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ABSTRACT Landslides pose a significant threat to human life and infrastructure, causing extensive
damage and fatalities. Effective monitoring and dissemination of early warnings of imminent landslides
are constrained by a lack of precise spatial and temporal information on landslide triggers and uncertainties
of the factors that lead to such events. This paper addresses these issues by presenting an Internet of Things
(IoT)- driven platform designed to capture microseismic vibrations in landslide-prone areas. The proposed
system aims to provide insights into the onsets of hazardous landslides, particularly those stimulated by heavy
rainfall and earthquakes. This treatise utilizes a microseismic smart sensing system with geophone sensors
(SM-s nodes) which continuously records and transmits real-time data on seismic activities associated with
potential landslides, enabling timely propagation of early warnings. The proffered system’s ability to acquire
and characterize microseismic signals was systematically validated through an integrated set of landslide
laboratory experiments, outdoor field trials, and real-world deployment in Chandmari located in the State of
Sikkim, India, situated in the North-Eastern Himalayan region. Furthermore, the paper provides an in-depth
analysis of the historical microseismic activities, differentiating them from ambient noises such as pedestrian
and vehicular movements and slope instabilities triggered by rainfall and earthquakes. The system’s
performance was evaluated during three real-world events: two earthquakes and an instance of rainfall
precipitation. This study explored the time and frequency characteristics as well as the variations of ground
motion parameters during recorded slope instabilities. A comparative analysis of existing microseismic
monitoring approaches was also conducted to assess the effectiveness of the proposed system. The insights
gained from this work were instrumental for the development of decision models capable of identifying
precursory microseismic activities precedent to imminent landslides, towards safeguard of lives and property
damage.

INDEX TERMS Early warning systems, geophones, IoT platform, landslides, microseismic signals, system
design, signal processing, wireless sensor networks.

I. INTRODUCTION
Landslides pose significant threats to both human lives and
infrastructure, as they involve the unpredictable disruptive
movements of soil, rock, and other materials under the
force of gravity [1]. Recent research has pinpointed the
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staggering impact of landslides, with over 72,000 fatalities
and USD 11.5 billion in damages, globally, recorded between
1900 and 2022 [2], [3]. Almost 75% of these deadly incidents
transpired in Asian nations, with a notable concentration in
the Himalayan regions of northern India [4].

Landslide events are triggered by various factors, such
as heavy rainfall, earthquakes, and anthropogenic activities,
severally or in tandem [5], [6]. Intense rainfall saturates
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soil and destabilizes natural slopes whereas seismic events
weaken soil shear strength that culminate in frequent
instances of rapid landslides. Human endeavors such as
mining, road and dam construction can disrupt landscapes or
weaken soil structures that precipitate landslides. Recurrent
stick-slip motion along ruptured surfaces of steep slopes,
breakage of soil pipes, strains and displacements due to
progressive failure, sudden changes in load distribution along
the shear surface due to brittle soil, and seismic forces furnish
additional pointers to impending landslides [7], [8].

The Himalayan regions, typified by recent tectonic land-
slides, linked to rock mass fracturing and uncontrolled road
cuttings are characterized by intricate geological composi-
tions, steep gradients, and high topographical ruggedness.
These factors, amplified by seismic activity and heavy
deluge significantly increase the susceptibility to coseismic
landslides [9], [10], [11]. Given these risks, implementation
of early warning systems is crucial for the propagation of
timely alerts, propitious to minimized property damage and
enhanced communal welfare.

Most early warning systems for rainfall-induced land-
slides rely on precipitation thresholds, with limited studies
investigating the microseismic precursory signals responsible
for landslides, especially coseismic landslides [9], [12].
In-situ landslide monitoring entails direct measurement of
soil moisture, pore water pressure, and ground deformation
using geophysical instruments. Such setups facilitate pre-
cise, localized data and real-time monitoring or geological
transitions [13], [14], [15]. However, the preceding options
are pricey, afford limited spatial coverage, and rely on
communication technologies with lower data rates, which are
ill-suited for detailed microseismic monitoring [1], [16], [17].
Affordable low-power sensors offering spatial information
with high resolution and minimal latency, are the preferred
attributes of an ideal intelligent Landslide Early Warning
system [1], [18].

Traditional geodetic surveying methods are inefficient and
require skilled workers whereas remote sensing techniques
lack real-time resolution, obligatory for automated data
analysis [19]. Geophysical monitoring methods furnish
valuable information on subsurface slope activities and pre-
cursory failure conditions [15], [20], [21], [22]. Standardized
automated techniques for large-scale spatial analysis using
these approaches is challenging in fragile Himalayan terrains.
Nevertheless, these methods are expensive and mandate
specialized equipment and domain expertise, exacerbating
implementation in disaster-prone areas [20].
The Himalayan region is characterized by shearing rocks

and highly jointed geologic formations, undergoing multiple
phases of deformation, continuing to which move at rates
ranging from a few millimeters to several centimeters per
year [9]. Additionally, drilling activities in these regions
could aggravate the vulnerability to landslides and other
mass earthly movements. Deep drilling methods are par-
ticularly unsuitable due to the risks of borehole col-
lapses, destabilization of hill slopes, and potential landslide

triggers. These challenges highlight the critical need for
non-invasive techniques to understand subsurface changes of
the underlying landslide phenomena effectively. Microseis-
mic monitoring, prompted by geophysical sensors, can detect
faint earth tremors effectuating broad spatial coverage and
non-invasive sensing of deep subsurface changes, precluding
the need for drilling, thereby minimizing environmental
disturbances [15].

Microseismic signals precedent to landslide events afford
pragmatic precursors apropos slope instabilities or failures,
onset by water infiltration, seasonal variations in pore
pressure within the soil mass, expansion of micro-cracks, and
seismic activities [23], [24], [25], [26], [27], [28], [29], [30].
Identification of pre-trigger signals is inevitable as landslides
can occur abruptly. However, the microseismic signals,
symptomatic of impending landslides, are relativelyweak and
vulnerable to noise interferences. Noise interjections creep in
from divergent sources- surface or subsurface movements of
cracks, terrestrial faults, water infiltration, and anthropogenic
excursions. These disturbances obscure targeted seismic
signals impeding effective characterization of seismic events
associated with landslides, and the site-specific noises [21],
[22].

Microseismic sensors integrated with Internet of Things
(IoT) technology augment the monitoring of landslides
by enabling real-time data collection, which bolster pre-
dictive capabilities of monitoring systems, propitious to
enhanced safety and resilience of communities in landslide-
prone regions. All the same, development of real-time IoT
landslide monitoring systems are riddled with challenges.
Conventional IoT gadgets are constrained in their ability
to acquire, process, and transmit sensor data of higher
resolution. These limitations spawn increased development
costs, higher energy consumption, and a dependance on
centralized data centers [14]. Therefore, there is an exigent
need for the development of cost-effective, non-invasive real-
time monitoring solutions that acquire multiple microseismic
triggers of landslides, to effectuate early warning capability.
Such systems in hazardous Himalayan terrains that enable
the understanding of subsurface changes over large areas is
undubitable. The key requirements for such a system are
detailed below.

Microseismic events are typically within the range of
natural seismic activity falling below 100 Hertz [31], unlike
human/vehicle movements that produce vibrations in higher
frequency ranges based on the activity, and environment
characteristics [20], [32], [33], [34]. There is a need
to capture the microseismic activity beneath the earth’s
surface, where landslides and earthquakes originate, through
precursory signals. The seismic signals associated with
landslides often fall under the (0-10) Hz frequency range [20],
[35], [36]. For accurate capture of microseismic signals,
a data collection system should follow the Nyquist-Shannon
sampling theorem, which calls for a sampling rate of at least
twice the maximum frequency of the monitored signal [37].
However, a much higher sampling rate, typically ten times
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the maximum signal frequency, is recommended to capture
subtle microseismic activities. Contemporary ealy warning
systems are often designed for real-time lower data rates
processing and transmission [20], [38]. Therefore, a system
is needed that can acquire microseismic signals in real-time,
at high sampling rates from multiple triggers, sustain harsh
environments, with an extended service lifetime.

Based on these requirements, the key research problem
can be stated as- how to effectively capture early triggers of
landslides in real-time in resource-constrained regions, using
microseismic monitoring approaches to save lives and abate
property damage.

Major contributions of this investigation are summarized
as follows:

• Introduction of an IoT-driven platform with tailor-made
components for acquisition and seamless data transmis-
sion of subterranean microseismic vibrations in the face
of heavy rainfall and earthquakes, across multiple edges
and cloud.

• Development of a Smart Microseismic Sensing system,
incorporating geophone sensors, referred to as SM-s
nodes, for incessant capture, record and transmission of
real-time data from landslide-prone areas.

• Empirical assessment, validation and verification, via
laboratory set-ups and field deployment of the opera-
tional capabilities of the proffered smart microseismic
sensing nodes.

• Implementation of the IoT-driven microseismic smart
sensing system in the Himalayan region characterized by
active tectonics and frequent heavy rainfall, where both
landslides and earthquakes are common occurrences,
facilitating the continuous real-time transmission of the
earth’s vibrational data.

• Comprehensive analysis of historical microseismic data,
from multiple SM-s nodes deployed at the Chandmari
site, focused on slope instabilities actuated by precipita-
tion and seismic tremors.

This monitoring system was deployed at Chandmari, in the
East Sikkim district of the State of Sikkim, within the
North-eastern Himalayan region [subsection III-D].

A. PAPER OUTLINE
The rest of this paper is organized as follows: Section II,
delves into architectural details of the microseismic signal
monitoring platform for landslide detection and earlywarning
systems. Section III surmises the methods used for vali-
dation of the proposed microseismic sensing system, via
laboratory setups, implementation in real-world operational
scenarios and data processing methods for microseismic
signal characterization. Section IV describes the results
and discussions on the analysis of microseismic signals
acquired from the proffered system. Section V provides a
comparison of the proposed system with existing systems
pertinent to microseismic landslide monitoring. Conclusions
and directions of future research are covered in section VI.

II. MICROSEISMIC SIGNAL MONITORING PLATFORM
This section discusses the proposed IoT-driven microseis-
mic signal monitoring platform, suitable for large-scale
spatiotemporal monitoring, real-time data acquisition, and
classification of microseismic signals to identify imminent
landslides. The key components of the proposed monitoring
platform are detailed herein.

A. SENSORS AT EDGE
The proposed system was conceived to provide a low-cost
solution for effective capture ofmicroseismic activity beneath
the earth’s surface, which emanate landslide pre-triggers.
Extant sensing instruments listed in Table 1 are capable of
detecting subtle microseismic signals. The table acquaints
parameters such as bandwidth capability, number of axes,
weight, power requirements, and cost of these seismic
instruments. Notably, the listed seismometers are active,
heavy, and expensive, while the moderately priced active or
passive accelerometers, are capable of only detecting surface
movements. Geophones stand out as the optimal choice due
to their resilience to harsh environments and their ability to
detect ultra-low frequency bands and low-magnitude vibra-
tions [39]. Low-cost, passive, and lightweight geophones
were selected for this study, for their ease of deployment
and maintenance. To further enhance their functionality,
geophones can be outfitted with IoT capabilities, enabling
real-time data transmission to the cloud, augmenting their
effectiveness in capturing and relaying valuable seismic
information.

TABLE 1. List of seismic sensors.

The proposed smart microseismic sensing system
employed geophone sensors to continuously capture, record,
and transmit real-time vibrational data on microseismic
events occurring in landslide-prone regions, as shown in
Figure 1. A geophone, functioning as a ground motion
transducer, generates an analog differential voltage output
across its terminals, which is directly proportional to the
velocity of ground vibrations induced by the surrounding
medium. These compact, self-powered sensors offer a flat
frequency response in velocity, within a specific frequency
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FIGURE 1. Microseismic signal monitoring architectural framework enabling the capture and transmission of vibrational data from Smart microseismic
IoT Devices across heterogeneous data networks, facilitating detection and monitoring of microseismic activity in landslide-prone regions.

range above their resonant frequencies and attenuate
frequencies below them, rendering them well-suited for the
measurement of ground velocity.

For recording the earth’s ground vibrations, multiple
tri-axial geophones equipped with three terminals were
utilized: Horizontal-1 (H1), Horizontal-2 (H2), and Vertical
(V3) axes, corresponding to waveform propagation in the X
(North-South), Y (East-West), and Z (Up-Down) directions,
respectively [14], [22]. Geophones with resonant frequencies
of 10 Hz and 30 Hz were strategically placed at locations
mentioned in subsection III-D, to examine signal patterns,
associated spectral range of gradual subsurface movements,
and rapid fractural/ slip surface movements within the
landslide mass, taking into account the trade-offs discussed
in section I.

Standard tipping bucket gauges within a rain-gauge system
for the measurement of rainfall intensity were also employed,
in tandem with the geophone sensors. This strategic integra-
tion enabled detailed comparison of rainfall variations and a
study of the pretrigger patterns recorded by the geophones,
in landslide-prone regions, during periods of intense rainfall
and earthquake tremors.

B. SMART MICROSEISMIC MONITORING EDGE (SM-S
NODES)
The Smart Microseismic Monitoring Edge forms the heart
of the architecture, featuring highly specialized microseismic

sensors as shown in Figure 1. These sensors operate in
synergy with supporting components like microcontrollers,
signal conditioning boards, communication modules, power
supply units, batteries, solar panels, among other peripher-
als. This system enables local data processing and initial
decision-making, instead of centralized processing to ensure
swift responses. The strategically deployed system collects,
stores, transmits, and analyzes ground vibrations related to
microseismic activities, in landslide prone areas.

1) DATA ACQUISITION HARDWARE PLATFORM
A custom data acquisition hardware was designed for the
precise acquisition of signals from the geophone sensors,
facilitating accurate measurement of microseismic activities,
as represented in Figure 2. This hardware was constituted
of the following components: a pre-conditioning filter unit,
an amplification and differential-to-single-ended conversion
unit, and a power supply unit for essential support. The
terminals originating from the geophone sensors were
configured differentially. Paired outputs from each geophone
terminal were initially directed into a pre-conditioning unit,
comprised of preamplifiers and filtering systems, as shown in
Figure 2.
This stage serves to amplify the delicate seismic vibra-

tions detected by the geophones and effectively eliminate
Radio Frequency (RF) and other high-frequency noise
sources. Noise reduction was accomplished through the
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FIGURE 2. Geophone data acquisition process.

FIGURE 3. Microseismic sensing node for geophones.

implementation of a first-order Resistor-Capacitor- Low Pass
Filter (RC-LPF) with an anti-aliasing cutoff at 156 Hz.
The first-order passive Low Pass Filter (LPF) was chosen
for its cost-effectiveness and durability in challenging
environments. This decision was in tune with the objective
of developing an affordable sustainable solution for the
continuous acquisition and monitoring of microseismic
signals. Increasing the filter order would impose greater
circuit complexity that potentially calls for expensive active
filters, validating the choice of a passive first-order LPF.

Following the geophone signal’s pre-conditioning phase,
the filtered signals are routed into instrumentation amplifiers,
outfitted with variable gain adjustment options. The precision
of this gain was finely tuned to the desired level via
a network of resistors, controlled by a Printed Circuit
Board (PCB)-mountable switch. Subsequent to the fine-
tuning stage, single-ended outputs from the three geophone
terminals were seamlessly directed toward analog-to-digital
conversion (ADC) units. The dig of the three outputs were
formatted to facilitate storage within Secure Digital (SD)
cards and subsequent transmission stages. It is imperative
to comprehend that this data acquisition hardware is the
key for the accurate capture of microseismic vibrations from
geophones, ensuing in a reliable and robust measurement
system.

Programming modules in Figure 3 are energy-efficient
systems-on-a-chip solutions equipped with built-in Wi-Fi
capabilities and ADC input channels of 12-bit resolution. The

entire system transforms into a cost-effective IoT-enabled
configuration known as a Smart Microseismic Sensing
and Monitoring edge or SM-s nodes within the proposed
sensing system. The proposed design adopted solar-powered
renewable energy sources via solar panels, to conserve
energy. The power system was comprised of renewable
energy sources such as solar panel, which is the main source,
and the local power grid (AC socket power), both of which
were interfaced to a battery. The charge controller unit
ensures that power was properly fed to energize lead acid
batteries. Context aware energy management techniques, for
effective power consumption in edge sensing systems were
incorporated as outlined in [40], which extends the system
lifetime.

Sensitivity of the proffered microseismic data acquisition
system using aN-bit ADC (here,N=12)with a full-scale range
can be calculated as shown in eqn.1:

SADC =
VADC

(2N − 1)
≈

VADC
(212 − 1)

≈ 0.000805V/bit. (1)

where VADC is the output ADC value. Given that the
sensitivity of the geophone is SSensor, the overall sensitivity
of the system is defined in eqn.2:

SSystem =
SADC
SSensor

≈
0.000805V/bit
28.8V/(m/s)

≈ 2.8 × 10−5m/s/bit.

(2)

2) FIRMWARE DEVELOPMENT
The geophone data acquisition firmware was developed
within the open-source Arduino Integrated Development
Environment (version 1.6.13), for in-depth exploration of
subsurface movements within Sikkim’s challenging terrain,
and capture of microseismic signals. The effective capture of
microseismic signals, mandate employment of high sampling
rates, at least ten times the maximum signal frequency,
as discussed in section I. Lower data rates pertain to frequency
of acquiring the data at longer intervals, such as one sample
per minute or every five minutes, in lieu of incessant
acquisition. This can curb the timeliness and resolution of the
microseismic data, potentially reducing the effectiveness of
monitoring and early warning systems.

Therefore, acquisition of geophone signals at higher
data rate of 1 kHz (across three axis or channels) from
multiple locations, mentioned in section II-B3 was chosen
for comprehension of the intricate subsurface changes
beneath the earth’s surface and the dynamics of landslides.
The proposed data acquisition system for geophones was
engineered to record signals at a rate of 1000 samples
per second at each channels, and empowered to locally
store microseismic data as a means of data back-ups.
This sensing concept operated within a holistic framework,
constituted of data acquisition, signal amplification, signal
preprocessing for high-frequency noise reduction, and data
compression modules, all seamlessly integrated into an IoT
environment. This multifaceted functionality empowered the
sensing system as a highly efficient and versatile edge node.
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3) DATA GENERATION
The proposed sensing system generated geophone data
that represented ground vibrations evolving from diverse
geological processes- rock fracturing, tectonic movements,
or slope instabilities, along with the rainfall rates measured
by the supportive rain gauges. These parameters collectively
offer insights into environmental conditions and seismic
activities in landslide-prone areas. In addition, metadata
is generated to provide supplementary information for
each parameter. The metadata is comprised of timestamps,
location coordinates, sensor information, and other pertinent
parameters, that enrich the utility of the collected data.

Every sensing node produces significant amounts of data.
To store the geophone data every second, from the three
channels on an SD card, a minimum storage capacity
of approximately 14.4 gigabytes per hour with a data-
rate of 4 Mbps is required. Such sizable storage demand
compel real-time data transmission. A minimum data-rate
of 36 Kbps, is attained by sampling each channel at 1 kHz
with a minimum resolution of 12 bits.

C. DATA COMMUNICATION
Given the study region’s rugged terrain, discussed in III-D1,
an effective communication system is imperative, con-
sidering factors such as bandwidth, data rate, frequency,
and propagation factors, specific to the deployment site.
Traditional cellular network standards, such as Global
System for Mobile Communications (GSM), 3G (Third
Generation), and 4G (Fourth Generation) stipulates limited
bandwidth and lower data rates, rendering them incapable
for real-time transmission of extensive geophone-generated
data. As 5G (Fifth Generation) technology may not be
universally accessible, alternative Low Power Wide Area
Network (LPWAN) technologies like Long Range (LoRa)
andNarrowband Internet of Things (NB-IoT) were developed
for lower data rates that are ill-suited for this purpose.

Given the specific conditions of the deployment area,
including dense vegetation and dynamic climatic extremes,
Wi-Fi stands out as the optimal choice for real-time
transmission of geophone data. Long-range Wi-Fi systems
extend connectivity over vast distances, enabling point-to-
point or point-to-multipoint connections across ranges of
hundred meters to several kilometers [41].
Accordingly, Wi-Fi and long-range Wi-Fi technologies

were adopted for intermediate data transmission along
with connectivity protocols such as Transmission Control
Protocol/Internet Protocol (TCP/IP), and Hypertext Trans-
fer Protocol (HTTP)/ Hypertext Transfer Protocol Secure
(HTTPS) to facilitate data transmission with efficiency
and scalability. These technologies perfectly match the
requirements by extending network coverage to challenging
environments, furnishing internet access, and establishing
connectivity between remote outlying locations.

Functioning as a Base Station, the Field Management
Center (FMC), leverages long-range Wi-Fi technology,
is denoted as Long Range Wi-Fi Base Station (LRW-BS).

At each location of the SM-s nodes, there are strategically
positioned Wi-Fi routers, operating as Access Points in
station mode, termed as Long-Range Wireless Wi-Fi stations
(LRW-S), along with heterogenous wireless networks [41].
Data from SM-s nodes are seamlessly routed through LRW-S
to the FMC via LRW-BS, as shown in Figure 1. This process
enables the collection and aggregation of data from SM-s
nodes into a local storage/database, where raw sensor data is
also stored. FMC facilitates local processing, data analytics,
and initial decision-making, bringing intelligence to the edge
of the network.

The intermediate processors at the FMC aggregate data
from SM-s nodes, enabling regional-scale data analysis and
a first level of alert dissemination. FMC also facilitates
determination of site-specific thresholds, and event detection
to boost efficiency in signal analysis. This strategic step
enables the regional-scale analysis of data and the dissem-
ination of initial alerts. The cloud-based edge intelligence
algorithms are seamlessly deployed to the processors within
the FMC. These algorithms are continuously refined and
updated, driven by valuable feedback collected from the field.

D. SMART MICROSEISMIC ANALYTICS CLOUD
1) EDGE-CLOUD NETWORK, EDGE DEVICE CONTROL AND
DATA MANAGEMENT
The Smart microseismic Analytics Cloud is comprised
of a centralized hub or cloud infrastructure (server) via
Internet Gateways for long-term storage (data repository),
archiving, and systematic data management. Routers and
gateways, operating at edge, and cloud, facilitate end-to-end
communication among SM-s nodes, FMCs, and cloud data
centers, ensuring dependable data transfer. The edge-cloud
network and edge device control are managed at the cloud
level by monitoring the status of connected SM-s nodes and
the connectivity to the FMC and cloud server. Over-the-
air (OTA) updates keep the SM-s nodes secure and up to
date with firmware changes (bug fixes and enhancements).
Cloud-based device management facilitates the distribution
of OTA updates, ensuring that SM-s nodes receive patches
and improvements obviating manual intervention.

A data synchronization system in [42] combines data from
various landslide deployments into a unified central cloud
server. Communication between the sites and the server is
established through sockets, allowing the server to receive
streaming data from the edge devices and store it in a
centralized database, Aggregated Landslide Data [42]. The
FMC-Site client system excels at managing reconnections
without compromising performance and functionality. The
centralized repository enables cross-site analysis, enhancing
predictive capabilities for landslide monitoring across multi-
ple locations [42].

2) CLOUD DATA ANALYTICS: GETTING INSIGHTS FROM
MICROSEISMIC SIGNALS
The Smart microseismic Monitoring Cloud ensures data
durability and seamless accessibility, facilitating its utilization
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by the adoption of advanced machine learning /artificial
intelligence algorithms and data mining techniques [43],
[44], [45], [46], [47], [48]. The core objective is to glean
valuable insights from themicroseismic data originating from
diverse locations, for systematic analysis of the landslide
signals. Multi-tier signal processing framework, discussed
in III-E allows for selective noise removal from various
frequency bands, while retaining signal features, fine-tuned
to site-specific thresholds for event detection and signal
analysis.

The framework is seamlessly integrated into the FMC
processors at the edge, empowers the FMC to issue timely
alerts and warnings, strengthening its proactive response
capabilities. Such an approach significantly reduces the
burden on central data centers and cloud resources. This
translates to cost-effective and energy-efficient operations,
rendering the framework sustainable for long-term monitor-
ing efforts.

3) CLOUD SERVICES
Centralized monitoring at the cloud is facilitated by a
dedicated monitoring center which serves as the nexus for
real-time streaming of microseismic data originated from
diverse locations under surveillance. Its primary mission
is to ensure uninterrupted monitoring, swift responses to
microseismic activities detected at the deployment sites,
enabled by the utilization of advanced visualization tools.

The monitoring center further reinforces the decision
support systems by promptly conveying alerts, automated
report generation, and dispatch of notifications to researchers.
In cases where genuine alerts are identified, immediate
communication with disaster management authorities ensues,
facilitating prompt necessary actions and interventions. This
coordinated approach, substantially enhances the system’s
efficacy in vigilant monitoring of microseismic events in
areas susceptible to landslides.

The data centers continuously monitor seismic activities
in real-time, over extended periods, identifying any unusual
or anomalous patterns that call for immediate attention.
Leveraging the insights derived from regional-level analysis,
can lead to improved assessment of future seismic events,
based on historical data and ongoing monitoring efforts.

III. METHODS
This section discusses the experiments conducted in landslide
laboratory test setups, outdoor deployments to validate the
functionalities of the proposed microseismic sensing system
in landslide-prone areas, and the data processing methods
used for the characterization of the acquired microseismic
signals.

A. LANDSLIDE LABORATORY TEST SETUPS
A laboratory setup, depicted in Figure 4, integrates advanced
features for the scientific simulation of landslides. These
features encompass variable slope angles, the ability to
simulate diverse soil layer compositions reflecting field

FIGURE 4. Set up of landslide testbeds.

conditions, variability in rainfall rates, and dynamic pore
pressures [12].

The laboratory houses a medium-scale test bed of (1400
mm x 500 mm x 400 mm) dimensions capable of holding
2 tons of soil and a large-scale test bed of (1400 mm x
500 mm x 908765 mm) accommodating up to 8 tons of
soil, facilitating realistic landslide simulations. Both the test
beds incorporate a seepage simulator designed to replicate
underground water movement with precise control over
seepage rates and water pressures. The simulator can handle
multiple seepages, at varying levels to simulate diverse
flows across soil layers, alongside flow meters and pressure
gauges integrated into the rainfall and seepage simulators for
accurate measurement of flow rates.

The test beds are equipped with adjustable slope angles
ranging from (zero to 45) degrees, enabling the simulation of
varied geomorphic scenarios, supported by angle gauges for
precise measurements. Additionally, the setups include rain-
fall simulators with a controlling valve to replicate varying
intensities of rainfall. Specialized sprinklers attached (1)-(2)
meters above the soil surface ensure even water distribution,
accurately mimicking natural rainfall patterns.

Furthermore, the laboratory setup features a soil com-
pactor for achieving different degrees of soil compaction,
complemented by a compaction meter for quantification of
compaction levels. The setups allow to simulate multiple
depths of soil layers, facilitating homogeneous and stratified
soil configurations. Testbeds can also incorporate vegetation
effects for a more realistic simulation. The laboratory setup
serves as a platform for calibration of geological sensors prior
to their field-deployment in real-world scenarios.

B. EXPERIMENTATION IN LANDSLIDE LABORATORY
The experiments represent a critical validation phase of the
proposed data acquisition system, apropos landslide early
warning systems. The test plan was drawn to provide insights
into responses from geophone sensors under laboratory-
controlled conditions. This assessment showcases the prof-
fered system’s versatility in capturing simulated landslide
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FIGURE 5. Experimentation for data collection.

events, attesting its readiness for general field deployment for
early warning for landslides.

For conducting experiments, the medium-scale test bed
was utilized, filled with a four-layer soil structure. The
latter included clay, a mixture of gravel and boulders,
a combination of sand and clay, and a mix of sand and
rocks. The slope angle was precisely set to 35 degrees
and maintained consistently throughout the experiment,
mirroring a natural hill slope within the laboratory setting.
Multiple geophones were installed onto the testbed, and
the proffered sensing system was used to acquire geophone
signals at 1 kHz, for each channel. The rainfall was simulated
for a continuous duration of eight hours at a precipitation rate
of 45 mm/hour. The rainfall contributed to saturation of the
soil layers in the testbed. Incessant water infiltration increases
the pore pressure, eventually leading to slope instabilities,
as shown in Figure 5).

C. OUTDOOR FIELD TRIALS
Outdoor experiments were conducted in a road serving vehi-
cle and pedestrian traffic, to simulate real-world conditions,
as shown in Figure 5b). The signals associated with traffic
movements were acquired by the proffered sensing system,
to capture and understand the associate noise patterns. This
included ten trials of single and multiple pedestrians engaged

FIGURE 6. Geophone sensor placement at the deployment site at
chandmari, sikkim.

with different activities (jumping, walking, running, etc.) and
capturing the movement of lightweight vehicles at a constant
speed of around (20-25) km/hr.

D. REAL WORLD DEPLOYMENT
The real-timemonitoring ofmicroseismic signals, in landslide-
prone mountainous regions, was achieved by deploying a
network of the proposed SM-s nodes. This approach provided
a comprehensive understanding of regional variability and
facilitated better decision-making, during various triggering
factors in landslide-prone regions.

1) STUDY REGION
The state of Sikkim, located in the northeastern part of India,
encounters heightened risks within this geologically active
and fragile Himalayan mountain range, rendering it fertile
ground for the study of landslide dynamics and development
of effective monitoring systems [9], [10], [11]. The region’s
geological complexity, exemplified by major thrust faults-
Main Boundary Thrust (MBT) and the Main Central Thrust
(MCT) and highly jointed rocks undergoing continuous
deformation, presents arduous drilling activities, with exac-
erbated vulnerability to landslides and mass movements [23].
Chandmari, a locality in Gangtok, East Sikkim District, was
identified as the study area due to its tracked history of
numerous landslides during the monsoon season [49]. It is
important to note that the region is classified as a high-risk
seismic zone IV on the Indian seismic zoningmap. The region
encompassing the deployment site experienced moderate
earthquakes, involving thrust motions and strike-slipmotions,
at the fault lines [10], [11], [14].

2) SENSOR PLACEMENT
This study utilized Deep Earth Probes (DEPs), an integrated
monitoring module constituted of several heterogeneous
sensors as part of the real-time Landslide Early Warning
system [1]. Drilling for the placement of sensors is arduous
due to the loose soil and fragile rocks in the site area. For
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FIGURE 7. Chandmari Geophone DEP Locations ( black colored dots), and
geophone alignment at each location. [49].

the placement of sensors in the ground, small square wells
were dug manually, to minimize inadvertent disturbance to
the earth. Figure 6 shows the placement of geophones at
one of the test site locations. The geophone spikes were
fixed firmly, carefully oriented parallel to the ground, using
built-in level indicators. Furthermore, the entire setup was
made waterproof to protect geophones from rainfall or
other precipitation. The sensor configuration was seamlessly
integrated with the smart microseismic sensing system,
transforming into a fully functional IoT edge node.

3) FIELD DEPLOYMENT OF SMART MICROSEISMIC SENSING
SYSTEMS
Prototypes of the microseismic edge-based geophone sensing
systems were strategically deployed at different positions,
termed as DEP locations, in the hilly terrain, such as the toe,
middle, and crown regions. The fully operational SM-s nodes,
shown as black colored dots in Figure 7, provide crucial
microseismic data for early warning systems and advancing
research on landslides and seismic activity in the region. Its
uninterrupted functionality ensures a reliable and valuable
microseismic sensing system for large-scale spatiotemporal
monitoring in landslide-prone regions.

A sample DEP location is shown in Figure 8. Since the time
of its pilot deployment in 2018, the state-of-the-art geophone-
based microseismic sensing systems have been effectively
capturing and transmitting data to the FMC located in the
landslide-prone region of Chandmari.

E. DATA PROCESSING METHODS
The SM-s nodes play a crucial role in capturing groundmove-
ments stimulated by various sources, encompassing surface
and subsurface activities. However, these vibrational signals
from geophones are susceptible to significant influences from
environmental factors, fluctuations in temperature, power line
interferences, and sensor drift. Examination of the study

FIGURE 8. A DEP location where one of the SM-s Node is deployed at
Chandmari, Sikkim.

area, detailed in section III-D1, unveiled potential sources
of signal interference- nearby water streams, shrubs and
trees, roads, pedestrian pathways, wildlife, and construction
activities. High-voltage transmission power lines nearby can
introduce additional noise into the geophone signals. Given
the diverse noise sources, comprehensive characterization
of the microseismic signals was called for, to differentiate
them from the surrounding noise sources at the deployment
site. Signal processing techniques enabled the identification
of noise patterns, their elimination, and the inference of
relevant noise-minimized microseismic information from the
geophone data [50].

A multi-tier signal processing frame work was utilized for
characterizing the geophone signals. Firstly, the streaming
values of voltage from geophones were extracted from the
three channels, X, Y, and Z axes. The three-channel data
formed the basis for subsequent processing. To eliminate any
DC offset or baseline drift, mean normalization was applied.
This step ensured that the data was centered around zero,
which is essential for accurate signal analysis. A digital But-
terworth LPFwas utilized to improve signal quality. The filter
parameters, and the filter order, were optimized for removal
of high-frequency noise, to preserve the essential components
of the acquired signal. The preprocessed geophone signals
were also subjected to a series of bandpass filters. Each
filter had a specific cutoff frequency range, such as (0-5) Hz,
(5-10) Hz, (10-20) Hz, and so on. This step was undertaken to
comprehend the frequency characteristics of the data within
a particular range, which helps identification of dominant

VOLUME 12, 2024 97795



P. K. Indukala et al.: IoT- Driven Microseismic Sensing System and Monitoring Platform

frequencies, frequency-spreads, and noise patterns that may
be site-specific.

The geophone signals were put through a Short-Time
Fourier Transform (STFT) analysis, to discern the frequency
range of the acquired signal, providing valuable insights into
the characteristics and dynamics of the microseismic activ-
ities [50], [51], [52]. Withal, the changes in ground motion
parameters such as Peak Ground Acceleration (PGA), Peak
Ground Velocity (PGV), and Peak Ground Displacement
(PGD) were estimated using OpenSeismoMatlab [53], aiding
in understanding the precursory activities associated with the
slope instabilities under study.

IV. RESULTS AND DISCUSSIONS
This section presents findings derived from executing val-
idation tests of the proposed microseismic sensing system
in controlled laboratory settings and outdoor field trials.
It further delves into the preliminary analysis of microseismic
geophone signals, captured from real-world environments
intricately linked with the causative factors of these natural
disasters, all aimed at establishing effective early warning
systems.

A. LABORATORY SIMULATIONS: SLIP SURFACE
MOVEMENTS
The geophone signals captured during the landslide labo-
ratory simulation represented slip surface movements, with
signals from the crown (G1) and middle (G2) geophones
shown in Figure 9. They depict the downslope movement
of soil material along the slip surface of the testbed.
The geophone signals from three channels are portrayed
using a spectrogram to discern their attributes and track
changes in frequency over time. Owing to the distinct sensor
positions, there is a noticeable delay in data capture. The
signal’s evolution, as the soil descends the slope, is distinctly
observable, with G1 at the crown registering the onset of the
sliding movement, followed by a slight delay in data capture
by G2 as it progresses downwards, as shown in Figure 9a)
and 9b).
This behavior mirrors that of an actual landslide event,

as evidenced by the spectrogram displaying high intensity
in the middle, signifying the transmission of energy from
the crown to the middle. The signals were acquired at the
rate of 1 kHz, each spanning 1 minute 30 seconds and
1 minute 10 seconds. The signals showed maximum strength
in the frequency range of (0-5) Hz at both positions. Besides,
consistent frequency ranges between (10-20) Hz were
observed, which could be attributed to interferences from
the ambient environment. The analysis revealed frequencies
below 5 Hz, consistent with the anticipated frequency range
for landslide signals as reported in [36].

B. OUTDOOR FIELD TRIALS: PEDESTRIAN AND VEHICLE
MOVEMENTS
Figure 10a) shows one of the trials for footstep movement,
which lasted for a duration of 40 seconds. The accompanying

FIGURE 9. Recorded Signals of slip movements by the two geophone
sensor systems a) G1 at crown b) G2 at middle region and their respective
spectrogram for each channel.

spectrogram effectively captures the occurrence of footsteps
at regular intervals, revealing a fundamental frequency range
of (0.5-1) Hz. This periodicity indicates that the footstep
signal repeats itself approximately every 1 to 2 seconds.
As the individual approaches while walking, the strength
of the footstep signal increases over a frequency range
of (20-50) Hz. This behavior is expected, as the footstep
signals are distinctly pronounced when the person is closer
to the geophone. Conversely, as the individual moves away,
the strength of the footstep signals decreases, resulting
in a gradual decline in signal amplitude. However, the
spectrogram also reveals the presence of consistent frequency
interference around 10 Hz. These interfering frequencies are
likely due to noises from the ambient environment.

One of the trials for vehicle movement is shown in Fig-
ure 10b) lasting 28 seconds, captured by the geophone sensor
system. The accompanying spectrogram analysis effectively
captures the vehicle movements, reaching frequencies of up
to 60 Hz. Notably, the strength of the frequencies persists
for (2.0-4.8) seconds, particularly as the vehicle approaches
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FIGURE 10. Recorded signals captured by a geophone sensor system for
a) footstep and b) vehicular movements and their respective spectrogram.

closer to the geophones. This behavior is indicative of the
vehicle’s proximity to the sensor. Moreover, in the frequency
spectrum, a prominent strength is observed around (10-15)
Hz, which gradually increases up to the range of (50-60)
Hz before decreasing again to around (10-15) Hz. These
variations in frequency content can be attributed to specific
vehicle engine sounds and their harmonics, which become
more pronounced as the vehicle gets nearer and gradually
recedes. The findings are consistent with the expected
footstep monitoring and vehicular movement frequencies
reported in [20].

Table 2 lists the observations from laboratory and out-
door experimentation. The results indicate that human and
vehicular movements can generate vibrations and signals that
overlap the frequency ranges of microseismic events, despite
their distinct characteristics.

C. PRELIMINARY ANALYSIS OF MICROSEISMIC SIGNALS:
DEPLOYMENT SITE, CHANDMARI
The slope instabilities, captured by the deployed SM-s
nodes in Chandmari, correlated with earthquakes and rain-
fall precipitation events in the vicinity of the test site.
Table 3 displays a few events recorded by the SM-s
nodes, corresponding to the triggers for slope instability,
type of movement, observed range of frequencies, and the
estimates of ground motion. This highlights the proposed
sensing system’s effectiveness in capturing the microseismic
precursor signals of the factors triggering landslides.

TABLE 2. Observations from lab and outdoor simulations.

1) GEOPHONE SIGNAL RESPONSE FOR SLOPE
INSTABILITIES DURING EARTHQUAKE TRIGGERS
As noted in Table 3, E1 refers to an earthquake, on September
12, 2018, measuring 5.5 on the Richter scale that struck the
Kokrajhar District in Assam, India [54]. The quake occurred
at approximately 10:20:49 AM Indian Standard Time (IST),
with the epicenter at 26.4◦N and 90.1◦E. Despite being
around 187 km away from the epicenter, the proposed system
for geophones was able to record the microseismic triggers
of this tremor event at three different DEP locations: DEP 8,
DEP 10, and DEP 5.

Figure 11 shows the time domain representation of
the geophone data captured by the monitoring system
from the three DEP locations. For further analysis, the
geophone signals were cropped to cover a total duration of
approximately 1 hour, including half an hour both before,
and after the time of the earthquake incident. Figure 11a),
shows significant ground movements that persisted for about
2.4 minutes. Notably, the signal exhibited substantial strength
within the frequency range of (0 -10) Hz, with dominant
frequency peaks concentrated around (1-2) Hz.

In Figure 11b), notable changes in signal strength lasting
for about 1.33 minutes can be observed. The dominant
spectral range, (below 5Hz) which was consistent throughout
this event can be due to electrical interferences of that
channel. It is observed that there is a dominant range
of (0.5-1) Hz across all channels, around 1.33 minutes.
In Figure 11c), the ground shakings due to the earthquake
triggers caused a sudden drop in frequency ranges, with
the effect lasting for approximately 15 minutes. However,
higher frequencies up to 30 Hz were observed in the
spectrum throughout this event, which can be due to electrical
interferences of the channels itself.

Ground motion parameters, PGA, PGV, PGD, alongside
the occurrence of earthquake triggers, were estimated for
the 24 hour-geophone data from 9 to 25 September 2018.
Figure 12) displays the fluctuations in ground motion
parameters, where a significant increase followed by a
gradual decrease in the values was observed during the event.

Earthquake event, E2, a 5.4 magnitude earthquake occured
on March 20, 2020, approximately 153 km NW of Yuksom,
Sikkim, India, at 07:03:17 IST. This event was followed by
two more quakes on March 25, 2020, measuring 3.8 and
3.3 on the Richter scale; the first earthquake occurred at
05:09:32 IST, 167 km NNW of Yuksom, Sikkim and the
second tremors were recorded at 04:43:25 IST, 197 km NW
ofYuksom, Sikkim. [54]. The proposedmicroseismic system,
situated approximately 40 km away from the epicenter at
Yuksom, Sikkim captured the slope instabilities, as shown
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FIGURE 11. Geophone Signals captured by the developed microseismic system at three DEP locations at the deployment site, Chandmari during the
slope instability caused due to earthquake trigger recorded on 12 September 2018.

FIGURE 12. Variation of the Ground Motion Parameters: Peak Ground
Acceleration (PGA), Peak Ground Velocity (PGV), Peak Ground
Displacement (PGD), and occurrence of slope instability due to
earthquake trigger during September 2018, from DEP 9.

in Figure 13. The spectrogram revealed a prominent range
of (0.1-1.0) Hz, lasting less than 3 minutes. Other consistent
frequencies observed in the spectrum can be due to the
electrical interference in the channel.

Figure 13b) reveals a gradual increase in ground motion
parameters after the earthquake event on March 20, 2020,
indicative of the aftershocks in the region. However, for the
events on March 25, feasible variations in ground motion
parameters were evident. The results shown in Figure 12 and
Figure 13b) provide valuable insights into ground motion
variations associated with ground shakings in the region
subsequent to the earthquake events. The significant decrease
in ground motion parameters observed during and after the
tremor events suggests that these variations could serve as
precursors for the detection of slope instabilities set in by
ground shaking. However, arriving at conclusive findings
mandate a thorough analysis, which is beyond the scope of
this paper’s investigation.

FIGURE 13. a) Geophone Signals captured by the developed microseismic
system during slope stability due to earthquake trigger recorded
on 20 March 2020 b) Variation of the Ground Motion Parameters: PGA,
PGV, PGD, and occurrence of slope instability due to earthquake triggers
during March 2020, from DEP 9.

2) GEOPHONE SIGNAL RESPONSE FOR SLOPE
INSTABILITIES DURING RAINFALL TRIGGERS
Figure 14 shows the available rainfall data collected from
the Indian Meteorological Department for the district of East
Sikkim for the years 2018-2021 [55]. It reveals that heavy
rainfall was experiences during the period from April to
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FIGURE 14. east sikkim rainfall data for the years 2018-2021.

FIGURE 15. Slope instabilities near the site, triggered by rainfall.

September. A comparison of the cumulative rainfall for June
and July shows an increase in the downpour from 432.45 mm
in 2018 to 579.85 mm in 2020 and 542.7 mm in 2021,
highlighting the increased probability of landslides at the
selected field site during the rainy season.

The slope instability caused by the sliding movement of
rock-debris, referred to as E3, was triggered following heavy
rainfall, on 19 June 2020, around 450 meters away from one
of our site locations at 27◦20.371‘‘N 88◦37.552’’E, as shown
in Figure 15. The geophone signals were recorded during the
slope instabilities, due to rainfall triggers that happened in the
days as depicted in Figure 16a). The variation of the ground
motion parameters during the period (12-23) June 2020,
from the location DEP 9 is shown in Figure 16b). It depicts
that there was an increase in the amplitude of the ground
motion parameters (3-4) days before the recorded event and a
significant decrease a day before the event. These variations
could serve as precursors for detecting slope instabilities of
landslide initiation and seismic events.

Figure 17 shows the variations in dominant frequency
ranges, which may be due to rainfall and external noises
generated by the rain over time. This suggests that the impact
of the heavy rainfall on the frequency rangewas initiallymore

FIGURE 16. a) Time domain representation of the slope instabilities
observed in the geophone data during the period 17-21 June 2020 for the
corresponding event observed on 19 June 2020, b) Variation of the ground
motion parameters during the period June 12-23, 2020, from DEP 9.

FIGURE 17. Variations observed in dominant frequency ranges at each
channels, during the period June 12-23, 2020, from DEP 9.

severe, with sudden increase and decrease, which stabilized
in the following days, to the typical range of (15- 28) Hz,
which is considered as the frequency ranges observed during
normal day scenarios.

Table 3 shows the observed dominant frequency ranges of
the geophone signals, correlatedwith triggers for the recorded
events at the Chandmari deployment site. The frequency
ranges differ depending on the specific site conditions, and
the underlying geology. Nevertheless, this indication could
serve as supplementary information, when combined with
data from other sensors [13], [56], [57]. Doing so, enhances
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TABLE 3. Observations from geophone signals from chandmari.

the efficacy of decision-making support systems, with a clear
link established between frequency ranges and signs of slope
instability during the rainy season. This necessitates further
exploration of the geophone signals during specific weather
conditions, which suggest ongoing creep and subsidence
movements, indicative of impending landslides.

Findings from laboratory experiments and field deploy-
ments highlight the potential of the proposed microseismic
sensing system to capture earth tremors, even the subtlest
microseismic triggers. This establishes the foundation for a
cost-effective, non-intrusive, and long-term spatiotemporal
monitoring solution, laying the groundwork for an efficient
early warning system in landslide-prone areas. The results
of the analysis from the geophone-based sensing systems
can be cross-referenced with other sensor data to enhance
earlywarning capabilities. However, achieving accurate event
detection mandates a precise distinction between relevant
signals and background noise, which compel focused effort
on refinement of signal processing algorithms, and its
applicability at the edge. Enhancement of context-aware
data and energy management techniques can significantly
conserve power consumption in edge sensing systems,
thereby extending system lifetime and effective manipulation
of resource constraints [40], [58].

D. LIMITATIONS
Albeit the proposed microseismic sensing system affords
promising capabilities for landslide detection and early warn-
ing, careful consideration of potential risks and challenges
is imperative to maximize its effectiveness, and minimize
adverse impacts. One of the significant risks is the likelihood
of false alarms or misinterpretation of micro-seismic signals,
leading to unnecessary panic. The proposed solution has
taken into account scenarios such as misinterpretation
of microseismic signals due to footsteps, and vehicular
movements. The solution includes methodologies to detect
and classify these signals, thereby avoiding false alarms.
In addition, misinterpretation of signals during initiation of
slope instability has been mitigated by integrating heteroge-
neous sensors, capable of monitoring multiple trigger types
that are prominent in different stages of the slope instability
initiation pathway [12], [49], [56].

It is also important to consider events such as the
gradual movement of slopes by creep landslides, causing

sensor malfunction and the possibility of power loss due
to extreme weather conditions in remote or rugged terrain,
such as the Himalayas. Although context-aware energy
management systems have been implemented [40], extreme
weather conditions may still result in power loss, preventing
the system from operating or leading to data loss during
transmission. Logistical and operational challenges may
turn up when installing the system in remote or rugged
terrain. These include maintainence and calibration of the
sensor network, to ensure data integrity and security, and
managing power sources in off-grid locations. Attention to
these potential hurdles is crucial for ensuring the long-term
viability of the proposed system.

V. COMPARISON WITH EXISTING SYSTEM
An assessment was conducted to evaluate whether the
presented research adequately addressed key functionalities
denoted as F1-F11, derived from the requirements discussed
in section I. Table 4 presents a curated selection of publicly
available research focused on microseismic monitoring using
in-situ geophysical methods, to detect triggers that ensue
in landslides. The existing microseismic studies primarily
address single triggers with limited data rates and lack
real-time and early warning capabilities, which renders
them ill-suited for spatio-temporal monitoring. As a result,
achieving a fair comparison with previous approaches is
not feasible. Nevertheless, the study aims to present some
comparative analysis. Table 4 outlines the applications and
sensing instruments utilized in the literature.

• F1: High frequency data capture-Incessant acquisition of
data samples.

• F2: Microseismic data acquisition- Generation of
seismic waves from ground/ anthropogenic activities/
industrial processes.

• F3: Resource constraints- Limited processing, storage
potential, minimum power in IoT environment.

• F4: Continuous, and real time monitoring- Delivery of
continuous microseismic data

• F5: Large scale spatio-temporal monitoring- Extensive
surveillance and perusal of a vast geographical area over
an extended period.

• F6: Precursor signal detection- Identify early pre-triggers
associated with F2.

• F7:Microseismic activity detection-Methods for detect-
ing microseismic data, related to F2.

• F8: Early warning capabilities
• F9: Mapping to microseismic triggers- due to heavy
rainfall, seismic activity.

• F10: Communication Technology- Data transmission or
local storage.

• F11:Monitoring Period- Short term (Monthly, or shorter
durations), Long term (Yearly or longer durations)

A critical review of 20 selected articles in the field
of microseismic monitoring was conducted to compare
them with the proposed system. Figure 18 presents the
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TABLE 4. Comparison of existing systems and proposed system.
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FIGURE 18. Comparative analysis with the exisiting systems.

comparative analysis of these reviewed articles, highlighting
factors F1 through F11. Firstly, 85 % of the reviewed
studies emphasize the importance of capturing microseismic
data (F2), and 90 % discuss methods for microseismic
activity detection (F7). Additionally, 80 % consider their
applications to have early warning capabilities (F8), and
75 % use standard communication technologies for data
transmission (F10), the remaining 25 % either do not specify
their methods or rely on local storage. However, only 35
% focus on high-frequency data capture (F1), revealing an
underutilization of high-frequency microseismic signals that
could provide more detailed insights into landslide dynamics.

Furthermore, 20 % of the reviewed studies consider
resource constraints in the development of IoT systems (F3),
highlighting the need for further research into cost-effective
and efficient IoT solutions for resource-limited regions. Only
15 % of the investigations explore precursory triggers and
the detection of landslides (F6), indicating a pressing need
for more research into identifying and understanding early
warning signs. Additionally, 35 % of the studies fail to
adequately map microseismic triggers (F9), suggesting a
gap in integrating microseismic data with geological and
environmental factors. 50 % of the reviewed studies focus
on short-term monitoring, which can be monthly or even
shorter, while the other 50 % focus on long-term monitoring,
considered as yearly or more. Moreover, 45 % of the studies
lack systems capable of large-scale spatiotemporal and real-
time monitoring (F4, F5), underscoring a significant paucity
in comprehensive monitoring capabilities. This comparative
analysis emphasizes the critical areas where advancements
are needed, particularly in high-frequency data capture,
integration of microseismic data with environmental factors,
comprehensive monitoring capabilities, and cost-effective
IoT solutions.

A few studies satisfiying the minimum functionalities are
detailed below. The study in [74] discusses an IoT based
landslide monitoring and early warning system, offering
accurate data acquisition of morphological change and disin-

tegration pattern of the landslide body, fast transmission, and
comprehensive analysis in creep slopes on a continuous basis.
However, such systems have limitations, including lower data
transmission rates, lack of microseismic signal capturing,
and spatiotemporal monitoring capabilities. Studies such
as [61] and [78] presents insights into technologies for
landslide monitoring, while [62], [68] discuss the design and
experimental systems for detecting early signs of landslide
events using integrated sensors but lack a comprehensive
framework and end-to-end real-time system architecture.

Another study by [71], investigates early warning system
frameworks for rapidly detecting earthquake groundmotions,
does not involve sensing hardware deployment or mainte-
nance, but utilizes smartphones incurring high operational
costs. Similar methodologies for landslide early warning
systems with advanced capabilities remain limited. The
existing systems in Table 4 cover only a portion of the
essential functionalities required for effective microseismic
monitoring, suggesting the need for a more comprehensive
approach.

The proposed system, in comparison, showcases robust
capabilities of the sensing system with its cost-effective
passive sensing system, utilizing geophone sensors in detect-
ing and monitoring microseismic events and their triggers.
It captures microseismic vibrations at exceptionally high data
rates (1 kHz, across each sensor channel), from multiple
locations, fulfilling all functionalities, and provides numerous
advantages over traditional monitoring methods [16], [19],
[20], [21], [22]. The proposed system has been deployed
in real-world scenarios supporting long-term large-scale
spatio-temporal monitoring, and enabling the mapping of
microseismic triggers associated with slope instabilities due
to rainfall and earthquakes. The seamless connectivity of
the proposed system significantly enhances its capability
to deliver actionable insights to stakeholders, emergency
responders, local authorities, and residents, marking a
significant advancement in microseismic monitoring and
early warning systems.
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VI. CONCLUSION AND FUTURE DIRECTIONS
This paper presented an IoT-driven platform for the capture
of subterranean microseismic vibrations in regions prone
to landslides. The proposed microseismic edge sensing
system, incorporating geophone sensors (SM-s nodes), was
deployed to continuously record and transmit real-time
microseismic data from landslide-prone areas of Chandmari,
in the state of Sikkim, in North eastern Himalayas. The
proposed system successfully captured the slope instability
events in June 2020, and earthquake events in September
2018, and March 2020. Results from laboratory experiments
and field deployments demonstrate the effectiveness of the
proposed sensing system in capturing subtle pre-triggers of
slope instabilities, precipitated by rainfall and earthquakes.
This forms the basis for a cost-effective, non-intrusive,
and long-term spatiotemporal monitoring solution, setting a
robust foundation for an efficient early warning system in
landslide-prone regions.

The proposed microseismic geophone sensing system
demonstrated promising capabilities in monitoring a diverse
range of geological phenomena such as rock falls, rock-
slides, debris flows, earthquakes, snow avalanches, and
other seismic activities induced by anthropogenic actions.
The microseismic signal analysis will aid in understanding
the principal mechanisms governing each stage of these
potential hazards. It is crucial for the refinement of robust
signal processing algorithms and comprehensive validation
protocols, including real-time validation. Ongoing research
involves analysis of microseismic data from various locations
and cross-referencing with environmental factors, intended to
be incorporated in future studies. The proposed system can be
further enhanced to derive adaptive thresholds using detailed
data analysis and machine learning approaches. This will
contribute to real-time identification and classification of the
characteristics and rate of landslide movements in different
materials, enabling automatic classification and mapping of
imminent landslides.
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