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ABSTRACT Currently, it is a norm to design a semiconductor fab using building information models
(BIMs), which refer to a digital representation of a building’s physical and functional characteristics. The
comprehensive data provided by BIMs include 3D geometric models. This paper presents a 3D model-
based camera tracking method, which is targeted at navigating a fab’s wide indoor environment. The key
observation made in designing the method is that there are a number of fixed objects in such an indoor
environment. The columns are the representative among them. Our method extracts the columns from the
input image and matches them to their BIMs to estimate the camera pose. The estimation accuracy is
significantly increased by adopting an instance segmentation network. It is trained with a dataset, which
is extracted from the target indoor environment and processed by our own data engine. The test results
show that our tracking method is drift-free, accurate and robust. We envision that it can be used in many
applications such as AR-based visual inspection.

INDEX TERMS Augmented reality, building information modeling, camera tracking, instance
segmentation.

I. INTRODUCTION
A semiconductor fabrication plant, which is commonly
abbreviated to a fab, refers to a factory where integrated
circuits are manufactured. In the semiconductor industry, it is
currently a norm to design a fab using building information
models (BIMs). They refer to a digital representation of a
building’s physical and functional characteristics, and the
comprehensive data provided by BIMs include 3D geometric
models.

In many domains of industry, augmented reality (AR)
has been explored for visual inspection. In the mechanical
domain, for example, the video capturing a mechanical part
is overlaid with its computer-aided design (CAD) model to
see if there exists discrepancy between them.

Throughout the life cycle of a fab, inspection is a crucial
activity of checking if all works progress as planned. In the
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construction phase, for example, inspection is regularly
carried out to verify compliance with the design. BIMs
visualized via AR help for this purpose [1], [2]. Shown
in Fig. 1-(a) is our laboratory, where two pipes are being
assembled between columns, and Fig. 1-(b) shows the pipe
and column BIMs of the original design in wireframe
drawing. In order to see if the pipes under construction are
compatible with the design, the pipe BIMs are rendered on
top of the captured image, as shown in Fig. 1-(c), revealing
that the left pipe is incomplete, the middle one is complete,
and the right one is not constructed at all.

In such an AR-based visual inspection task, the key
element is camera tracking. Unless the camera pose is
precisely estimated, the BIMs are not correctly overlaid
onto the physical objects. It is especially challenging in the
semiconductor industry. As shown in Fig. 2-(a), the size of
a fab is huge. A fab is composed of multiple production
lines, and each line typically occupies an area ranging from
10, 000m2 to 20, 000m2. In such a wide environment, a naive
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FIGURE 1. Visual inspection for checking the progress of pipe construction: (a) All experiments reported in this paper were made in this lab. Between the
columns are pipes under construction. (b) BIMs of columns and pipes. (c) AR-based visual inspection.

FIGURE 2. Fabs and columns: (a) Aerial views of fabs. (b) Columns in the indoor environment of a fab under construction.

camera tracking method is likely to accumulate localization
errors over time, which eventually makes it impossible to do
visual inspection.

In this paper, we present a model-based camera tracking
method, which is designed for navigating a wide-area fab
environment. Our method extracts a set of ‘‘fixed’’ objects
from the video capturing the environment and aligns them
with the 3D models provided in their BIMs, so as to keep
calibrating the possible drift of the camera trajectory. In the
current implementation, our method uses the columns, which
are everywhere in any fab, as shown in Fig. 2-(b); the
3D columns are extracted from the input RGB-D image
and matched to their 3D models to estimate the camera
pose.

The performance of our camera tracking method hinges on
how accurately the columns are extracted. The required level
of accuracy is ensured by an instance segmentation network,
the training data for which are extracted from the target
indoor environment and processed by our own easy-to-use
data engine. The test results show that our tracking method
is drift-free, accurate and robust enough for many critical
inspection tasks in fab environments, such asAR-based visual
inspection.

Our main contributions are listed as follows:

• We propose a model-based camera tracking method,
which is best suited for navigating a wide-area fab
environment. It is drift-free, accurate and robust, for
example, enabling AR-based visual inspection.

• The method has broad applicability not only because it
can be used with any ‘‘fixed’’ objects only if their 3D

models are available, but also because it works well even
in a textureless or poorly-textured environment.

• The tracking accuracy is significantly increased by
involving an instance segmentation network. Given a
novel environment, the network needs to be trained with
the data extracted from the environment, but our data
engine enables the training dataset to be generated easily
and quickly.

II. RELATED WORK
Simultaneous localization and mapping (SLAM) methods
built upon point features, such as ORB-SLAM [3], are prone
to fail in textureless or poorly textured environments. In addi-
tion, point features hardly encode geometric information
and may not provide effective constraints, often leading to
large errors accumulated over time. Incorporating additional
depth sensors, previous studies, including ORB-SLAM2 [4],
BundleFusion [5], and BAD-SLAM [6], have explored the
field of RGB-D SLAM [7]. However, they have also failed to
address accumulated errors due to the inaccuracies inherent in
depth sensors. As an alternative, lines have attracted attention.
Smith et al. [8] proposed a system based on non-structural
lines, but the lines may be incompletely detected and partially
occluded, making the system unstable. Some other studies,
such as PL-SLAM [9], proposed to combine points and lines
to make the SLAM system more applicable in challenging
scenes.Wei et al. [10] proposed a visual-inertial system based
on points and lines to enhance tracking accuracy with IMU
sensors. Their system demonstrated improved stability in
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FIGURE 3. Columns and their BIMs: (a) A large column (in the middle)
and four small columns (at the right). In the fab environment, a marker is
attached to each large column. (b) BIMs projected onto the input image
are visualized in wireframes.

low-textured environments but failed to overcome completely
the inherent drawback of using non-structural features.

Zhou et al. [11] proposed a system based on structural lines
of buildings. Their system can alleviate the accumulating ori-
entation errors, but its robustness is affected when auxiliary
information from other sensors is not available, such as wheel
odometer. Taking the geometric information of orthogonality,
parallelism and co-planarity into consideration, Li et al. [12]
proposed an optimization strategy, which helps refine the
estimation results made by PL-SLAM [9]. Under theManhat-
tan world assumption, several works decouple the rotational
and translational motion estimation to obtain a drift-free
rotation estimation. Li et al. [13] predicts surface normals by a
convolutional neural network (CNN), and Liu and Meng [14]
proposed a two-stage vanishing points estimation method to
improve the localization performance. Pop-up SLAM [15]
combined scene understanding with traditional visual SLAM
to increase the performance of both state estimation and
dense mapping especially in low-textured environments.
It generates plane landmark measurements by employing a
single image pop-up plane model. Plane-Edge-SLAM [16]
introduced a system that combines plane and edge features for
use in indoor environments. Contour-SLAM [17] proposed
an object-level SLAM approach that aligns contours between
the object models and instance masks.

Due to the proliferation and wide adoption of BIMs in the
semiconductor industry, BIM-based localization studies have
recently been made. Park et al. [18] introduced a method
for real-time tracking that leverages Bluetooth, motion
sensors, and BIMs. Asadi et al. [19] presented a real-time
localization method built upon ORB-SLAM2 [4]. It registers
a video sequence to a BIM via perspective detection and
matching between video frames and their corresponding BIM
views. Acharya et al. [20] introduced a BIM-based indoor
localization method, where the BIM edges visible from a
mobile device’s camera are sampled and projected onto the
image plane so that their correspondences with the structural
edges in the image are established. Then, the camera pose is
estimated by minimizing the distances between the projected
points and the image points. Moura et al. [21] introduced
a BIM interface that integrates 3D building data into the
pose graph of a SLAM system operated by a mobile robot.
Chen et al. [22] proposed a method that utilizes a BIM

as a reference to rectify and fine-tune coarse camera poses
estimated by photogrammetry. It is achieved by aligning a
photogrammetric point cloud with a BIM-referenced point
cloud. Yin et al. [23] presented a method to localize a mobile
3D LiDAR sensor within a BIM-generated map. The BIM
is converted into a point cloud map, and the map points are
labeled with the categories from the BIM. Then, the LiDAR
3D points are aligned with the point cloud map. There have
been attempts to integrate BIM-based localization methods
with deep learning. Acharya et al. [24] proposed a solution
to regress the camera poses by fine-tuning a pre-trained CNN
using synthetic images generated from aBIM. Chen et al. [25]
introduced a method to estimate indoor camera poses using a
3D style-transferred BIM and photogrammetric techniques.
Zhao and Cheah [26] introduced a BIM-based construction
automation system for initial robot localization combined
with real-time object detection using CNN.

Recently, research works have been reported on AR-based
visual inspection [27]. Meža et al. [28] demonstrated an
implementation of a BIM-based AR system for construction
using component-based software engineering methods. Choi
et al. [29] proposed anARplatform designed to support work-
ers in manufacturing and inspection of offshore structures.
This platform estimates the positions of workers in real-time
and accurately determines the poses of their mobile devices
by aligning 3D CAD models with actual correspondences.
Tsai et al. [30] proposed a method for on-site pipeline
inspection and automatic coordination, which combines AR
with a path planning algorithm. VisualLive [31] provides
state-of-the-art AR-based visual inspection. However, it does
not address the drift issue, making it difficult to conduct
precise visual inspection in large environments.

III. OVERVIEW
In the semiconductor industry, two types of columns are
widely used, which we simply call large and small. The large
column is made of concrete, and the small one is a steel H-
beam. Fig. 3-(a) shows a large column (in dark green) and
four small ones (in gray). In a real fab, the large columns
are far apart from each other, and the fab’s floor plan is
partitioned into a grid of rectangular cells such that a cell is
centered on a large column. As shown in Fig. 3-(a), we attach
a marker to each large column. It stores the cell’s ID.

The indoor environment is scanned by a mobile device,
iPad Pro 6th generation in the current implementation, and
its camera pose is tracked every frame according to the steps
presented in Fig. 4. Only for the first frame, we detect the
marker attached to an arbitrary large column. The grid cell
centered on the large column is identified and the BIMs of all
columns inhabiting the cell are loaded.

Simultaneously, the camera pose is estimated via homogra-
phy and is used to transform the loaded BIMs into the camera
space. Fig. 3-(b) visualizes the BIMs projected onto the
input image. The ‘‘BIM columns’’ are not correctly registered
with the ‘‘scene columns’’ because the initial guess of the
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FIGURE 4. Camera tracking using BIMs: Every frame, the initial guess of the camera pose is refined by the ‘‘camera pose refinement’’ step.
For the first frame, the initial guess is made via a single marker detection followed by homography. From the second frame, it is provided
by ARKit.

FIGURE 5. Scene edge detection: (a) Depth map. (b) Normal map. (c) Edges detected from the depth and normal maps. (d) Edges detected from the RGB
image. (e) Combination of (c) and (d). (f) The edges obtained via probabilistic Hough line transform are visualized in blue. (g) BIM edges and Manhattan
axes. (h) Detected scene edges.

FIGURE 6. Hough line transform.

camera pose is not accurate. It is refined by the ‘‘camera pose
refinement’’ step shown in Fig. 4. From the second frame, the
initial guess is provided by ARKit (see the last box in Fig. 4)
and is then also refined. This loop is repeated.

In our study, we have developed two versions of model-
based tracker, which we name V1 and V2. They differ in the
‘‘camera pose refinement’’ step, for which V1 uses traditional
computer vision techniques whereas V2 integrates instance
segmentation into the framework of V1. Overall, V2 performs
far better than V1, and most of our contributions lie in V2.
However, the training dataset for V2’s instance segmentation
is generated using V1.

IV. V1 = BIM-BASED TRACKING
The ‘‘camera pose refinement’’ step in Fig. 4 is composed
of two sub-steps: ‘‘edge/face detection and matching’’ and

‘‘optimization.’’ They are presented in the following two
subsections.

A. EDGE/FACE DETECTION AND MATCHING
For SLAM in textureless environments, leveraging geometric
features such as edges has proven to be effective [15], [32].
Our tracking method relies heavily on the columns’ edges.
They are detected from the input image and then matched
to the corresponding edges in the BIMs. We call the former
‘‘scene edges’’ and the latter ‘‘BIM edges.’’

1) EDGE DETECTION AND MATCHING
Using the LiDAR sensor of iPad Pro, ARKit generates a
depth map every frame (Fig. 5-(a)). As done in Kinect-
Fusion [33], we generate a normal map using it, i.e.,
after bilateral-filtering the depth map, the depth values are
back-projected into 3D space to generate a 3D vertex map,
and for each vertex position, a normal is computed using the
cross-product operation with neighboring vertices. Fig. 5-(b)
visualizes the normal map.

Both the depth and normalmaps are Laplacian-filtered, and
the results are combined with the pixelwise OR operation
to produce the edges shown in Fig. 5-(c). Simultaneously,
Canny edge detector [34] is applied to the input RGB image to
produce the edges shown in Fig. 5-(d). The two edge images
are combined with the pixelwise AND operation (Fig. 5-(e)),
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and the probabilistic Hough line transform [35] is applied to
the combined to generate the blue-colored edges in Fig. 5-(f),
where an edge is defined by its two end points.

In terms of Hough line transform, each edge is associated
with (r, θ), as depicted in Fig. 6, where r is the distance from
the origin to the closest point on the line alignedwith the edge,
and θ is the angle between the x-axis and the line connecting
the origin with the closest point.

Among the edges in Fig. 5-(f), we are interested only
in those which belong to columns. The others are outliers.
In order to discard as many outliers as possible, we resort
to the Manhattan world assumption [36]; each geometric
entity is assumed to align to one of the Cartesian coordinate
system’s axes, named Manhattan axes. In the BIMs of a fab,
this is almost always the case if we consider only the columns.
In Fig. 5-(g), it can be found that all BIM edges are aligned
with the Manhattan axes.

Among the BIM edges, consider the vertical ones, i.e.,
the edges aligned with the y-axis. When a vertical edge is
projected into the image plane, its θ is calculated. When all
vertical edges are processed, we obtain a θ -range denoted
as [θy1 , θ

y
2 ]. Similarly, [θx1 , θx2 ] and [θ z1, θ

z
2] are obtained by

projecting the BIM edges aligned with the x- and z-axes,
respectively.

If a blue edge in Fig. 5-(f) belongs to none of
the three ranges, it is discarded. The remaining edges
are taken as ‘‘scene edges’’ (Fig. 5-(h)). Even though
the outliers are not completely removed, their count
is significantly reduced, leading to more robust edge
matching.

Fig. 7-(a) visualizes the detected ‘‘scene edges’’ in blue
and the projected ‘‘BIM edges’’ in red. Given a scene
edge, the midpoint between the end points is computed,
and then its depth is retrieved from the depth map. For a
BIM edge, it is straightforward to compute the midpoint
depth. Matching between the scene and BIM edges is
made using a k-dimensional tree (k-d tree) [37], for which
we use r , θ and the midpoint depth. In Fig. 7-(a), the
matched edges are linked using yellow line segments. Note
that multiple scene edges can be matched to a single
BIM edge.

2) FACE DETECTION AND MATCHING
In order to extract the columns’ faces and also the fab’s
floor, we scan the environment with ARKit’s plane detection
enabled. Then, a set of rectangular planes is detected,
as shown in Fig. 7-(b), where the floor’s plane is not
visualized in order to avoid cluttering. Each detected plane is
associated with the information of surface normal, 3D center
position, etc.

Outlier planes are discarded using the Manhattan world
assumption. We call the remaining ‘‘scene faces.’’ The floor
is indispensable for tracking and is included in the scene
faces. From the BIMs, the columns’ faces and the floor
are extracted. They are named ‘‘BIM faces.’’ For matching

between the scene and BIM faces, we use a k-d tree with the
3D center position.

B. OPTIMIZATION
Given a set of matched pairs, i.e., both edge pairs and face
pairs, camera pose estimation is defined as the task of finding
the optimal rigid motion, (rcam, tcam), where rcam is the 3D
vector for the axis-angle representation of rotation, and tcam
is the 3D translation vector. For optimization, four error terms
are defined: Eedge, Eface, Egrav and Epose.

Let the BIM’s geometric entities be indexed by i and the
scene’s by j. The i-th ‘‘BIM edge’’ projected onto the image
plane is associated with a 2D line equation, aix+biy+ci = 0.
Let li denote the vector, (ai, bi, ci). On the other hand, the
matched ‘‘scene edge’’ is defined by two end points. Let ṗj,1
and ṗj,2 denote their homogeneous coordinates. The edge
error, Eedge, is defined as follows:

Eedge =

∑
i,j

(
∣∣li · ṗj,1∣∣2 +

∣∣li · ṗj,2∣∣2) (1)

Let ci denote the center position of the i-th ‘‘BIM face.’’ Let
cj and nj respectively denote the center position and normal
of the j-th ‘‘scene face.’’ The face error, Eface, is defined as
follows:

Eface =

∑
i,j

∣∣(ci − cj
)
· nj

∣∣2 (2)

Let gworld = (0, −1, 0)T , Rcam denote the 3 × 3 matrix
representation of rcam, and gimu denote the gravity vector
measured by the mobile device’s IMU sensor. The gravity
error, Egrav, is defined as follows:

Egrav = |1 − gworld · Rcamgimu|
2 (3)

The optimal camera pose, (rcam, tcam), is a 6D vector.
Let (rA, tA) denote the 6D vector that represents the camera
pose returned by ARKit. Then, the camera pose error, Epose,
is defined as the squared L2 norm of their difference:

Epose = ∥(rcam, tcam) − (rA, tA)∥22 (4)

The objective or total error, E , is defined as the weighted
sum of four error terms:

E = wedgeEedge + wfaceEface + wgravEgrav + wposeEpose
(5)

The optimization problem is solved with the Levenberg-
Marquardt method inside a RANSAC (random sampling
consensus) loop so as to remove incorrect matching, i.e.,
mismatched edge pairs and face pairs.

For RANSAC, we randomly select three pairs of matched
entities, e.g., ‘‘an edge pair and two face pairs’’ or ‘‘three edge
pairs.’’ When selecting three pairs, we impose what we call
Manhattan axis constraint. Fig. 7-(c) shows an example of
three edge pairs, which do not satisfy the constraint: Because
the edges are all along the y-axis, the y-coordinate of the
camera position cannot be determined.
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FIGURE 7. Camera pose refinement using edges and faces: (a) Scene edges (in blue) are matched with BIM edges (in red). (b) Planes detected by ARKit.
(c) Three edge pairs marked with black circles do not satisfy what we call Manhattan axis constraint. (d) The BIM columns are registered to the scene
columns due to optimization.

FIGURE 8. The server-client architecture: ARKit planes are used only in
V1. In V2, they are not passed to the server.

FIGURE 9. Each test scene contains two large columns and six small
columns. In the floor plans, the dimensions are in meters. The large
column appears to be a square with a side length of 0.45 meters; the
bounding box of the small column is a square with a side length of
0.15 meters: (a) Scene 1. (b) Scene 2.

Solving the optimization problem, we obtain the refined
camera pose, (rcam, tcam). Fig. 7-(d) shows that the BIM
columns are correctly registered with the scene columns by
the camera pose.

C. EXPERIMENTS
Our system is implemented in a server-client architecture.
The client and the server are respectively in charge of ‘‘ARKit
pose estimation’’ and ‘‘camera pose refinement’’ presented in
Fig. 4. Fig. 8 shows the data transferred between them.

The server is a PC with Ryzen 7 5800X CPU (8
cores @ 3.8GHz), 32GB RAM and NVIDIA GeForce

FIGURE 10. Groundtruth trajectories: (a) P1,1 and P1,2 in Scene 1.
(b) P2,1 and P2,2 in Scene 2. It takes 64.97 seconds for the camera to
move along P1,1, 89.40 seconds along P1,2, 86.17 seconds along P2,1,
and 73.00 seconds along P2,2.

TABLE 1. Camera tracking methods.

RTX 3090 GPU. The camera pose refinement algorithms are
written in C++ with OpenCV, Eigen (for linear algebra com-
putation) and Ceres Solver (generally for solving non-linear
least squares problems; specifically for the Levenberg-
Marquardt method).

1) TEST SCENES AND GROUNDTRUTH TRAJECTORIES
Our experiments are made in two scenes presented in
Fig. 9-(a) and -(b), which we name Scene 1 and Scene 2,
respectively. The area between the columns is made clear
in order for the camera to move around freely, but various
facilities surrounding them make it difficult to track the
camera.

Just to make the groundtruth (henceforth, GT), we attach
many markers to each column, and the 3D coordinates of all
markers’ corners are measured beforehand. In such a heavily
marked environment, multiple markers can be captured by the
camera wherever it is located. Then, the camera pose can be
fairly accurately computed using the Efficient Perspective-
n-Point (EPnP) algorithm [38]. Such accurately computed
poses are taken as GT. Fig. 10 shows two GT trajectories
per scene: P1,1 and P1,2 in Scene 1, and P2,1 and P2,2
in Scene 2.
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FIGURE 11. Snapshots extracted along P1,1: (a) ARKit. (b) ORB-SLAM3. (c) V1. (d) Groundtruth.

FIGURE 12. Snapshots extracted along P2,2: (a) ARKit. (b) ORB-SLAM3. (c) V1. (d) Groundtruth.

FIGURE 13. Column matching: (a) In this example, YOLACT++ outputs five
‘‘column masks,’’ i.e., one for the large column and four for the small
columns. (b) BIM columns are rendered to make ‘‘BIM masks.’’ Due to the
inaccurate camera pose, each ‘‘BIM mask’’ does not coincide with the
corresponding ‘‘column mask,’’ but they can be matched using the depth
information.

2) TEST RESULTS
V1 is compared with two RGB-D VI-SLAM (visual inertial
SLAM) methods, ARKit and ORB-SLAM3 [39]. For both

of them, the camera pose at the first frame is computed
by detecting ‘‘multiple markers.’’ From the second frame,
however, the cameras are tracked by their own methods.
In contrast, our methods (both V1 and V2) detect a single
marker attached to a large column. Further, it is done only for
the first frame, and nomarkers are detected for the subsequent
frames. Table 1 summarizes the camera tracking methods.
Along each of four trajectories given in Fig. 10, an RGB-D

video was captured. Then, we ran ARKit, ORB-SLAM3, V1
and GT on a PC. Fig. 11 shows the sequences of snapshots
generated along P1,1. The BIM columns are projected
using the estimated camera poses. In both ARKit and
ORB-SLAM3, camera tracking accumulates drift over time,
making the BIM columns registered incorrectly. In contrast,
the tracking capability of V1 is comparable to that of GT.
With P1,2 and P2,1, similar results are obtained(The results
of quantitative analysis will be presented later).
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FIGURE 14. Detection of ‘‘scene edges’’ using column masks: (a) There
exist many outliers. (b) The outliers are removed to generate the scene
edges.

FIGURE 15. Edge matching: (a) Hough line transform of ‘‘a scene edge’’
with respect to the local space of a column mask. (b) Hough line
transform of ‘‘a BIM edge’’ with respect to the local space of a BIM mask.

Fig. 12 shows the results for P2,2. Not only ARKit and
ORB-SLAM3 but also V1 suffers from drift error. Our
analysis reveals two major problems of V1: (1) The scene
edges and faces often include a number of outliers. (2) It is not
guaranteed that the scene edges and faces are correctly paired
with the corresponding entities of the BIM. Motivated by
the analysis results, we have developed V2, which integrates
instance segmentation into V1.

V. V2 = V1 + COLUMN SEGMENTATION
V2 uses an instance segmentation network to segment
the input RGB image into the columns’ masks, as shown
in Fig. 13-(a), where the ‘‘column masks’’ are alpha
blended with the input image for visualization pur-
poses. For the sake of real-time performance, we adopt
YOLACT++ [40] among many existing instance segmenta-
tion networks [41] due to its superiority in the processing
speed.

A. COLUMN MATCHING
We assign each column mask the ID of the corresponding
BIM column. For this, the depth pixels located within the
column mask are back-projected into 3D space, and the mean
of their 3D coordinates is taken as the centroid. On the other
hand, the BIM columns are rendered with the initial guess
of the camera pose, as shown in Fig. 13-(b). We call the
rendered ‘‘BIM masks.’’ The 3D centroid of each BIM mask
is computed in the samemanner as above. Then, searching for
the closest centroids between the column and BIMmasks, we
assign the ID of a BIM column to each column mask in the
RGB image.

The initial guess, which is made via homography for
the first frame and by ARKit for the subsequent frames,
is inaccurate in general. This can be observed in Fig. 13-(b),

FIGURE 16. Scene face detection: (a) Normal map. (b) Colored in white
are the pixels that are judged to belong to planes. (c) Scene faces that
belong to columns. (d) Scene faces that belong to the floor.

where part of the large column is visible although most of it
is hidden by its BIM mask. Consequently, the BIM masks’
centroids do not coincide with the corresponding column
masks’. Nonetheless, matching with centroids works robustly
because the columns are spaced several meters apart in the 3D
space.

B. EDGE DETECTION AND MATCHING
Fig. 14-(a) is the copy of Fig. 5-(f), which shows many
outlying edges that do not belong to columns. In V2, we have
the column masks, and it is straightforward to remove such
outliers; if an edge belongs to no columnmasks, it is removed.
Fig. 14-(b) shows the remaining. They are taken as ‘‘scene
edges.’’

V2 does not use the Manhattan world assumption, but
the result shown in Fig. 14-(b) is much better than that
of V1 given in Fig. 5-(h). Also note that the scene
edges in V2 are associated with specific BIM columns,
thanks to column matching presented in Section V-A.
To visualize such association, in Fig. 14-(b), the scene
edges belonging to a column are drawn in the same
color.

Recall that in V1, r and θ for each scene edge’s Hough
transform are defined in the global space of the input image.
In contrast, as each scene edge in V2 belongs to a specific
column mask, r and θ can be defined in the local space of the
mask. For each column mask, its bounding box is computed,
as depicted as a dotted box in Fig. 15-(a), and the upper-left
corner is taken as the origin of the local space. In Fig. 15-(a),
r and θ are defined for the right edge of the column. For all
scene edges that belong to a column, their Hough transforms
are defined in the same local space.

In Fig. 15-(b), which shows the BIMmasks generated with
the initial guess of the camera pose, each BIM edge is also
defined in a BIM mask’s local space. Then, thanks to column
matching presented in Section V-A, edge matching can be
made per column, and the scene and BIM edges are paired
far more accurately than in V1.
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FIGURE 17. Snapshots extracted along P2,2: (a) V1’s results copied from
Fig. 12-(c). (b) V2’s results.

FIGURE 18. Camera trajectories: (a) P1,1 and P1,2 in Scene 1. (b) P2,1
and P2,2 in Scene 2.

C. FACE DETECTION AND MATCHING
ARKit’s plane detection is not reliable. When a plane is
detected from a column’s face, for example, its surface
normal is often significantly different from the face normal.
Therefore, V2 directly detects ‘‘scene faces’’ using column
masks. As presented in Section IV-A1, the 3D vertex and
normal maps are generated from the input depth map. Fig. 16-
(a) shows the normal map. We test if each pixel belongs
to a plane by computing the point-to-plane distance and
the normal discrepancy with its neighboring pixels. The test
produces a binary image, shown in Fig. 16-(b), where the
planar areas are colored in white. It is partitioned into a set
of connected components [42]. The components that overlap
with column masks (Fig. 16-(c)) and those whose surface
normals are vertical (Fig. 16-(d)) make up the ‘‘scene faces.’’

FIGURE 19. ATE for each trajectory: (a) P1,1 and P1,2 in Scene 1. (b) P2,1
and P2,2 in Scene 2.

TABLE 2. ATE RMSE (in meters).

For each detected scene face, the mean of its 3D vertex
coordinates is taken as its centroid, and that of its vertex
normals is taken as the face normal. The same information is
obtained from each BIM face. Then, face matching is made
using a k-d tree with the centroid and face normal. Similar to
edge matching, face matching is made per column or between
floors, and the accuracy is significantly increased.

D. OPTIMIZATION
Recall that in V1, RANSAC is used to remove incorrect
matching. In V2, however, we have few mismatched pairs,
thanks to column masks. Therefore, instead of RANSAC,
a two-stage optimization is performed. Initially, we run the
Levenberg-Marquardt method with all pairs. Then, with the
computed camera pose, the error of each pair is computed
so as to remove all mismatched pairs. With the remaining,
i.e., with the inliers only, we run the Levenberg-Marquardt
method to compute the final camera pose.

E. EXPERIMENTS AND EVALUATION
Fig. 17 shows that V2 computes the camera poses accurately
for the trajectory, P2,2, for which V1 does not. In numerous
experiments we made, V2 remains robust and accurate.
Fig. 18 depicts the camera trajectories estimated by ARKit,
ORB-SLAM3, V1, V2 and GT. Observe that the camera
trajectories estimated by V2 are almost identical to those of
GT. For each trajectory, the absolute trajectory error (ATE),
i.e., the average deviation from the GT trajectory per frame,
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TABLE 3. RPE RMSE (translation in meters and rotation in degrees).

TABLE 4. Running time of V2 (in milliseconds) where std denotes
standard deviation.

is computed. Fig. 19 depicts the ATE graphs, and Table 2
shows the root mean square error (RMSE) of ATE for each
trajectory. Both V1 and V2 are better than ARKit and ORB-
SLAM3, and V2 shows significantly improved performances
over V1. Additionally, the relative pose error (RPE) is
computed every 300 frames for each trajectory. Table 3 shows
that V2 demonstrates significant improvements over V1 and
it is generally better than ARKit and ORB-SLAM3.

As presented in this section, VII is composed of the
following steps: (1) Preprocessing, where not only the vertex
and normal maps are computed, but the BIMmasks (as shown
in Fig. 13-(b)) and the BIM edges/faces are also generated.
(2) Columnmask generation and columnmatching. (3) Scene
edge detection and edge matching. (4) Scene face detection
and face matching. (5) Optimization. Table 4 enumerates
the statistics of the time consumed in each step for four
trajectories.

VI. DATA GENERATION FOR COLUMN SEGMENTATION
The dataset for training YOLACT++ is composed of the RGB
images captured from various locations in the environment
and their ‘‘column masks.’’ The column masks are first
generated automatically and are manually post-processed if
incompletely segmented.

A. AUTOMATIC SEGMENTATION
We use Segment Anything Model (SAM) [43] to segment
the input RGB image (Fig. 20-(a)) into what we call ‘‘SAM
masks’’ (Fig. 20-(b)). Observe that the small column in the
middle of Fig. 20-(a) is segmented into two SAM masks in
Fig. 20-(b).

FIGURE 20. Column mask generation - Example 1: (a) Input RGB image.
(b) SAM masks. (c) BIM masks. (d) The SAM and BIM masks are compared
to generate the column masks.

Fig. 20-(c) shows the ‘‘BIM masks.’’ LetMSAM andMBIM
denote a SAM mask and a BIM mask, respectively. MSAM
is judged to belong to MBIM if the following condition is
satisfied:

MSAM ∩MBIM

MSAM
> α (6)

where α is a predetermined threshold (0.6 in the current
implementation). Collecting all SAM masks that belong to
a BIM mask, a ‘‘column mask’’ is generated. The two SAM
masks in themiddle of Fig. 20-(b) are combined into a column
mask in Fig. 20-(d).

The camera pose used to generate the BIM masks (e.g.,
in Fig. 20-(c)) should be as accurate as possible. Otherwise,
the BIM masks would not be sufficiently overlapped
with the corresponding SAM masks, making it hard to create
the column masks. Initially, we used ARKit for generating
the BIM masks but suffered from its unreliable tracking
capability. Replacing ARKit by V1, we found that automatic
segmentation stage works fine in general.

B. MANUAL POST-PROCESSING
In the RGB image shown in Fig. 21-(a), consider the large
column at the right. Fig. 21-(b) shows its SAM masks.
Observe that some area of the column is left blank, i.e.,
unsegmented. It is because the large column’s surface is
highly reflective. Given the BIM masks shown in Fig. 21-(c),
the large column’smask is computed yet to be incomplete and
disconnected, as shown in Fig. 21-(d).

To resolve such a problem, we have developed an easy-
to-use data engine, which includes features for generating
new masks with SAM’s point prompt input. Fig. 22 shows
the interface of the engine, where the automatically-generated
column masks (shown in Fig. 21-(d)) are overlaid on top
of the input RGB image (shown in Fig. 21-(a)). The color
array under the title, Index, represents the indices of the
automatically-generated column masks. Having selected the
red color, the human annotator clicks the unsegmented
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FIGURE 21. Column mask generation - Example 2: (a) Input RGB image.
(b) SAM masks. (c) BIM masks. (d) The large column’s mask is incomplete.
(e) The two red masks shown in (d) are connected by the point prompting
presented in Fig. 22. To complete the large column’s mask, another point
prompting (the yellow dot) is made. (f) The large column’s mask is
completed.

area of the large column. See the yellow dot. It is point
prompting, which is aimed at filling the blank area with the
red color. Then, by pressing Add Mask button, the blank
area is filled(Watch the accompanying video). The result
is shown in Fig. 21-(e), where an additional step of point
prompting (visualized also as a yellow dot) is being made.
Finally, the large column’s mask is completed, as shown in
Fig. 21-(f). The data engine provides more functionalities
such as replacing an existing mask with a new one (via
Replace Mask button) and removing existing masks (via
Remove Mask button).

With this two-stage (automatic and manual) process, a set
of over 50,000 training data is created. Training YOLACT++
with the dataset consumes about 90 hours with an NVIDIA
GeForce RTX 3090 Ti(It can be trained much faster with
multiple latest GPUs). Suppose that our camera tracker
is ported to a novel environment, for example, where its
columns’ shapes are different from those of the rectangular
parallelepiped columns and the H-beam columns. Then,
YOLACT++ needs to be trained with the data extracted from
the environment, but our data engine enables the training
dataset to be generated easily and quickly.

VII. DISCUSSION
As presented in Section VI-A, VI is used for generating
the BIM masks. In a certain frame, however, the camera
pose returned by V1 may not be sufficiently accurate.
Fig. 23-(a) shows the SAM masks of an input RGB image,
and Fig. 23-(b) overlays the V1-generated BIM masks on top

FIGURE 22. The human annotator has selected the red color under Index
and is point-prompting the unsegmented area. See the yellow dot. Then,
two red masks of the large column will be connected, as shown in
Fig. 21-(e).

FIGURE 23. Column mask generation - Example 3: (a) SAM masks.
(b) BIM masks. (c) Point prompting. (d) Completed column masks.

of the RGB image. Observe that the green BIM mask is not
sufficiently overlapped with the small column in the middle.
Consequently, no columnmask is generated automatically for
the column.

The point prompting provided in our data engine
resolves this problem. In Fig. 23-(c), the yellow dot
implies point-prompting the unsegmented middle column.
Fig. 23-(d) shows that a complete mask is generated for the
middle column(Watch the accompanying video).

To accurately determine the camera pose in our
model-based camera tracking method, the Manhattan axis
constraint presented in Section IV-B must be satisfied. For
example, suppose that neither the floor nor the ceiling is
captured by the camera even though a number of vertical
edges are detected. Then, our tracker may drift vertically.
Fortunately, such a case rarely happens in a wide indoor
environment, at which our method is targeted, because the
floor and ceiling are too wide to be missed in the input image.
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On the other hand, if no columns are captured by the
camera, we have to rely entirely on the camera pose estimated
by ARKit. After the camera starts to capture the columns
in the scene, we return to the normal iterations presented in
Fig. 4.

VIII. CONCLUSION
In this paper, we presented a camera tracking method
designed for an indoor environment with fixed objects.
It employs a model-based approach that matches the fixed
objects extracted from the input image with their BIMs
to estimate the camera pose. Our experiments demonstrate
accuracy and robustness of the model-based camera tracking
method.

In the current implementation, the columns that are
indispensable in a fab are taken as the fixed objects. Our
method can be extended to work in a column-less indoor
environment, for example, if there exist a sufficient number
of window edges or edges formed at the junctions of walls.
The algorithms presented in this paper will be extended along
the direction.
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