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ABSTRACT Pedestrian trajectory prediction is a critical aspect of computer vision, aimed at predicting a
pedestrian’s future locations by analyzing their past movements. Traditional trajectory prediction models
primarily focus on individuals, which can be challenging in densely populated areas due to occlusions.
These occlusions not only complicate the re-identification of pedestrians once they reappear but also
increase processing times due to the more complex procedures and the greater number of objects involved.
However, a common observation is that pedestrians often travel in groups. This insight led us to propose a
novel approach, predicting the future trajectories of pedestrian groups instead of individuals. This strategy
effectively addresses the complexities of predicting movements in crowded environments and the issues
related to pedestrian occlusion. In this work, we introduced a distinctive methodology for identifying
pedestrian groups, re-identifying them, and predicting their future trajectories. Our approach, unlike
traditional state-of-the-art re-identification and trajectory prediction methods of individual pedestrians,
focuses on re-identifying pedestrian groups and predicting their future trajectories while emphasizing
processing time reduction with great accuracy. The process started with object detection to ascertain
pedestrian coordinates. Subsequently, a zone-based clustering method was employed to form groups.
Following this, a specific group re-identification was utilized to construct continuous trajectories for
these groups, rather than for individual pedestrians. Finally, the group trajectory prediction technique was
applied to estimate the future movements of these groups. Both the object detection and group detection
methods were applied every five frames to generate these trajectories. The effectiveness of our approach
has been validated using several evaluation metrics, including Average Displacement Error (ADE), Final
Displacement Error (FDE), Cumulative Matching Characteristics (CMC) scores, IDF1 scores, and IDs, all
assessed using the MOT17 dataset. These evaluations not only confirm the practicality and accuracy of our
method in predicting pedestrian trajectories but also highlight its efficiency, with a reduction in processing
time by 7.6% compared to individual trajectory prediction. This efficiency demonstrates the potential of our
method for real-time applications and underscores its capacity to prevent accidents.

INDEX TERMS Hungarian algorithm, human view camera, LSTM, re-identification, trajectory prediction,
zone-based group detection.

I. INTRODUCTION
In recent times, automated vehicles have gained signifi-
cant importance due to their potential in reducing vehicle
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accidents and protecting human lives [1]. Beyond enhancing
safety, these vehicles also promise to elevate the efficiency
and convenience of daily life by increasing driver comfort
and decreasing workload [2], [3]. The integration of various
automotive technologies into automated vehicle systems
necessitates effective communication not only with drivers
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but also with other road users. In this context, the recognition
of pedestrian behavior emerges as a crucial component of
these technologies, playing a pivotal role in augmenting
system efficiency [4], [5].

Anticipating pedestrian behavior presents a significant
challenge within the automotive driving domain. Mod-
ern methodologies for autonomous driving break down
the intricate process into four sequential stages: object
detection, object tracking, trajectory prediction, and path
planning [6], [7], [8]. Initially, autonomous vehicles employ
object detection and tracking techniques to understand the
behavior of pedestrians. Following this, trajectory predic-
tion models are used to forecast their future movements.
At last, vehicles utilize the path planning module to for-
mulate driving decisions. While recognizing and monitoring
road objects is pivotal, discerning and prognosticating
their imminent actions, such as trajectories, is equally
crucial.

Pedestrian trajectory prediction holds significant impor-
tance in computer vision, with the objective of forecasting
a pedestrian’s future locations based on their historical path.
The trajectory in these methods represents the continuous
positioning of a pedestrian across video frames [9]. Current
trajectory prediction models primarily use the past positions
of pedestrians as a key feature, yielding high accuracy in cases
of linear motion patterns. Nevertheless, to accurately forecast
future pedestrian behavior, especially from vehicle-mounted
cameras, additional features are often necessary [10], [11].
In response, two main types of trajectory prediction meth-
ods are evolving: model-based methods and LSTM-based
methods [12], [13], [14]. Model-based approaches depend
on handcrafted parameters, like pedestrian interactions, for
trajectory forecasting [15], while LSTM-based approaches
focus on analyzing pedestrian movement patterns or include
data from nearby entities during their training [16], [17],
[18]. The choice between LSTM-based and model-based
techniques generally hinges on the specific data avail-
able. Some strategies are adopting a hybrid approach,
combining both methods to improve the accuracy of
predictions.

A key issue arises in linking object detection results across
continuous frames to create object trajectories. The object
detection method may not consistently assign the same ID
to an object across successive frames [19]. This challenge
introduces the need for re-identification (Re-ID). Re-ID
technology is tasked with recognizing the same individuals
across images captured at different times [20], [21]. The
methodologies of Re-ID can vary, typically relying on either
the similarity of image data within bounding boxes or
spatial distances to establish connections. This divergence
gives rise to two main categories of Re-ID: supervised and
unsupervised learning [22], [23]. The former concentrates on
precise re-identification across various cameras [24], [25],
while the latter is more commonly employed in tracking
scenarios. Once we successfully identify the same object over

101550

a defined time span, we can construct continuous trajectories,
setting the stage for accurate trajectory prediction.

However, given the multifaceted behaviors of pedestrians,
this remains a formidable challenge. Many external factors,
such as obstacles on the road and the presence of other
individuals, play a critical role in influencing a pedestrian’s
trajectory. Additionally, predicting the movements of pedes-
trians in crowded settings further complicates the task [26],
[27], [28].

Since pedestrians often walk in groups, leveraging group
information instead of focusing solely on individuals can be
advantageous in these scenarios [29], [30], [31]. However,
most existing research, such as Mei et al. [24] and Chen
et al. [25], seeks to use group information to aid in the
analysis of individual pedestrians. Our approach differs from
these studies by working entirely with groups. In this work,
we introduced a concept named pedestrian group trajectory
prediction. We first use the object detection method to find
pedestrians and forward detected pedestrian bounding box
coordinates to the zone-based group detection method. Then,
the grouped coordinates were linked with prior grouped
results by our group Re-ID method to form continuous
trajectories for pedestrian groups. The next step involved
applying the group trajectory prediction algorithm to predict
the movements of these groups. Lastly, we utilized the
Cumulative Matching Characteristics (CMC), IDF1 scores,
and IDs for performance evaluation on the group Re-ID
method, while the Average displacement Error (ADE) and
Final Displacement Error (FDE) metrics for performance
evaluation on group trajectory prediction.

The main contributions of this work are as follows:

« We proposed a comprehensive zone-based pedestrian
group trajectory prediction method that included object
detection, group detection, group re-identification, and
group trajectory prediction. This method addressed the
challenge of predicting the future behavior of occluded
pedestrians, leading to more accurate trajectory predic-
tion for these pedestrians.

« We demonstrated that predicting pedestrian groups’
future trajectories was more time-efficient than pre-
dicting individual pedestrians, reducing the prediction
processing time by 7.6%. This improvement could
enable autonomous vehicles to react more quickly and
help prevent accidents.

e« We introduced a zone-based pedestrian group re-
identification method to consistently identify the same
groups over continuous frames. This approach achieved
a CMC rank-1 score of 86.51%, an IDF1 score of 95.82,
and 58 IDs on the MOT17 dataset, resulting in more
accurate trajectory data for future predictions.

The rest of the paper is structured as follows: Section II
describes the background of pedestrian re-identification and
trajectory prediction. The method details are described in
Section III, followed by the result based on the evaluation
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metrics in Section IV. Finally, Section V discusses the
conclusions and future work.

Il. RELATED WORK

Trajectory prediction plays a crucial role in the realm of
autonomous driving, where it is employed to forecast the
movements of various objects. However, the trajectory pre-
diction method typically lacks the capability to independently
detect and re-identify objects. Consequently, it is essential
to integrate supplementary processes like object detection
and re-identification to effectively generate continuous and
reliable trajectories.

A. RE-IDENTIFICATION

Re-identification is necessary and irreplaceable once we
wanna keep the focus on the same object. This process could
help us identify the same object throughout the entire video
sequence. The goal of Re-ID is to determine whether the
specific object appeared in another camera or even the same
camera at different frames. This methodology is normally
needed due to the occlusion, low-image resolutions, detection
method accuracy, and so on [32].

Pedestrian Re-ID normally focuses on two different situ-
ations, one for finding the same pedestrian within different
cameras, and the other is to find the same pedestrian in a
video or image sequence. This causes the Re-ID methods
to be divided into two different types, supervised learning
and unsupervised learning. The supervised Re-ID learning
methods need the detected object information as the input
and make the connection. However, these methods will
take a lot of memory once the object number is huge,
and the training dataset is also required for more accuracy.
Unsupervised Re-ID learning set up the assignment based on
the observation between objects.

The field of Re-ID has garnered considerable attention
from researchers. For instance, Ning et al. [33] developed
a feature refinement and filter network. This network
primarily focuses on complete features rather than solely
on highly valuable ones, emphasizing person-centric infor-
mation over background details. It also incorporates a
multi-branch attention network to enhance its effectiveness.
Similarly, Yan et al. [34] introduced another notable approach
with their multi-attention context graph model, specifically
designed for group-based re-identification. By utilizing both
intra-group and inter-group information, they demonstrated
considerable success. Zhu et al. [35] crafted a group context
graph neural network designed for graph representation
learning. This network acquires contextual data from each
member’s k nearest neighbors, significantly enhancing the
CMC scores of their method. Park and Ham [36] focused on
part-level features to discern relationships between different
body parts, applying this to a global contrastive pooling
method to enhance re-identification, particularly for people
with similar attributes. Mei et al. [24] introduced the Siamese
Verification-Identification-based Group Retrieval method,
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which employs minimum distance matching for feature
extraction and group retrieval. This approach utilizes the
correlation from group retrieval to refine the re-identification
process. Similarly, Chen et al. [25] proposed a two-stream
attentive network comprising four distinct sub-networks
to extract features for both individuals and groups. This
method integrates a novel re-ranking algorithm that applies
a cosine similarity calculation formula to obtain similar-
ity scores, which are subsequently adjusted by manually
defined weights to achieve final matching. In the realm
of transformer-based Re-ID, TransRelD [37] stands out by
encoding images into a sequence of patches and employing
a jigsaw patch module for robust feature generation. They
also introduced side information embeddings to fortify
their framework. Furthermore, Zheng et al. [38] proposed
the Group-aware Label Transfer (GLT) strategy, which
innovatively uses labels for both training and clustering,
thereby boosting the method’s effectiveness. Dai et al. [39]
developed Cluster Contrast, an innovative approach that
processes features at the cluster level, supplemented by a
momentum update strategy to maintain feature consistency
across continuous frames. This combination significantly
improved the performance of their method. In a similar
vein, AAformer [40] automated the identification of human
parts and obstacles, extracting their features using learnable
vectors. The integration of an auto-alignment mechanism
then clusters these vectors, further amplifying the efficiency
of their methodology. For a comparative perspective, Table. 1
presents CMC rank-1 scores across various Re-ID methods.
Here, it’s notable that the feature refinement and filter
network achieved the highest score on the Market-1501
dataset, while TransRelD excelled on the DukeMTMC-relD
dataset.

B. TRAJECTORY PREDICTION

Deep learning-based methods have been designed to handle
time series data based on their exceptional performance
in addressing computer vision challenges. Recurrent Neu-
ral Networks (RNN) and its derivatives, such as Long
Short-Term Memory (LSTM), are widely used across diverse
tasks, with pedestrian trajectory prediction being a prime
example. Contrasted with model-based techniques, employ-
ing LSTM for trajectory prediction stands out as a more
universal, data-centric approach.

Numerous existing studies have explored the application
of LSTM for trajectory prediction. As detailed in [41],
a model was presented that leverages environmental data for
trajectory prediction, utilizing unlabeled image data to adapt
unsupervised learning to new environments and tasks. The
integration of environmental context with agent motion in this
model leads to more accurate predictions. The combination
between the given environment and the agent motions
resulted in a more reliable prediction. Xue et al. [42] intro-
duced the Local-Velocity-Temporal Attention LSTM model,
designed to predict trajectories solely based on observed
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TABLE 1. Summary of Re-identification methods.

Algorithm Dataset CMC Rank-1 | Year | Paper
Feature refinement and filter network | Market-1501, DukeMTMC-relD 98.3/90.3 2020 | [33]
Multi-attention context graph model | CUHK-SYSU-Group, DukeMTMC Group 63.2/57.4 2020 | [34]
Group context graph neural network | Road Group, DukeMTMC Group 81.7/53.6 2020 | [35]
Relation network Market-1501, DukeMTMC-relD 95.2/89.7 2020 | [36]
SVIGR SYSU-Group, i-LIDS 94.5/46.2 2020 | [24]
Two-Stream Attentive network DukeGroupVid, i-LIDS-VID 82.2/85.3 2021 [25]
TransRelD Market-1501, DukeMTMC-relD 95.2/90.7 2021 [37]
Group-aware label transfer algorithm | Market-1501, DukeMTMC-relD 92.2/82.0 2021 | [38]
Cluster Contrast Market-1501, MSMT17 92.9/62.0 2022 | [39]
AAformer Market-1501, DukeMTMC-relD 95.4/90.1 2023 | [40]
TABLE 2. Summary of LSTM-based trajectory prediction methods.

Algorithm Dataset ADE FDE Year | Paper

Stochastic LSTM ETH, UCY 0.07 0.127 2020 | [41]

LVTA ETH, UCY 0.46 0.92 2020 | [42]

PoPPL NYGC, Edinburgh | 0.396/1.304 | 0.617/2.314 | 2020 | [14]

CG-LSTM ETH, UCY 0.43 0.63 2020 | [43]

Deep convolutional LSTM network | ETH, UCY 0.61 0.96 2020 | [44]

GAN-Tri model UCY, store 1.895/5.375 | 3.738/9.350 | 2021 | [45]

SRAI-LSTM ETH, UCY 0.26 0.53 2022 | [46]

STS LSTM ETH, UCY 0.316 0.568 2023 | [47]

data. This model employs dual mechanisms to extract
location and velocity features, using a location-velocity
attention layer to refine predicted positions and speeds,
thereby achieving competitive results. The PoOPPL model [14]
initially categorizes pedestrian trajectories into various paths,
predicts destination regions through an LSTM classification
network, and then applies an LSTM-based method for future
destination prediction. In contrast, CF-LSTM [43] captures
dynamic human-human interactions by extracting features
from two consecutive time steps, effectively utilizing past
location and velocity data without needing information about
other pedestrians. Song et al. [44] developed a model that
stores pedestrian features in tensors and employs a convo-
lutional LSTM for trajectory prediction. This combination
of tensor storage and convolution enhances learning about
pedestrian interactions, significantly improving prediction
accuracy. In [45], an innovative deep learning architecture
was introduced that prioritizes increased diversity while mini-
mizing linearity. This innovative model integrates LSTM with
the Unimodal Generative Adversarial Network for singular
trajectory predictions. Moreover, for scenarios requiring
multimodal forecasts, it harnesses the potential of the
Trimodal Generative Adversarial Network. Peng et al. [46]
proposed the Social Relation Attention-based Interaction-
aware LSTM. This model features a social relation encoder
to decipher relationships and attention between pedestrians
based on their past positions, substantially boosting accuracy
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on prominent pedestrian trajectory datasets. Similarly, the
STS LSTM [47] focuses on aggregating spatial, temporal,
and spectral data to inform its predictive capabilities. By inte-
grating LSTM, CNNs, and Transformers, this model achieves
remarkable accuracy in forecasting pedestrian movements.
Several studies have explored the use of group infor-
mation as a parameter for predicting future pedestrian
trajectories. For instance, Group LSTM [48] developed a
coherent filtering approach to assess the similarity among
detected pedestrian trajectories, enabling efficient trajectory
clustering. It introduced a social pooling layer combined with
LSTM to enhance path prediction efficacy and applicability.
Zhou et al. [49] advanced this field with the development
of a social graph convolutional LSTM neural network.
This network is adept at deciphering the intricate relation-
ships between pedestrians and their immediate neighbors.
By incorporating an emotion gate, their model effectively
filters out extraneous data, enhancing overall efficiency.
In another innovative approach, AG-GAN [50] amalgamated
coherent group clustering with a global attention mechanism
within an LSTM-based Generative Adversarial Network.
This integration enables the model to more accurately
represent neighbor relationships and focus on subtle, hid-
den information, leading to a marked increase in method
accuracy. Similarly, Bae et al. [51] took a different tack by
initially identifying pedestrian groups and then exploring
both inter-group and intra-group interactions. This analysis
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FIGURE 1. Overall structure of the pedestrian group trajectory prediction.

significantly aids in understanding the relationships between
pedestrian trajectories, thereby boosting model performance.
Furthermore, the SG-LSTM [52] model builds on the
foundations of Social-LSTM by integrating social awareness
into its framework. This feature is particularly effective
in facilitating robot navigation in environments populated
by groups, ensuring smooth and unobstructed movement.
Table. 2 and Table. 3 display the ADE and FDE across various
trajectory prediction models, providing a clear comparative
analysis of their performance.

C. LIMITATIONS OF EXISTING TECHNIQUES

Previous research on pedestrian trajectory prediction has
primarily depended on ground truth coordinates supplied by
dataset generators, which often led researchers to overlook
the challenge of predicting occluded pedestrians. In methods
that integrate re-identification with object detection results,
the distance between pedestrians is frequently used as a key
parameter, enhancing the accuracy of individual trajectory
predictions. However, many trajectory prediction methods do
not account for processing time as an evaluative measure and
typically utilize overhead cameras, potentially introducing a
linear bias into the predictions. Moreover, methods focusing
on re-identification generally depend on pre-trained deep
learning models to consistently re-identify the same pedes-
trians across various camera views. Even studies like [24]
and [25] have incorporated group information into deep
learning networks to address pedestrian occlusion issues and
improve the accuracy of individual re-identification methods.
Nevertheless, these approaches often fail to leverage the
potential of group detection for predicting the trajectories of
obscured pedestrians. In contrast, our research underscores

VOLUME 12, 2024

Object Filtering

pedestrians object label

lower edge coor

——

Group Trajectory Prediction

Stochast

infoVAE .

TABLE 3. Summary of trajectory prediction methods that used group
information.

Algorithm Dataset ADE/FDE | Year | Paper
Group LSTM | ETH, UCY | 0.34/1.18 | 2018 | [48]
SGC-LSTM | ETH, UCY | 0.47/1.01 | 2021 | [49]
AG-GAN ETH, UCY | 0.46/0.90 | 2021 | [50]
GP-Graph ETH, UCY | 0.23/0.39 | 2022 | [51]
SG-LSTM ETH, Hotel | 0.35/0.68 | 2023 | [52]

the importance of group detection as an essential tool to tackle
the challenges posed by non-visible pedestrians. Instead of
merely re-identifying and predicting the paths of individually
detected pedestrians, our study focused on re-identifying
and forecasting the future trajectories of pedestrian groups,
which aided in preventing accidents by facilitating quicker
responses.

lll. METHODOLOGY

As pedestrians navigate through streets, occlusions, where
one pedestrian blocks the view of another, are a common
occurrence, as illustrated in Fig. 2. These occlusions present
significant challenges in object detection, tracking, and
trajectory prediction. Our methodology is designed to tackle
this issue by employing pedestrian group detection, which
requires object detection to accurately simulate occlusions
and demonstrate the effectiveness of our approach. The
workflow of our approach is outlined in Fig. 1 and further
explicated in the subsequent subsection. Our process begins
with object detection, followed by the application of a
group detection method to identify pedestrian clusters.
Once a sufficient number of sequence frames of object
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FIGURE 2. Example on a pedestrian being blocked.

coordinates have been accumulated, the group Re-ID method
is implemented to construct continuous group trajectories.
These group trajectories’ coordinates are then input into a
pedestrian group trajectory prediction method. The accuracy
of our predictions is gauged using metrics like the average
displacement error and the final displacement error. In addi-
tion, we use the Cumulative Matching Characteristics metric,
IDF1 scores, and IDs to evaluate the efficacy of our Re-ID
methods. To further demonstrate the time efficiency of our
methodology, we also record the processing time.

A. OBJECT DETECTION

In our study, we employed the Faster R-CNN model
implemented in PyTorch as our primary object detection
method [53]. R-CNN, or region-based convolutional neural
network, revolutionized object detection by incorporating
selective search to identify regions of interest, followed
by the use of CNNs for feature extraction and SVMs for
classification. The integration of a Region Proposal Network
(RPN) enabled Faster R-CNN to surpass many state-of-the-
art methods in terms of accuracy and processing efficiency.
Deviating from the traditional selective search, Faster R-CNN
segments the network into distinct components, each learning
region proposals autonomously. This design allows for real-
time performance.

The comprehensive procedure is detailed in Fig. 1.
As depicted, the initial step involves forwarding the images
to a convolutional layer, which produces a feature map.
This feature map is then employed by the RPN to create
proposals. These proposals are subsequently processed
by the Region of Interest (Rol) pooling layer, which
generates feature vectors essential for the classification
phase.

In our approach, images are directly input into the Faster
R-CNN model, bypassing any form of compression. This
model then analyzes the images, subsequently generating
outputs that include labels of detected objects as well
as the coordinates of their bounding boxes, which are
identified by the top-left and lower-right points of each box.
This methodology guarantees a high degree of accuracy in
identifying pedestrians, setting a robust foundation for the
subsequent stages of our process.
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B. GROUP DETECTION

The initial step of our group detection involved filtering
out non-pedestrian objects using their labels. Following
this, we addressed the challenge posed by the object
detection method’s limited ability to detect distant pedes-
trians, as objects appear smaller with increased distance.
To maintain a focus on generating continuous trajectories,
it was necessary to exclude pedestrians that the algorithm
consistently failed to detect. For this purpose, we set a
threshold at half the height of the image. Any detected
pedestrians whose lower edge exceeded this threshold were
consequently removed from consideration.

In our previous work, we observed that traditional
clustering methods were not fully effective with images
taken from a human-view camera. Frequently, individual
pedestrians, even if they weren’t part of any group, were
erroneously clustered together. We attributed this challenge
to the depth perception associated with human vision. The
perceived distance between pedestrians can vary depending
on their proximity to the observer, with the space between
them seeming larger as they move closer.

To overcome this, we developed the Z-DBSCAN method.
This technique involves dividing the image into several
zones and assigning a variable epsilon value to each zone,
allowing for more accurate clustering of pedestrians by their
apparent size. This approach ensures that pedestrians of
similar magnification are grouped together. Implementing
zone detection requires a sorted list of the lower-bound
coordinates of each bounding box in every image. Given
that pedestrians in a group are usually close to each other,
their y-coordinates are also closely aligned. Therefore, for
effective zone detection, we utilized the widths of the
bounding boxes as a key parameter.

The detailed structure and functioning of the Z-DBSCAN
method are illustrated in Fig. 1. Initially, we employ the
object labels and the coordinates of the lower edge for
object filtering. Subsequently, the filtered pedestrians’ lower
edge coordinates and bounding box widths are used to
divide the image into distinct zones. Once the epsilon is
determined based on the bounding box width, we proceed to
execute the group detection method, ultimately outputting the
coordinates of each identified group.

C. PEDESTRIAN GROUP RE-IDENTIFICATION

To construct continuous trajectories for the pedestrian groups
we have identified, it is imperative to implement group re-
identification. Group Re-ID, distinct from individual Re-ID,
seeks to link each individual or group in the current frame
with their corresponding counterparts from previous frames.
This approach is essential for overcoming the challenges
inherent in the traditional pedestrian Re-ID method, espe-
cially when it involves the dispersion and later regrouping of
pedestrian clusters. In our study, we utilized the Hungarian
algorithm for initial matching between consecutive frames.
This method requires the construction of a cost matrix, where
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FIGURE 3. Interaction over Union.

weights are assigned based on the likelihood of a pedestrian
in the current frame correlating with one in the previous
frame. To derive these weights, we integrated both spatial
distance and Intersection over Union (IoU) metrics into the
cost matrix.

Fig. 1 elaborates on the process following the acquisition of
continuous frame coordinates for pedestrian groups. Utilizing
both distance metrics and IoU values, we generate a cost
matrix tailored for the Hungarian method. This method
then facilitates the assignment process, which is crucial for
identifying the same objects across frames, thereby enabling
the formation of continuous trajectories.

Considering our dataset was captured using a human-
view camera, the field of view within each image varies
significantly. Employing just Euclidean Distance would inac-
curately represent the distances between pedestrian trajectory
sample points, especially for those closer to the camera.
To address this, we differentiated the weights assigned to
vertical and horizontal distances, thereby enhancing the
precision of our group Re-ID method.

IoU, also known as the Jaccard Index, is widely used
in computer vision, especially for object detection tasks.
It calculates the ratio of the overlapping area between the
selected bounding box and the compared bounding box. This
calculation, detailed in Equation 1 and Fig. 3, provides a
numerical assessment of how closely the individual or group
in the current frame corresponds to their counterparts in the
previous frame, crucial for accurate Re-ID and, consequently,
for accurate trajectory prediction. By combining both dis-
tance and IoU for generating the cost matrix, our group Re-ID
process is significantly enhanced in terms of reliability and
accuracy.

AreaofOverlap
IoU = ——
AreaofUnion

However, one inherent limitation of the Hungarian method
is that it assigns each object in the subsequent frame to a
specific object in the previous frame, based solely on the
criteria set by the cost matrix. This can sometimes result
in incorrect pairings, where there is no real connection
between the pedestrian and the object to which they are
assigned. To address this, we established a threshold to
exclude these incorrect assignments, especially in cases

ey
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where the pedestrians are not actually connected. Following
this filtration, we focus on those objects that have not been
assigned. The next phase of our process is to rearrange these
unassigned objects, taking into account their specific weights.
This step is crucial as it ensures that any split objects are
accurately connected to their appropriate groups from the
previous frame.

Additionally, we encounter the issue of short-term occlu-
sion, where pedestrians are temporarily undetectable in
certain frames due to obstructions. When these pedestrians
reappear and are detected, the absence of their data in the
previous frames prompts the traditional system to generate a
new trajectory matrix. This not only slows down the process
but also impacts the accuracy of trajectory predictions.
To overcome this issue, we employed a global coordinate
system. This system is designed to keep track of pedestrians
who remain unassigned by the Hungarian algorithm or
those who are excluded based on the criteria defined in
the cost matrix. By effectively associating these unassigned
pedestrians with others that reappear in subsequent frames,
or by integrating them into nearby groups, we facilitate
continuous tracking. This approach is particularly effective in
managing short-term occlusion challenges, ensuring a more
robust and accurate trajectory prediction process.

Another critical challenge we face is the dynamic nature
of pedestrian groupings. Groups may occasionally disperse
into smaller clusters or individuals, only to reassemble into
a larger group later. Addressing this requires an effective
method to continuously generate pedestrian trajectories
through these phases of splitting and rejoining. Our strategy
begins with assigning a single trajectory to all members of a
group. Upon detecting their division into multiple individuals
or smaller groups, we replicate the group’s historical
trajectory for each separate entity and proceed with individual
trajectory predictions for each. This approach allows us
to maintain trajectory continuity while accommodating the
fluidity of pedestrian group dynamics.

The diagrams in Fig. 4 and Fig. 5 illustrate the complex
process involved in our pedestrian group Re-ID method.
Specifically, Fig.4 details the detection results for each
frame corresponding to the trajectory points in Fig.5. The
images labeled a, b, ¢ and d in Fig. 4 depict a scenario
where a pedestrian group splits. Initially, these pedestrians
are part of the same group but begin to diverge from the
third sample frame onwards. As evident from a and b in
Fig.5, during trajectory generation, these pedestrians initially
share a common path while they are grouped together.
Once they split, we replicate their shared trajectory history
and assign it individually to each separated entity, after
which trajectory predictions are run independently for each.
Conversely, images e, f, g and & in Fig. 4 demonstrate a
contrasting scenario where pedestrian groups or individuals
initially separate and merge into a single group over time.
In such cases, the combined trajectories from the point of
merging, as depicted by the 3rd and 4th trajectory points in
images c and d in Fig.5, are shared among all members of the
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Scenario 1 : pedestrian group split

(b)

(e ®

()

(9) (h)

FIGURE 4. The pedestrian group detection results for two distinct scenarios: 1) In the images g, b, c and d, which are four consecutive sample frames,
we observe that the pedestrians are initially part of the same group but begin to split starting from image c. 2) Conversely, in the images ¢, f, g and h, also
four continuous sample frames, we see that the pedestrians, initially in separate groups, merge into a single group beginning with image g.

c d

FIGURE 5. Pedestrian group split and rejoin on two sample frames of the
MOT17 dataset.

newly formed group. This approach ensures continuity and
coherence in the trajectory prediction as the group dynamics
change.

D. PEDESTRIAN GROUP TRAJECTORY PREDICTION

Long Short-Term Memory (LSTM) is a specialized variant
of Recurrent Neural Networks (RNNs), which are commonly
employed for processing sequential data [54], [55]. Tradi-
tional RNNs often struggle with learning and effectively
adjusting weights in their earlier layers. Additionally, as the
network depth increases, stability issues can arise due to

101556

gradient-related challenges. LSTMs are engineered to over-
come these limitations [43], [56]. Their unique architecture
enables them to retain and learn from early data across
extended sequences, making them particularly suited for
tasks like trajectory analysis.

In light of these advantages, we utilized the LSTM network
for trajectory prediction in our study. Our methodology aligns
closely with the model outlined in [41], characterized by three
integral components: an unsupervised model, a supervised
model, and a global dynamics model that effectively unifies
the first two. This integrated model structure is depicted
in Fig. 1. Such an architecture is specifically designed for
model-based trajectory prediction, harnessing the synergy of
all three components. The process begins with the encoding
of image data, followed by connecting information from
successive frames. This compiled data is then processed
through a conventional stochastic LSTM model, facilitating
accurate and effective trajectory forecasting.

The model was initially pre-trained on the ETH and UCY
datasets, which enabled it with the capability to analyze
a specific trajectory length before predicting subsequent
behaviors. However, in our current study, we have shifted
our focus from predicting individual pedestrian trajectories
to emphasizing the prediction of group behaviors.

Our research is centered on pedestrian group trajectory
prediction. Consequently, all the trajectories we generated
for each pedestrian were at the group level. After obtaining
the coordinates of pedestrian groups for specific frames,
we connect these coordinates to those of their preceding
frame using our group Re-ID process. A critical aspect to
consider is the dynamic nature of pedestrian groups, which
may split or merge over time. This could result in instances
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where some group members exhibit overlapping trajectories
in consecutive frames once they are split, particularly when
groups divide.

IV. RESULT AND DISCUSSION

In this study, we introduced a framework for forecasting
the future trajectories of pedestrian groups. This framework
improves the efficiency of re-identifying pedestrian groups,
thereby increasing prediction speed by minimizing the
number of objects that need to be processed. Furthermore,
it enables the prediction of future movements for closely
interacting pedestrians by utilizing insights from group
dynamics. In this section, we will discuss the parameter
settings, followed by a description of the datasets used and the
evaluation metrics, including the generation of their ground
truth data. We then present experimental results for each
step of our methodology, including group detection, group
re-identification, and group trajectory prediction, along with
an analysis of the associated hyperparameters. Additionally,
a comparison with existing work is provided to emphasize the
advancements achieved through our approach.

A. PARAMETER SETTINGS

Our methodology begins with the detection of pedestrians in
selected video frames from the MOT17Det dataset using the
fasterrcnn_resnet50_fpn model provided by PyTorch. This
model can be easily executed with the examples provided in
its documentation, and various parameters can be adjusted,
such as weights, progress, and num_classes. However, these
parameters are optional, and for our testing, we used the
default values without any specific customizations, except
for the weights. We employed the pre-trained weights from
COCO_vl.

Following this, pedestrian groups are delineated using a
zone-based clustering method known as Z-DBSCAN. This
method receives the top-left and lower-right coordinates from
the object detection results and outputs group coordinates
in the same format. The process begins by generating a
sorted list of pedestrian bounding boxes based on their y-
axis values, along with their corresponding widths. If the
distance between adjacent bounding boxes exceeds the
average bounding box width, the average y-axis value is
selected as the threshold to divide the image. Subsequently,
the parameter € is calculated based on the average width of
bounding boxes within each zone, and the default value for
MinPts is set to 1, assuming a single pedestrian as a group.

Subsequently, group re-identification is utilized to estab-
lish continuous trajectories for the identified groups. In this
stage, we compare the current group coordinates with
the previous ones and employ the Hungarian algorithm
to generate continuous trajectory points. To improve the
accuracy of group re-identification, we use both spatial
and IoU metrics with weights of 0.3 and 0.7, respectively,
to construct the cost matrix.
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The final step involves utilizing a Stochastic LSTM model
to forecast the future movements of these pedestrian groups,
which requires a sequence of past trajectories as input to
generate future trajectories. The entire model is built upon
the BasicLSTMCell from TensorFlow without any activation
function and is guided by the maximum mean discrepancy
loss function. This method requires an observed length and a
predicted length as initial inputs for prediction. Here, we set
both values to 4, meaning that 4 continuous trajectory points
are observed to predict the next 4 future trajectory points.
Once 4 trajectory points are collected, they are fed one by
one into the LSTM network, which then outputs the next
4 continuous future trajectory points.

B. DATASET

In this study, we concentrated on using the bounding box
coordinates provided by the object detection method to
predict the future trajectories of pedestrians. For every
individual pedestrian, we constructed a matrix capturing the
xy-coordinates across a specific sequence duration. As our
objective was to apply this process on streets using a camera
mounted on a vehicle, the MOT17Det dataset [57] was
utilized in our test. This dataset contains a range of videos,
each providing coordinates for all objects detected within
them.

The MOT17Det dataset includes images with a resolution
of 1920 x 1080 pixels in JPG format, spanning across multiple
videos. Specifically, MOT17-02 features a video comprising
600 frames spread over a duration of 20 seconds. This specific
video captures pedestrian movements on the street from the
perspective of a stationary, human-eye-level camera. This
vantage point closely resembles what would be seen from a
vehicle-mounted camera, making it an excellent fit for our
study.

C. EVALUATION MATRICS

In order to evaluate our pedestrian group trajectory prediction
result, we used Average Displacement Error and Final
Displacement Error as the measurements for trajectory
prediction [58], [59], [60]. While ADE represents the mean
squared error between predicted trajectories and the ground
truth, FDE quantifies the discrepancy between the final
predicted and actual positions. For both ADE and FDE, lower
values are indicative of better performance. Hence, a method
that yields low ADE and FDE values is typically regarded as
showing a more precise trajectory prediction.

They can be defined in Equations 2 and 3, in which p;,
represents the actual position at time ¢, p, represents the
predicted position at time ¢, and T is the total number of
trajectory points.

T
1 .
ADE = Tgnpf —prll2 2
FDE = |pr — prl2 3)
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We also employed the Cumulative Matching Characteristic
(CMC) curve, an evaluation metric prevalent in Re-ID
methods. This curve quantifies the likelihood that objects
in the current frame are accurately identified among their
top matches, making it a rank-based metric. The process
involves generating a list of potential matches for each object,
ordered by their similarity scores derived from the similarity
matrix. In the context of a CMC curve, the ‘rank’ refers to the
specific position of a gallery item in this list, sorted according
to its resemblance to the query object. The effectiveness of
the Re-ID method is primarily gauged by the probability of
correctly identifying the target gallery item within the top ‘k’
matches.

To further assess the effectiveness of our Re-ID method,
we employed the IDF1 score and IDs, both integral metrics
in the MOT (Multiple Object Tracking) evaluation suite, com-
monly used for evaluating multi-object tracking algorithms.
The IDF1 score primarily gauges the accuracy of consistently
identifying the same object across different frames. This
score is derived using Equations 4. In this equation, ‘IDTP’
(ID True Positives) represents the count of objects whose IDs
match the ground truth. ‘IDFP’ (ID False Positives) quantifies
the objects incorrectly identified, not matching the ground
truth. ‘IDFN’ (ID False Negatives) denotes the number of
actual objects either missed entirely or identified with an
incorrect ID.

In contrast, the IDs score offers a more straightforward
metric than IDF1. It tallies the frequency of ID changes for
an object as it moves across various frames. This score is
particularly useful for understanding the consistency of ID
assignments in tracking scenarios.

2 % IDTP
IDF1 = @
2 % IDTP + IDFP + IDFN

However, the IDF1, IDs, and CMC scores, which are met-
rics essential for accurate re-identification analysis, require
ground truth data. The generation of this ground truth data
entails identifying the same pedestrian or pedestrian group
across consecutive frames within detection results. Due to the
comparative simplicity of tracking the same pedestrians or
groups consistently, we limited the task to a single annotator.
We supplied detection results for 121 consecutive sample
frames and instructed the annotator to create a list that links
each pedestrian in the current frame to the corresponding
individual or group in the previous frame.

D. GROUP DETECTION

In our prior research, we noted that some traditional
clustering algorithms struggled to cluster points across
varying fields of view effectively. To address this limitation,
we introduced advanced zone-based clustering methods
which segmented the image into distinct zones. Unlike
grid clustering, our approach divided the image only along
the horizontal axis, using non-uniform intervals. In this
work, we used the Z-DBSCAN as the group detection
method. We separate the pedestrians based on the lower
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FIGURE 6. Group detection with our Z-DBSCAN method on a sample
frame of the MOT17 dataset.

coordinates of the pedestrians’ bounding boxes. Then,
we deployed DBSCAN to cluster pedestrians within each
zone. As illustrated in our previous work and Fig. 6, our
Z-DBSCAN method for pedestrian clustering showed a
marked improvement over traditional DBSCAN. As shown in
the figure, the pedestrians were described by a green rectangle
bounding box with the detection ID on the top left, and the
pedestrian groups were described by a red rectangle bounding
box with the group ID on the lower right. The red horizontal
lines denoted the zone defined by our Z-DBSCAN method.

E. PEDESTRIAN GROUP RE-IDENTIFICATION
The primary challenge addressed in this paper is the
re-identification of pedestrian groups. To tackle this, we uti-
lize the Hungarian algorithm, a well-known combinatorial
optimization algorithm renowned for resolving assignment
problems. This method typically requires identifying the most
efficient assignment pairing between two sets of entities.
The Hungarian method executes assignments based on the
aggregate cost, specifically linking each object to its most
correlated counterpart. The process begins with the creation
of a cost matrix that calculates the costs involved in pairing
objects from the previous frame with those in the current
frame. Subsequently, we employ the linear_sum_assignment
function in Python to establish the assignments. This function
is designed to identify the most cost-effective complete
assignment based on the provided cost matrix, significantly
enhancing the accuracy of the Re-ID method across frames.
In order to make the best match between the two
frame detection results, we utilized a combination of IoU
and distance measurements, assigning them weights of
0.3 and 0.7 respectively, to construct the cost matrix for
the Hungarian algorithm. The IoU would provide a simple
and efficient way to help us measure the overlap between
pedestrians across different frames. By complementing this
with distance measurements, we can achieve more precise
Re-ID, particularly addressing scenarios where pedestrians
move quickly and have no overlapping areas (IoU) between
frames.
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FIGURE 7. Overall CMC Curve on the MOT17 dataset.

TABLE 4. Group re-identification evaluation on MOT17 dataset.

Methods IDF1 | IDs
SAMOT [61] 60.9 1,064
FairMOT [19] 72.3 3,303
ByteTrack [62] 71.3 2,196
Deep OC-SORT [63] | 80.6 1,023
FRoG-MOT [64] 77.8 2,244
Ours 95.82 | 58

While our focus was on leveraging pedestrian group
detection and trajectory prediction for forecasting future
group trajectories and reducing processing time, we must
also address the complexities arising when pedestrian groups
split and recombine. To tackle this, we have enhanced
the assignment process within the Hungarian algorithm.
Initially, after setting up the primary assignment based on
the cost matrix, we filtered out assignments with excessively
high costs, specifically exceeding 0.35 in our tests. Then,
we established connections between unassigned objects and
those from the previous frame. This step was crucial for
maintaining the continuity of group members who had
temporarily split from their original group. To further assess
the efficiency of our group Re-ID, we conducted evaluations
using CMC scores, IDF1 scores, and IDs, and the results
are shown in Fig. 7 and Table 4. Notably, our method
demonstrated exceptional results in IDF1 scores and ID
switch comparisons. This happened because of the utilization
of pedestrian group detection, which limited the number
of objects considered throughout the process. Additionally,
our method focused on creating continuous trajectories over
a sequence of 5 frames, thereby analyzing 120 frames
instead of the entire 600-frame dataset. Despite these con-
straints, the CMC curve effectively illustrated the efficiency
of our group Re-ID method and achieved an 86.51%
rank-1 score.
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a b c

FIGURE 8. Pedestrian group trajectory prediction on a sample frame of
the MOT17 dataset.

F. PEDESTRIAN GROUP TRAJECTORY PREDICTION

To validate the feasibility and effectiveness of pedestrian
group trajectory prediction, it is essential to apply the tra-
jectory prediction method to our pedestrian group detection
results. After the pedestrian group Re-ID, we were able
to generate the continuous trajectories for the pedestrian
groups, whether they were split or combined. If the pedestrian
group is not split into several subgroups, we will generate a
single trajectory for all of the members, or we will duplicate
the trajectory and assign it to all of the subgroups. In our
methodology, we chose the Stochastic LSTM for its superior
accuracy and applied it to the outputs of the group detection
method. Crucially, our processing focused on pedestrian
groups rather than individual pedestrians. As depicted in
Fig. 8 a to c. In this figure, we can observe that the trajectories
of the pedestrian group in the red bounding box are in green
color and the predicted trajectories in purple. This showed
that our method proficiently forecasts the future movement
patterns of pedestrian groups. We were taking four sample
points to predict three future trajectories of the selected
object.

The comparison between the individual trajectory pre-
diction and our proposed group trajectory prediction is
illustrated in Fig. 9. According to the evaluation metrics
we utilized, we could observe that our results show a slight
decline in the accuracy of trajectory prediction models when
group detection is incorporated. This supports our initial
hypothesis that it is feasible to execute pedestrian group
trajectory prediction.

Our proposed framework for pedestrian group trajectory
prediction also has the potential to reduce the processing time.
This is achieved by minimizing the number of trajectories
that need to be analyzed. To validate this, we conducted
a comparative analysis of the total processing time with
and without the integration of group detection and group
Re-ID. The comparison result showed our pedestrian group
trajectory prediction achieved a 7.6% reduction in processing
time, decreasing from 7.17s to 6.62s. This marked decrease
underscores the superior time efficiency of our proposed
method compared to traditional approaches. While the
time saving of 0.55 seconds might seem minimal, it can
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FIGURE 9. ADE and FDE on our pedestrian group trajectory prediction.

significantly enhance the safety of autonomous vehicles.
For instance, at a speed of 30 MPH, a time difference of
0.55 seconds allows a vehicle to react faster over an additional
distance of approximately 7.38 meters. An earlier response
in steering could also result in greater horizontal movement,
thereby reducing the likelihood of an accident. Importantly,
this reduction in time persists even with the use of more
powerful computational resources. This approach could be
seamlessly integrated into existing methods, maintaining
similar accuracy while reducing processing time. However,
in [24] and [25], they were more focused on accurately
finding the same pedestrians even when they were being
blocked in some of the camera views. This required their
method to contain a pre-trained deep learning network, which
might take a longer time than unsupervised learning-based re-
identification methods.

G. STUDY LIMITATION

However, the accuracy of our group re-identification method
and group trajectory prediction depends on the quality of
object detection and trajectory prediction. If the object
detection methods fail to deliver accurate results, we cannot
accurately identify the groups. Moreover, if the trajectory
prediction method employed after group detection is impre-
cise, the resulting forecasts will be unreliable. Furthermore,
achieving high accuracy in scenarios involving dense crowds
of pedestrians can be challenging.

V. CONCLUSION

Our research highlights the importance of changing how
we predict pedestrian paths. Instead of focusing only on
individuals, we looked at how people often move in groups.
This new approach helps us deal with crowded areas where
it is hard to see everyone clearly, enabling us to make
faster predictions with satisfactory accuracy. Through the
integration of object detection, zone-based clustering, and
group re-identification techniques, we have established a
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robust framework for identifying and predicting the future
trajectories of pedestrian groups.

Our approach, validated using rigorous evaluation metrics
on the MOT17 dataset, has demonstrated superior perfor-
mance in ADE, FDE, IDF1, IDs, and CMC compared to tra-
ditional individual re-identification and trajectory prediction
methods. Our methodology achieved a commendable CMC
rank-1 accuracy of 86.51%. Moreover, our method exhibits
a notable improvement in processing time efficiency, with
a reduction of 7.6% compared to conventional approaches.
This efficiency enhancement is pivotal for real-time appli-
cations, where timely and accurate trajectory prediction is
paramount for ensuring pedestrian safety and optimizing
traffic flow.

In future work, we aim to further refine our methodology,
particularly in pedestrian recognition, and explore its appli-
cability in diverse real-world scenarios to enhance pedestrian
safety and urban mobility management.
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