, or pixelated images, are also included as robustness
cases. Understanding how the DNN responds to these cases
is important to characterize what the impacts might be
if users choose to employ the system in ‘‘out-of-BOD’’
environments.

Finally, an additional set of robustness cases is selected
from outside the ODD (outside both the green and yellow
shapes in Figure 10). These could include images with no
drogue or tanker in the field of view, to ensure that the DNN
does not detect objects where there are no objects to be found.
Purely solid images and pure noise images are also used as a
test baseline to ensure that objects are not found where they
do not exist. Some lab tests may also fall into this category
of robustness testing, as the environmental characteristics of
the lab environment (artificial lighting, for example) may not
map directly to the ODD. Where test cases can be mapped
to the ODD, traceability is maintained. In robustness cases
where no mapping can be made (the pure noise case, for
example), those test cases are categorized for ease of search
and retrieval and to aid in identifying performance trends. The
overall model evaluation strategy and approach, including
the definition of planned robustness cases, is described in
the Model Evaluation Approach.

Developed documentation is maintained in CM.

FIGURE 11. Data management process.

QA is provided by the DSCB. The DSCB reviews the
products generated in this step for consistency with the
ConOps and System Requirements.

The products developed in this phase are reviewed for
completeness and consistency. A review event is held to
gather stakeholder feedback and concurrence on the ODD
and the relevant sections of the Data Dictionary. The BOD
is reviewed and approved by the DSCB.

2) DATA MANAGEMENT
The Data Management Process (Figure 11) begins with data
collection. Informed by the ODD, the requirements, and the
collection plan, data collection is the gathering of data from
synthetic, lab, and real-world environments. This process is
iterative, for example, many frames of synthetic data might be
generated and processed before real-world data is available.
As raw data is collected, it is stored and tagged for future
reference.

The Data Preprocessing activity is the process of convert-
ing the raw collected data into images that can be used for
training. In addition to extracting frames from raw video data,
data preprocessing includes tracing each image to the ODD
Taxonomy and assigning metadata as described in the Data
Dictionary. The preprocessing steps are outlined in the Data
Preparation Description.

Data labeling is the process of identifying objects in the
prepared images. This is typically done by hand using a
labeling tool, however, there are auto-labeling tools available
that can support the humans doing the labeling task. Direction
for labelers is provided in the Labeling Guidance, which
includes work instructions specific to the labeling tool as
well as overall labeling design decisions (for example, to only
label objects that are at least 60% visible). If auto-labeling is
used, specific instructions for the auto-labeling software are
defined. This includes a description of how the auto-labeler
operates, what its limitations are, and alignment with human
labeling processes.

Once the images have been labeled, datasets are con-
structed based on these images. These datasets include:
(a) training sets, used to train the model; (b) validation sets,
used to evaluate the model’s performance during the training
process; and (c) V&V sets, which are used after training

99170 VOLUME 12, 2024



D. Clement et al.: Development Life Cycle for Using a DNN

to evaluate the model’s performance on unseen data. Each
image is a part of only one type of dataset (i.e. training
images are not used for validation or for V&V). The V&V
sets are typically made up of only real-world data, but can
also include images that have been augmented or altered (i.e.
brightness changed, noise added) in support of robustness
testing. The Dataset Construction activity also produces a
Datasheet aligned with the Datasheets for Datasets [22]
template to describe the source, preprocessing completed,
and intended use of the datasets, as well as a Dataset
Description Report which outlines key statistical properties
of the data within each dataset (alignment to the ODD, image
and object counts, etc.). The datasheet, which includes source
information, may be common across multiple datasets (for
example, data collected over multiple data collections), but
each individual dataset should have its own description to
outline the statistical properties of that dataset.

The raw data, images, and labels are maintained in a CM
system as per the CM Plan. Raw data (collected video) and
images are not subject to frequent alteration and are not
well-suited for text-based CM tooling, so those files are
maintained in repo-based storage. The mapping of images to
the ODD Taxonomy as well as labeling data is maintained
in a CM system more suitable for text. Image hashes are
maintained separately from the images in CM.

As per the Data QA Approach, labels applied to images
(ground truth bounding boxes as well as metadata and object
tagging), are reviewed for quality in a multi-step process,
initially as a part of the label assignment process, and then
verified by an independent review process. When automated
image augmentations are used which change the location of
the boxes (for example, image resizing, rotation, or flipping)
a representative sample of the augmented images and labels
will be reviewed for quality.

The DSCB reviews the products generated in this step for
consistency with the ConOps and SystemRequirements. This
includes a review of the Collection Plan, ODD Taxonomy,
Data Dictionary, Dataset Description, and BOD. The datasets
themselves (and the determination of which data is held
out for V&V) are also subject to DSCB review. Since the
datasets can be large, it is expected that the DSCB reviews a
representative sample (as opposed to every image and every
label).

3) MODEL TRAINING AND EVALUATION
The Model Training and Evaluation process, shown in
Figure 12, begins with the selection of a model architecture
and hyperparameters. There are many model architectures
that are optimized for different purposes (detecting small
objects, minimizing the time required to execute the model,
etc.), and the overall component requirements will guide
that selection. In addition, different models require different
parameters for shaping both the learning and the inference
process, and those hyperparameters need to be set. If the
models are determined to not meet the metrics established in
the Metrics Description and Definition, hyperparameters can

FIGURE 12. Model training and evaluation process.

FIGURE 13. Example model evaluation for a single metric.

be changed, the model architecture can be adjusted, or more
data can be added to the training process, and the model can
be retrained. The DNN Training Plan describes in more detail
the approach used to select and evaluate the model and the
hyperparameters.

DNNs are trained using an iterative approach. During the
training process, labeled images from the training dataset
are processed through the model architecture, resulting in
output bounding boxes. Those outputs are compared with
the known labels, the difference between the known boxes
and the resulting boxes is calculated, and the resulting error
(called loss) is backpropagated to update the model weights.
After a set number of epochs, the model is saved, the labeled
images from the validation dataset are fed through the model,
and the outputs are captured. The difference between the
validation set inputs and the outputs is calculated and that loss
is used to score the model for that epoch. When the validation
loss stops significantly changing for a certain number of
epochs, the model is considered ‘‘trained’’. Any version of
the model generated and saved in the iterative model training
cycle can be selected as the model to evaluate, but models are
typically chosen based on their performance on the validation
set during training. The criteria used to select the model(s) to
advance to the evaluation step is detailed in the DNNTraining
Plan. The selected model and associated hyperparameters
used for training, including the training loss curves and
other training-specific metrics, are documented in the Model
Training Report (a type of test report).

In the evaluation process, the selected model performs
inference on the labeled images in the V&V datasets. The
resulting outputs are then scored via the metrics functions
identified in the Domain Characterization step. These metrics
include operationally relevant metrics derived from the
system requirements and ConOps as well as more traditional

VOLUME 12, 2024 99171



D. Clement et al.: Development Life Cycle for Using a DNN

machine learning metrics. Robustness test cases are similarly
evaluated. The results of the model evaluation are provided
in the Model Evaluation Report (a type of test report), and
the Evaluated Model is stored in CM. An example of model
evaluation for a single metric is shown in Figure 13.

The performance metrics used to evaluate the model
are defined and described in the Metrics Definition and
Description, and the simplified example shown here is for
illustration only. In this example, five models are evaluated
against the same V&V dataset containing 10 images. The
performance metric used for evaluation in this example is
the percentage of the images in the V&V set where the
model correctly identifies the drogue (the percent of true
positives). A correct detection is shown as a 1 in the table,
and a miss or incorrect detection is shown as a 0. A model is
considered to have achieved sufficient performance (a PASS)
if the combined performance of the V&V dataset is above
the threshold for that metric (ex. 75%). As shown in the
example, no evaluated model detects the drogue objects in
all of the V&V images, however, Models A-D all exceed the
performance threshold. Also shown in the figure is a trend of
consistent misses across all models in V&V Image 1. Trends
across images within a model could also be defects – for
example, some models may not perform well detecting small
objects or may perform less well in very bright images. This
type of performance trend could reflect a defect in either
the training or validation datasets, the model architectures,
or the training process, and will be documented and
investigated.

The intermittent misses shown for images 5-9 are most
likely not defects. It is expected that there will be some
false positives (where objects are mistakenly detected) and
false negatives (where existing objects are not found) in the
normal performance of the system along with the runtime
assurance monitoring approaches other system components
could implement to detect their occurrence. The metrics
definition process will identify the system-specific metrics
thresholds for acceptable levels of false positives and false
negatives. The model evaluation process identifies perfor-
mance trends, compares performance across multiple model
options, tracks and investigates potential defect trends, and
uses these insights to down-select models for optimization
and deployment.

Once a model has been assessed to meet performance,
additional steps can be taken to optimize the model to run
more efficiently on the target hardware. An example of one of
those optimizations is model pruning, where model weights
that are near zero (and therefore not contributing significantly
to the model decision-making) are removed to make the
model smaller, and therefore more time-efficient to execute.
Once the model is pruned, it is retrained and re-evaluated
to ensure that the performance of the model continues to
meet thresholds, following the same training and evaluation
process described above. These optimizations are applied
only to models that are identified as valuable to move forward
to deployment.

FIGURE 14. Model deployment and evaluation process.

The selected model and associated hyperparameters are
maintained in a CM system as per the overall CM Plan. Soft-
ware tooling that facilitatesmodel training and evaluation (for
example, training notebooks or containers) are maintained
CM as defined by the CM Plan. Experiment tracking is used
to maintain traceability between the model, the datasets, and
hyperparameters used in training and the model results.

As per the DNN Training Plan, the architecture, training
process, hyperparameters and outputs of the learning process
are reviewed during the model review and selection phase.

The model is verified against the V&V and robustness
cases as described in the Model Evaluation Approach. The
generated test reports and their associated analyses are
reviewed.

4) MODEL DEPLOYMENT AND EVALUATION
Once a model has been selected for deployment, the model
is converted to a format that can be consumed by the
VPC. Once the executable model has been created, it is
installed on the target hardware as a configuration file for
the VPC’s Object Detection subfunction. The VPC (and
integrated DNN) is then executed against a suite of captured
test videos to evaluate the model performance against those
known cases. Once it has been determined that the model
meets performance as defined in the Metrics Definition
and Description, the model and VPC are released with a
corresponding VDD to system test.

As shown in Figure 14, the model deployment process
is the process used to create a model that can be con-
sumed and executed in a video processing pipeline. The
process is described in detail in the Deployment Approach.
To begin deployment, the selected model is converted into
a configuration file that can be consumed by the VPC’s
Object Detection subfunction and that is optimized to run
on the GPU hardware. Once the executable model has been
created, it is installed on the GPU hardware with the video
processing software and associated configuration parameters.
The executable model is evaluated on the same V&V datasets
as the evaluated model to ensure that the conversion process
has not impacted model performance.

The installed executable model is then evaluated as defined
in the Model Evaluation. This approach includes test videos
from lab collections and videos collected from real-world
environments, some of which were extracted into frames and

99172 VOLUME 12, 2024



D. Clement et al.: Development Life Cycle for Using a DNN

labeled to form the V&V image data set. The evaluation
process for the executable model uses video inputs (as
opposed to individual frame data), as it is run as a part of the
VPC. Since there is typically not labeled truth data for videos,
the metrics for evaluating the executable model running on
the hardware will be focused on how the model performs
on video inputs: including the number of frames per second
performance achievable by the model, the number of dropped
tracks when tracks are in frames, and the overall processing
utilization and throughput of the VPC. Models that reach this
step have already achieved the model performance thresholds
defined for single image detection, but this evaluation is the
first time in the process that runtime-relevant metrics such
as frames per second can be captured. There are different
configuration settings for the VPC that impact those metrics,
and the evaluation process includes updating those settings to
ensure that performance requirements are met. The metrics
used to assess the performance of the executable model are
defined in the Metrics Definition and Description. As the
model is evaluated against the established test cases, test
reports are maintained.

Finally, once the model has met all thresholds, the
model is released for use. A VDD referencing the baseline
information for the data used in model training and testing,
hyperparameter and architecture selection, configuration
information for the VPC, and references to CM components
and their archival locations is created. The Deployment
Approach defines the build and release process for the VPC
and the configuration files that are required for its use.

The executable model, configuration data, and VPC
software are maintained in a CM system as per the CM Plan.
An experiment tracking tool is used to maintain traceability
between the model, the datasets, and hyperparameters used
in training and the model results.

The VDD and Test Reports are reviewed for consistency
and completeness.

To verify that the executable model produces the same
results as the evaluated model, the executable model runs
inference against the same data as the evaluated model,
to ensure that the results are in alignment.

V. CONCLUSION
Before a system will be permitted to allow an AI/ML
algorithm to take actions without a human in or on the loop,
a method to certify must be established. This paper details
the approach that the ONR A4RS FNC has proposed to allow
a DNN to complete the aerial refueling task. In particular,
it details the development life cycle for the DNN to complete
the object detection sub-task required for the high-gain aerial
refueling task. This early baseline is focused on supervised
learning use cases and is intended as a starting point for
process assessment. As AI/ML techniques used in aviation
expand and evolve, this method may similarly need to be
re-evaluated and extended. Future work that expands this
concept is on the critical path to allow AI/ML capabilities
within aviation.

ACKNOWLEDGMENT
The authors would like to thank the ONR for their continued
support of this effort.

REFERENCES
[1] P. Tucker. (Mar. 2021). Drones Could One Day Make Up 40 Percent

of a Carrier Air Wing, Navy Says. [Online]. Available: https://
www.defenseone.com/technology/2021/03/drones-could-one-day-make-
40-carrier-air-wing-navy-says/172799/

[2] D. Clement, S. Mottino, and D. Costello, ‘‘Process assurance for object
detection through deep neural networks to accomplish the autonomous
aerial refueling task,’’ in Proc. IEEE Int. Automated Vehicle Validation
Conf. (IAVVC), Oct. 2023, pp. 1–6.

[3] D. H. Costello and H. Xu, ‘‘Relating sensor degradation to vehicle
situational awareness for autonomous air vehicle certification,’’ J. Aerosp.
Inf. Syst., vol. 18, no. 4, pp. 193–202, Apr. 2021.

[4] J. Parry and S. Hubbard, ‘‘Review of sensor technology to support
automated air-to-air refueling of a probe configured uncrewed aircraft,’’
Sensors, vol. 23, no. 2, p. 995, Jan. 2023.

[5] D. Costello and R. Adams, ‘‘A framework for airworthiness certification
of autonomous systems within United States naval aviation,’’ J. Aviation,
vol. 7, no. 1, pp. 7–16, Mar. 2023.

[6] D. Costello andH. Xu, ‘‘Using a run time assurance approach for certifying
autonomy within naval aviation,’’ Syst. Eng., vol. 26, no. 3, pp. 271–278,
May 2023.

[7] E. D. Dickmanns, ‘‘Developing the sense of vision for autonomous road
vehicles at UniBwM,’’ Computer, vol. 50, no. 12, pp. 24–31, Dec. 2017.

[8] B. Barua, C. Gomes, S. Baghe, and J. Sisodia, ‘‘A self-driving car
implementation using computer vision for detection and navigation,’’
in Proc. Int. Conf. Intell. Comput. Control Syst. (ICCS), May 2019,
pp. 271–274.

[9] P. Kohli andA. Chadha, ‘‘Enabling pedestrian safety using computer vision
techniques: A case study of the 2018 Uber Inc. self-driving car crash,’’
2018, arXiv:1805.11815.

[10] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso,
A. Forechi, L. Jesus, R. Berriel, T. M. Paixão, F. Mutz,
L. de Paula Veronese, T. Oliveira-Santos, andA. F. De Souza, ‘‘Self-driving
cars: A survey,’’ Expert Syst. Appl., vol. 165, Mar. 2021, Art. no. 113816.

[11] C.-J. Yang, W.-K. Huang, and K.-P. Lin, ‘‘Three-dimensional printing
quality inspection based on transfer learning with convolutional neural
networks,’’ Sensors, vol. 23, no. 1, p. 491, Jan. 2023.

[12] G.-H. Gwon, J. H. Lee, I.-H. Kim, and H.-J. Jung, ‘‘CNN-based
image quality classification considering quality degradation in bridge
inspection using an unmanned aerial vehicle,’’ IEEE Access, vol. 11,
pp. 22096–22113, 2023.

[13] United States Dept. Defense. (Dec. 2014). Mil-hdbk-516c: Department
of Defense Handbook, Airworthiness Certification Criteria. [Online].
Available: https://daytonaero.com/wp-content/uploads/MIL-HDBK-
516C-from-ASSIST.pdf

[14] United States Dept. Defense. (May 2012). Department of
Defense Mil-Std-882e: Department of Defense Standard Practice,
System Safety. [Online]. Available: https://www.dau.edu/cop/
armyesoh/DAU%20Sponsored%20Documents/MIL-STD-882E.pdf

[15] Software Considerations in Airborne Systems and Equipment Certifica-
tion, document DO-178C, RTCA Inc., 2011.

[16] D. Costello, L. DeVries, C. Mauldin, and B. Ross, ‘‘DNN based ranging in
support of autonomous aerial refueling,’’ J. Intell. Robotic Syst., vol. 109,
no. 3, p. 49, Nov. 2023.

[17] D. Costello, ‘‘Towards autonomous aerial refueling: Advanced
autonomous air-to-air refueling system (A4RS), ONR FY-24 new
start future naval capability (FNC)+ USNA support for the FNC, invited
presentation,’’ Aerial Refueling Syst. Advisory Group, Orlando, FL, USA,
Tech. Rep., 2023.

[18] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, ‘‘Object detection in 20 years:
A survey,’’ Proc. IEEE, vol. 111, no. 3, pp. 257–276, Mar. 2023.

[19] Y. Amit, P. Felzenszwalb, and R. Girshick, Object Detection. Cham,
Switzerland: Springer, 2020, pp. 1–9.

[20] I. H. Sarker, ‘‘Machine learning: Algorithms, real-world applications and
research directions,’’ Social Netw. Comput. Sci., vol. 2, no. 3, p. 160,
May 2021.

VOLUME 12, 2024 99173



D. Clement et al.: Development Life Cycle for Using a DNN

[21] Nat. Highway Traffic Saf. Admin., Washington, DC, USA. (2018). A
Framework for Automated Driving System Testable Cases and Sce-
narios. [Online]. Available: https://www.nhtsa.gov/document/framework-
automated-driving-system-testable-cases-and-scenarios

[22] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach,
H. Daumé III, and K. Crawford, ‘‘Datasheets for datasets,’’ 2018,
arXiv:1803.09010.

DANIELLE CLEMENT received the B.S. degree
in computer science from the University of
Richmond, in 2000, and the M.S. and Ph.D.
degrees in computer science from The Univer-
sity of Texas at Arlington, in 2007 and 2016,
respectively. She has nearly 20 years of experience
developing mission management and autonomy
software applications. She has supported multiple
internal and external research development efforts
focused on mission management and autonomy.

Her Ph.D. research focused on game theoretic team formation algorithms
for heterogeneous mobile agents, and her current research interests include
hierarchical reinforcement learning algorithms and V&V approaches for
autonomy applications.

SARAH MOTTINO received the B.S. degree
in biology from California State University,
Long Beach, in 2006. She has 17 years of
experience in research and development with
an emphasis on improving human performance
and safety in the cockpit. She is currently an
Autonomy and AI/ML Engineer with Lockheed
Martin Aeronautics Company, where her work
focuses on human performance and the application
and certification of artificial intelligence systems
in aviation environments.

DONALD H. COSTELLO III was born in San
Diego, CA, USA, in 1978. He received the B.S.
degree in systems engineering from United States
Naval Academy, Annapolis, MD, USA, in 2000,
the M.A.S. degree in aeronautical science from
Embry-Riddle Aeronautical University, Daytona
Beach, FL, USA, in 2005, the M.S. degree in
aeronautical engineering from the Air Force Insti-
tute of Technology, Dayton, OH, USA, in 2009,
the M.S. degree in systems engineering from the

Naval Post Graduate School, Monterey, CA, USA, in 2011, and the Ph.D.
degree in mechanical engineering from the University of Maryland, College
Park, MD, USA, in 2020. He is currently an Assistant/Permanent Military
Professor with theWeapons, Robotics, and Control Engineering Department,
United States Naval Academy. His work focuses on the certification and
development of unmanned autonomous systems for practical use.

99174 VOLUME 12, 2024


