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ABSTRACT Artificial Intelligence (AI) systems can introduce biases that lead to unreliable outcomes
and, in the worst-case scenarios, perpetuate systemic and discriminatory results when deployed in the
real world. While significant efforts have been made to create bias detection methods, developing reliable
and comprehensive documentation artifacts also makes for valuable resources that address bias and aid
in minimizing the harms associated with AI systems. Based on compositional design patterns, this paper
introduces a documentation approach using a hybrid AI system to prompt the identification and traceability
of bias in datasets and predictive AI models. To demonstrate the effectiveness of our approach, we instantiate
our pattern in two implementations of a hybrid AI system. One follows an integrated approach and performs
fine-grained tracing and documentation of the AI model. In contrast, the other hybrid system follows a
principled approach and enables the documentation and comparison of bias in the input data and the predictions
generated by the model. Through a use-case based on Fake News detection and an empirical evaluation,
we show how biases detected during data ingestion steps (e.g., label, over-representation, activity bias)
affect the training and predictions of the classification models. Concretely, we report a stark skewness in the
distribution of input variables towards the Fake News label, we uncover how a predictive variable leads to more
constraints in the learning process, and highlight open challenges of training models with unbalanced datasets.
A video summarizing this work is available online (https://youtu.be/v2GfIQPAy_4?si=BXtWOf97cLiZavyu),
and the implementation is publicly available on GitHub (https://github.com/SDM-TIB/DocBiasKG).

INDEX TERMS Bias, knowledge graphs, tracing, hybrid AI systems.

I. INTRODUCTION
Bias refers to a systematic and consistent deviation from the
true value or objective reality in decision-making, judgment,
or data analysis that can lead to detrimental or discriminatory
outcomes [1]. The advent of an avalanche of available data in
every domain and machine learning (ML)-powered systems
has triggered a significant surge in research on this topic [2].
As the use of ML goes from seemingly trivial applications
(e.g., movie recommendation algorithms to some with higher
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stakes and involving consequential decision-making, resource
allocation in healthcare settings, or credit scoring systems
in banking [3], [4]). Regardless of the perceived severity of
the downstream application, all models share the ability to
produce undesirable results [5], [6], [7], [8], [9], [10], [11].
While efforts in the creation of bias detection methods

are most notable, the elaboration of reliable documentation
can also be a valuable resource when used in combination
to account for bias and to minimize harms associated with
the use of ML-powered systems [7], [12], [13]. In actuality,
part of the efforts by the ML community, specifically those
researching fairness, accountability, and transparency in AI,
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FIGURE 1. Graphical Abstract. Depicted is a visual representation of the proposed approach, which is demonstrated using a fake news classification use
case and two implementations of a hybrid AI system, Integrated and Principled. The proposed approach demonstrates the impact of tracing and
documenting biases measured across an ML pipeline.

have gone on to emphasize the importance of operating
under practices that enable others to easily see the actions
performed by the professionals and teams working at all steps
of the ML pipeline [12], [13], [14], while also making an
urgent call for data stewardship [15] and responsible data
management practices [7]. This is understood to enable the
study and understanding and, most importantly, boost the trust
placed in the processes and systems themselves. The adequate
documentation of datasets and models can produce artifacts
that contribute to operationalizing best practice efforts to be
seamlessly integrated into ML audit frameworks [7], [13],
[14]. Additionally, promoting the elaboration of these artifacts,
that at the same time are findable, accessible, interoperable,
and reusable, i.e., datasets are published following the FAIR
data principles, can contribute to the reproducibility and
traceability of results [16], [17]. In this direction, documenting
corresponds to the process of generating metadata represented
in formats understandable by humans and by machines [16].
Existing methods for the production of documentation

and benchmarks for datasets and ML models, such as [12],
[18], [19], and [20], propose value-sensitive, human-readable
documentation frameworks, while the works of [21] and [22],
propose domain-specific and task-oriented, respectively, for
dataset exploration tools. Similarly, interactive prototypes,
such as [23], [24], and [25], have also been proposed for
dataset exploration, visualization, and comparison. These
systems and frameworks for documentation, however, do not
address the comprehensive documentation of bias across ML
pipelines. They also do not provide documentation artifacts
available in a machine-readable format. The absence of
these aspects in current documentation efforts can hinder the
reliability and interpretability of ML models. Furthermore,
industry-based ML practitioners prefer contextual, standard-
ized, automated documentation frameworks to integrate with
their workflows, according to recent research investigating
their practical needs in terms of documentation [26].

Problem and Proposed Solution: In this work, we address
the challenge of capturing interpretable knowledge about
bias in ML models that support human- and machine-
readability. Drawing inspiration from existing literature [27],
we introduce a novel and generic documentation pattern,
Doc-Bias, that resorts to a hybrid AI system. Our approach
is first presented as a compositional design pattern that
encompasses a generic AI system specification, two systems
for tracing bias within the AI system, and one pattern
for integrating the captured bias facts into a knowledge
graph (KG). In order to demonstrate the implementation of
our pattern in use, we present two instantiations of it that
correspond to two different approaches to conceive a hybrid
AI system, principled and integrated. In doing so, we are also
able to demonstrate how the implementation of the proposed
hybrid AI system generates relevant semantic metadata of a
machine learning pipeline to varying degrees of tracing power.
A principled integration offers coarse-grained documentation
that is both comprehensive and easy to integrate with different
types of ML models. In contrast, the second approach
seamlessly merges the documentation subsystem into the
prediction model, generating fine-grained documentation of
the entire pipeline, and providing richer insights into how the
model works.
Figure 1 depicts a visual summarization of the main

points to be addressed throughout this work. Specifically,
we implement our proposed hybrid AI system with a
use-case based on Fake News classification to demonstrate
the viability of Doc-Bias documenting and tracing bias. For
the implementation of the integrated hybrid AI system,
we use a classifier that resorts to Probabilistic Soft Logic
(PSL) [28], a machine learning framework for developing
probabilistic models. A model in PSL is defined through a
set of weighted first-order logical rules, where the weight
is learnable. Then, based on the input data, some random
variables are observed, while some are unobserved, with the
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task of inference in PSL being to estimate the value for an
unobserved random variable given the patterns learned from
the observed variables. In our work, we implement the PSL
classification pipeline as made available in [29], but modify
its output logs settings to enable tracing, while reproducing
the original setup and the reported performance results. The
principled hybrid AI system resorts to the machine learning
technique of random forests for classification. This ensemble
learning method operates by constructing many decision trees
at training time, with the output of the random forest being
the class selected by most trees.
We conducted an empirical study to assess the capacity

of the proposed methods in tracing bias patterns (i.e., label,
over-representation, activity bias) in different steps of the
pipeline followed to train and utilize the AI models that
solve the problem of Fake News detection. The study was
orchestrated over two existing benchmarks. The FakeNewsNet
catalog10 [30] is comprised of the BuzzFeed9 dataset and
the PolitiFact dataset8. The news collected to elaborate on
the PolitiFact dataset was sampled from the fact-checking
website PolitiFact and contains 120 fake and 120 real news
articles. Similarly, BuzzFeed News data were sampled from
news published on Facebook and fact-checked by BuzzFeed
journalists. This dataset contains 91 fake, and 91 real news.
The social context associated with the News was extracted
from Twitter. The bias patterns, detected during dataset
ingestion analysis, can be traced across the pipeline and
capture their impact on the produced output. Concisely,
we report a stark skewness in the distribution of input
variables towards Fake News. Further, we uncover how
a few users share a significant number of news articles,
leading to more constraints in the learning process of
one of the models, highlighting the challenges of training
models with unbalanced datasets. We also demonstrate how
User Credibility, as a predictive feature, overwhelmingly
contributes to the classification of News, underscoring the
importance of understanding and addressing biases about
Users in the context of Fake News proliferation.
Contributions: This paper makes the following

contributions:
• A Design Pattern for the Hybrid AI System for
Documentation. Introducing a novel design pattern for
a hybrid AI system crafted to trace a generic machine
learning pipeline. This pattern not only captures the
details of a model’s functionality but also addresses the
crucial task of identifying and documenting the effects
of bias on the model’s performance. The design pattern
is a fundamental element in our approach.

• Two Implementations of our Hybrid AI System for
Documentation. Instantiating the proposed pattern,
we introduce two distinct implementations with a
use case based on Fake News classification. The
first approach features a principled integration of the
hybrid AI system with the ML model, offering coarse-
grained documentation. The integrated system produces
fine-grained documentation of the model’s behavior.

TABLE 1. Summary of doc-bias notations.

• Evaluation of Hybrid AI Systems. These are the results
of an empirical evaluation of the two proposed hybrid AI
systems with a use case based on Fake News detection.
We assess performance based on bias metrics and analyze
the tracing power of the two documentation approaches.

• A Doc-Bias Knowledge Graph. Introducing the Doc-
Bias KG, a knowledge graph that seamlessly integrates
traced data collected during the execution of the ML
model. This additional component enhances the overall
documentation capabilities of our hybrid AI system.

The rest of the paper is structured as follows: Section II
summarizes the state of the art. Section III defines basic
concepts and motivates our work with an example in the
context of Fake News Detection. Section IV presents our
problem statement and describes our proposed hybrid AI
system. Results of the empirical evaluation are reported in
Section VI. Finally, we close with the conclusions and future
work in Section VIII.

II. RELATED WORK
A. TRACING AND ML
In recent decades, AI has made great strides, increasingly
pushed by huge amounts of data and new complex algorithms.

VOLUME 12, 2024 96823



M. Russo et al.: Employing Hybrid AI Systems to Trace and Document Bias in ML Pipelines

De Bie et al. [31] report a perception of AI automation that
transforms the aspects of our lives in various domains (e.g.,
from medical to finance) and categorized them into three
stages:Mechanization (i.e., data engineering), Composition
(i.e., ML model building and their hyperparameter selection)
and Assistance (i.e., explainability and visualization). How-
ever, these algorithms are often termed as either white or black
box models, i.e., the internal mechanisms are too complex
to be fully understandable and explainable. The opaqueness
of the underlying processes powering AI systems hinders
their interpretability and, subsequently, the trust placed in
them. This emphasizes the importance of operating under
practices that enable the study and understanding of the
intrinsic characteristics of the components that make up AI
pipelines [12]. Various frameworks have evolved in the pursuit
of transparency and interpretability in AI. Among the most
promising approaches that relate to our research include
LIME (Local InterpretableModel Agnostic Explanations) [32]
and SHAP (Shapely Additive Explanations) [33]. Moreover,
both frameworks have a unique way of addressing the
problem of interpretability. Riberio et al. introduce a post hoc
explainable framework, LIME, which provides explanations
of each instance locally and lists relevant features with
their contribution to an ML model’s decision. Further,
Lundberg et al. propose SHAP that operates over the coalition
game theory, where each data instance is represented as a
shapely value and provides global explanations and their
feature contributions. While these post hoc explainable
frameworks have the potential to understand the quantitative
ML models, and in the case of LIME has been incorporated
into the InterpretME framework, both of them lack the
consideration or capability to detect and measure any existing
bias in the dataset or predictive pipeline. Mehrabi et al. [34]
observe in a survey that the AI system generates unfair
outcomes in different domains. This motivates researchers
to mitigate the problem of bias in AI through three aspects:
pre-processing, in-processing, and post-processing. Existing
scholarship has dedicated most of its efforts to characterizing
datasets decoupled from the underlyingML task, as opposed to
our holistic approach. Sun et al. [22] introduce a tool to assess
fitness for using datasets. This automated data exploration tool
limits its focus to three dimensions: representativeness, bias,
and correctness. In a similar line, Wang et al. [21] introduce
a bias visualization tool for computer vision datasets. This
exploration tool narrows down its assessment to three sets of
bias measures: object-based, gender-based, and geography-
based dimensions. As a result, the visualization of bias
generates human-understandable results for each dataset.
In our case, the extensible and modular design of Doc-Bias
has the functionality to allowML researchers and practitioners
to describe and trace their datasets and seamlessly incorporate
additional descriptive dimensions and components of the
classification pipeline as needed. Similarly, interactive tools–
developed by industries– (e.g., [23], [24], [25]) have also
been proposed for dataset exploration, visualization, and
comparison. Our hybrid AI system provides fine-grained

representations of data sources, which are semantically
enriched and interlinked.

B. SEMANTIC WEB TECHNOLOGIES IN HYBRID AI
Semantic Web technologies play a crucial role in enhancing
the accuracy and interpretability of AI systems, as are
well positioned to support ‘‘bias assessment, representation,
and mitigation’’ tasks [35]. Ristoski and Paulheim [36]
highlight the potential and challenges of Semantic Web
Technologies in machine learning for knowledge discovery.
This comprehensive survey reports on the need for tools
that mitigate bias and provide interpretability of ML model
outcomes. In their work, van Bekkum et al. [27] have
introduced elementary and compositional design patterns
that define various types of hybrid AI systems resulting
from combining AI and symbolic systems. Additionally,
Breit et al. [37] have conducted an extensive survey of the
state-of-the-art, highlighting the significant role of Semantic
Web technologies in improving the interpretability of AI
models. Based on the aforementioned hybrid AI design
patterns, Russo et al. [38] introduce an analytical framework
to systematically characterize knowledge graphs with regard
to their structural bias properties in human- and machine-
readable format. Moreover, Chudasama et al. [39] propose the
InterpretME framework, which provides the interpretability
of ML models over KGs. Chudasama et al. state that the
InterpretME pipeline performs classification tasks based on
user input and traces the metadata captured at each pipeline
stage to generate the InterpretME KG. Here, InterpretME also
provides a federation of KGs, which facilitates users with
more contextual insights to understand the complex inner
workings of the ML model. Nevertheless, these frameworks
fail to consider existing bias inside the trained ML model,
nor are they equipped with domain-specific semantic models
to describe ML pipelines in terms of bias. Building on these
recent findings from the literature, our proposed approach
utilizes the characterizations by Van Bekkum et al. [27] to
develop a hybrid AI system that identifies bias patterns and
evaluates their impact on AI model performance. Additionally,
Doc-Bias, a hybrid approach, resorts to Semantic Web
Technologies to trace and document bias patterns, enhancing
not only the accuracy of the ML model but also the
interpretability and reliability of decisions.

III. PRELIMINARIES AND MOTIVATION
This section presents the basic concepts required to understand
the work tackled in this paper. Furthermore, we illustrate an
example that puts the motivation of our work into perspective.

A. BACKGROUND
1) A MACHINE LEARNING PROBLEM
A machine learning problem P is defined as an optimization
problem where the objective is to find an optimal predictive
model that minimizes an objective function (i.e., loss function)
over the training dataset. Formally, letP be defined as follows:
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FIGURE 2. Motivating Example: (a) Toy-balanced dataset comprising Fake and Real News. (b) Paths represent relationships among key actors (i.e., News,
Users, and Publishers). There are 32 paths relating to News and Publisher via Users; 19 involve Fake News (59.4%), while 13 paths (40.6%) are only Real
News. (c) Design pattern for PSL AI model on Fake News detection. The model outputs prediction probability for labeled News. On average, probability
is relatively low in PolitiFact (0.52) and BuzzFeed (0.54), but the average prediction probability is considerably higher for Fake News in PolitiFact (0.83)
and BuzzFeed (0.81), and low for Real News in PolitiFact (0.19) and BuzzFeed (0.16). Skew in paths results in an accuracy loss when labeling Real News.

X - space of all the possible input data points; Y - space of all
the possible labels; D- the training dataset comprising labelled
examples (x, y) derived from the X and Y , i.e., D ⊆ X × Y ;
H- hypothesis space comprising all the candidate predictive
models that map elements in X to labels in Y ; L- loss
function quantifying the discrepancy between the true y and
the predicted output h(x) produced by a predictive model h in
the hypothesis spaceH. The goal is to find an optimal model
h∗ inH that minimizes the loss function L over D.

h∗
= argmin

h∈H

1
|D|

∑
(x,y)∈D

L(h(x), y)

2) MEASURING BIAS IN DATA
Emerging research has been able to demonstrate that bias can
start at any point of the ML pipeline [2]. This debunks the
misconception that undesired effects arising from using ML
systems should be attributed only to the input dataset and
widens our understanding of their vulnerabilities. For instance,
data collection practices involve a series of decisions, such as
determining who is the sampled population, what variables
need to be measured, the definition of labeling criteria

for annotations, instructions handed down, and annotators’
working conditions to perform these tasks [2], [20]. More often
than not, there is not an existing record of all these dimensions,
making the capture of all external factors that can plague a
dataset unfeasible. The same occurs during model definition
tasks and during the learning process. For example, a common
practice in ML is to use a random seed to preserve experiment
reproducibility. Given the stochastic nature of many ML
algorithms, the choice of the random seed is model-dependent
and can significantly alter the outcomes, and thus can become
a source of bias [40]. This knowledge provides the basis to
devise effective bias mitigation strategies [2], e.g., fairness
indicators and data bias measures [41], [42], to minimize
harms emerging from ML systems, or artificial intelligence
(AI) in broader terms.

Succinctly, a bias measure corresponds to a quantitative
metric or indicator that assesses the presence and extent of bias
in a particular context. They cover the following aspects [43]:

1) Target Group: or entities for which bias is being assessed
(e.g., News, Users);

2) Attribute(s): that may contribute to bias (e.g., source
origin or level of activity);
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3) Group Comparison:method to compare the performance
of the model across different groups based on the chosen
performance metric;

4) Thresholds or Criteria: thresholds or criteria that indicate
the presence of bias.

A bias measure f (.) indicates bias favoring one group and
provides insights into the severity of bias.

A bias pattern defines the criteria for identifying bias based
on the output produced by a bias measure. It can be represented
as a Boolean predicate using a bias metric f and a threshold
φ, denoted as biasPattern(f(.), φ).
Whilst not without their challenges and limitations. i.e.,

what metrics to use, how to identify sensitive attributes, how
to interpret algorithmic output or lack of access to domain
knowledge [26], [44], [45], [46], in our work, we propose
the implementation of existing bias measures to comprehend
the factors influencing the manifestation of bias patterns
in the implementation of an ML problem. We set out to gather
this knowledge and represent it as factual statements within
the Doc-Bias knowledge graph. By doing so, we can gain
valuable insights into the underlying mechanisms of bias and
its impact on machine learning systems.

3) HYBRID LEARNING AND REASONING SYSTEMS
Artificial Intelligence (AI) can be ramified into symbolic and
sub-symbolic approaches. Symbolic approaches are expressed
in explicit symbolic methods, i.e., formal logic, decision trees,
and ontologies, and are often associated with human-readable
and explainable processes [47]. On the other hand, sub-
symbolic approaches are derived from neural connectionist
notions that aim to emulate the processes the human brain
performs through artificial neural networks. Sub-symbolic
methods encompass different statistical learning methods,
i.e., deep learning and Bayesian learning [47]. While both
approaches have contributed to many real-world applications
separately, their integration is greatly desired to overcome
some of the existing limitations of these methods, such as
scalability and elevated data-dependency correspondingly,
and thus move the AI field forward [48]. Consequently,
hybrid or neuro-symbolic approaches focus on integrating
symbolic and sub-symbolic systems, with research interest
rapidly increasing in this area [47], [49], [50]. Moreover,
benefits attributed to hybrid approaches are their ability to
enhance the performance and explainability of AI systems.
Our approach resorts to a hybrid AI architecture. The aim is
to integrate a sub-symbolic system over a symbolic system
(e.g., a knowledge graph) to produce an AI system that can
trace the decisions made by a sub-symbolic system and the
outcomes. This architecture can be implemented by combining
both systems following different strategies. One of them is
that of a principled integration; here, the combination of the
neural and symbolic systems are integrated but maintain a clear
separation between their roles and representations. Another
way to entail a fully integrated system is by integrating a
symbolic reasoner into the tuning process of a sub-symbolic

model. The criteria for integration will be determined by
different factors, one of which can be access to the code
representing the learning process or the inherent characteristics
of the sub-symbolic system itself. For instance, in the case of
sub-symbolic systems that are white boxes, such as models
based on patterns, rules, or decision trees, set up the optimal
circumstances for a principled integration. On the other hand,
sub-symbolic systems that are black boxes, such as support
vector machines (SVMs), neural networks, and probabilistic
and combinatory logic models, can be better suited for
principled integration [51].

4) KNOWLEDGE GRAPHS AS DATA INTEGRATION SYSTEMS
Knowledge graphs are data structures that can be understood
as symbolic representations of knowledge [52]. Employing
a graph data model [53], KGs contribute to developing a
common understanding of the meaning of entities, their
characteristics, and the relationships among them in a
particular domain, also referred to as background knowledge.
A knowledge graph is made up of metadata and taxonomies
of the identified entities, relationships, and classes and can
be modeled in a language such as Resource Description
Framework (RDF),1 RDF Schema (RDFs),2 or in combination
with more expressive ones such as the Web Ontology
Language (OWL).3 Formally, a knowledge graph KG is
defined as a labeled directed graph, KG = (V ,L,E), where
V is a set of nodes represented as classes and entities; L
corresponds to a set of labels; and E is a set of edges such
as E ⊆ V × L × V . When expressed in RDF, each triple,
denoted as t = ⟨s, p, o⟩, adheres to specific constraints: s can
be a URI or a blank node, p must be a URI, and o can take
on the form of a URI, blank node, or literal [53]. Knowledge
graphs can represent, as factual statements, knowledge spread
across various data sources [53]. For this purpose, they can be
defined as data integration systems (DIS), whose evaluation
enables the transformation and integration of heterogeneous
data in a knowledge graph [54]. A data integration system
DIS = ⟨O, S, M ⟩ is defined in terms of three components:

• O a unified schema or ontology that provides a uniform
view to the data sources in S. The main objective of an
ontology is ‘‘to make the meaning of a set of concepts,
terms, and relationships explicit so that both humans and
machines can understand what those concepts mean’’
[55]. The schema or ontology can also be understood as
the conceptual representation of the KG.

• S is a set of the data sources that will compose the DIS.
• M a set of mappings between signatures of the sources
in S and concepts in O. The mapping rules explicitly
indicate how the source data is mapped to the schema S.

An RDF-conforming KG can be produced following the
integration of these components. In order to retrieve and

1Resource Description Framework (RDF)
2RDF Vocabulary Description Language: RDF Schema (RDFS)
3Web Ontology Language (OWL)
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manipulate data, query languages, such as SPARQL,4 are
used to analyze the KG and perform knowledge discovery.
Ultimately, knowledge graphs are ideally positioned to ensure
the findability, accessibility, interoperability, and reusability
(FAIR) of data-centric systems [17]. These are some of the key
characteristics that position knowledge graphs as an essential
component for the implementation of our framework, as well
as for the creation of the tracing and documentation system
that is being introduced in this work.

5) INTERPRETME AS A PRINCIPLED HYBRID AI SYSTEM
As already described, hybrid AI systems integrate symbolic
and sub-symbolic approaches by using different architectures
(e.g., principled and integrated). Chudasama et al. propose a
hybrid AI system, InterpretME [39], [56], that following a
principled approach, combines data-dependent frameworks
(i.e., a machine learning model) over knowledge graphs to
yield an analytical tool capable of providing fine-grained
representations of said ML models, in order to improve the
interpretation of their produced outcomes. The current imple-
mentation of InterpretME, includes all the predictive model
pipeline components, such as data preparation, sampling
strategy to balance the data, and training the predictive model.
InterpretME uses automated machine learning (AutoML)
frameworks to optimize model hyperparameters to improve
the performance of the ML algorithm in use. Concurrently,
a post-hoc explainable framework (e.g., LIME) is utilized to
construct instance-level interpretations for each instance of
the resulting test data. Once the model is trained and validated,
the input dataset and the metadata generated after each stage of
executing the InterpretME pipeline are traced and semantified.
The resulting process integrates the input data and ML model
characteristics to produce interpretations in the form of RDF
factual statements, which comprise the InterpretME KG. The
knowledge graph can then be used to trace the entirety of
the predictive task, and via SPARQL queries, it is possible to
retrieve information about the model, such as relevant features,
accuracy, precision, and LIME interpretations. The vocabulary
for the trainedMLmodel, hyperparameters, input features, and
LIME explanations is publicly available as a VoCol5 instance.
Additionally, InterpretME enables federated query processing
on top of the InterpretME KG and the input KG to provide
further contextual insights for a predictive task. InterpretME
is publicly available on PyPI,6 and GitHub.7 Ultimately,
the results obtained by InterpretME show the potential of
Semantic Web technologies in empowering sub-symbolic AI
systems and enhancing interpretability. Given this, in our work,
we implement the InterpretME framework as a principled
hybrid AI system to trace and document an ML pipeline.
In particular, we set out to uncover the implications of tracing

4SPARQL Protocol and RDF Query Language
5http://ontology.tib.eu/InterpretME/
6https://pypi.org/project/InterpretME/
7https://github.com/SDM-TIB/InterpretME

bias over both types of hybrid AI implementation: principled
and integrated.

B. MOTIVATING EXAMPLE
To motivate our work, let us consider the task of Fake
News Detection F , as an example of a machine learning
problem [57] (previously defined). We chose this problem
due to the surge in automated systems used in Fake News
detection, driven by the increased proliferation of Fake News
in online settings, which goes on to have severe social
implications (i.e., interference in democratic processes, health
risks, political polarization, financial losses, data leaks). From
a computational point of view, the Fake News detection task
can be performed by employing different methods [57]. In this
work, we base all our experimentation using a method that
relies on leveraging relational data relationships to better
mimic the real-world spread of fake news in an online setting,
i.e., the relation between news items with their publishers and
social context information (i.e., social media users’ activity).
F is defined as an optimization problem based on the

following preconditions [29]: N - space of all the possible
News; U - space of all the possible Users; P- space of all the
possible Publishers; ActualL- space of all the possible pairs
(n, l) ∈ N×{Fake,Real} that represent News’ labels;U-N- set
of all pairs (u, n) inU×N representing a User u posting a News
n; P-N- set of all pairs (p, n) in P×N representing a Publisher
p publishing n; Labels- set of pairs (n′, l) representing that the
News n′ is labeled as l (where l ∈ Fake,Real); D- the training
dataset comprising News labelled as Fake or Real (n̂, l̂), such
that n̂ ∈ N ;H- hypothesis space comprising all the candidate
predictive models for Fake News detection; L- loss function
that quantifies the discrepancy between (n, l) ∈ ActualL and
the label predicted for the News n by the model h in the space
H, i.e., h(n).
To illustrate the impact of relating User data to the News they
share, we provide an example in Figure 2a. This example
comprises a balanced Fake News dataset with five Fake
News and five Real News items. Additionally, it includes
data on 20 unique Users and five Publishers. Interestingly,
connecting User data to the shared News leads to a change in
the original balanced News distribution, introducing a skew
towards Fake News. While it may be challenging to gauge
the full extent of this influence at first glance, Figure 2b
provides a naive illustration of the skewed distribution of
paths between Publishers and Users through News. Out
of the 32 paths, 19 involve Fake News (59.4%), while
13 involve Real News (40.6%). This observation highlights
the importance of understanding the relationships between
Users, Publishers, and News items to effectively detect Fake
News. The issue of path imbalance, as illustrated in the toy
example in Figure 2b, is also evident in two state-of-the-art
Fake News datasets, PolitiFact8 and BuzzFeed,9 two datasets

8https://github.com/KaiDMML/FakeNewsNet/tree/old-
version/Data/PolitiFact

9https://github.com/KaiDMML/FakeNewsNet/tree/old-
version/Data/BuzzFeed
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FIGURE 3. Design Pattern Hybrid AI. The Design Pattern represents a Hybrid AI System for capturing knowledge about Bias in a Machine
Learning System. A Machine learning system is (Training and Predicting) conceptualized based on elementary patterns by van Bekkum et al.
[27]. Two symbolic systems trace the machine learning system and quantify bias in data and in the trained predictive model and
predictions. Another symbolic system integrated the traces and documentation about bias into a knowledge graph (KG). Results of
analytical methods on top of the KG describe results based on bias.

from the FakeNewsNet catalog10 [30], where the illustrated
fake news detection model (F ) is evaluated [29]. Based on the
foundational design patterns proposed by van Bekkum et al.
[27], Figure 2c presents the design pattern that underpins the
implementation of F . This model calculates the probability
of the label for each News item. On average, the prediction
probability is approximately 0.52 for PolitiFact and 0.54 for
BuzzFeed. Notably, when focusing on news labeled Fake,
the average prediction probability substantially increases to
0.83 for PolitiFact and 0.81 for BuzzFeed. Conversely, the
prediction probability for News labeled as real is relatively
low, with values of 0.19 for PolitiFact and 0.16 for BuzzFeed.
This unexpected behavior of the model can be attributed to
the skew towards Fake News in the paths representing the
relationships among Users, Publishers, and News. Thus, these
skew distributions– for News based on Users and Publishers–
result in a significant accuracy loss when the model labels
Real News. Further evidence for this claim was obtained by
reviewing the classification results from reproducing the Fake
News classifier published in [29]. In the validation set for
the Buzzfeed dataset, which contained 36 observations, the
model misclassified 5 observations, all of which had as target
variable Real. In this work, while we acknowledge that the
scope does not include an exhaustive real-world analysis, it is
imperative to highlight the classifier’s behavior. The classifier
not only penalizes real news by misclassifying it as fake
but also places considerable importance on user behavior in

10https://github.com/KaiDMML/FakeNewsNet/tree/old-version

making predictions. This introduces a potential vulnerability
in the system, as User sharing patterns may not always align
with News veracity. For instance, the model’s performance
could be influenced by its handling of over or underrepresented
attributes, such as highly active social media users compared
to those who share only one or two News stories [2].
Such attribute-focused bias may significantly impact the
overall accuracy and effectiveness of the system in real-world
scenarios. To address these concerns, in this paper, we propose
a documentation approach that resorts to a hybrid AI system
to describe both the characteristics of the input datasets
and the outcomes of machine learning models in terms of
biases detected. To demonstrate the viability of our approach,
we characterize the fake news detection problem over two
implementations of our hybrid AI system, an integrated one
that traces the process of a Probabilistic Soft Logic model
and a principled approach that employs Random Forests
as part of its architecture. Further, in our implementation,
the captured knowledge is represented as factual statements
within knowledge graphs (KG). By employing this approach,
ML practitioners can gain a deeper understanding of the
model’s vulnerabilities by traversing the KG and conducting
analytical studies using SPARQL queries. This enables
a comprehensive examination of the impact that hidden
biases in the input data may have on the model’s output.
Through this KG exploration and analysis, we aim to
provide a more transparent and interpretable understanding
of machine learning models’ behavior and their potential
limitations.
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IV. OUR APPROACH FOR TRACING BIAS
In this section, we formalize the problem tackled in this work
and present the architecture of our proposed solution [58].

A. PROBLEM STATEMENT
Consider an ML problem P defined in terms of X , Y , D,
H, and L as described in Section III-A1. Let h be a model
of the problem P . Let F be a family of bias measures
specifically designed to address various bias aspects of the
problem. These aspects include Target Group, Attributes,
Group Comparison, and Thresholds or Criteria. The problem
of documenting bias, also known as Doc-Bias, for the model
h() involves collecting all the attribute values that describe
the bias aspects present in the datasets used and generated
by h. These datasets encompass the training dataset D, the
testing set X ′, and the set of predictions produced by h(.).
By systematically documenting measures in F , we can gain
insights into data biases and their impact on the model’s
performance. In our example in Section 2, we introduce the
bias measure known as overrepresentated. This measure is
defined in relation to a given dataset T and a grouping attribute
gAttr, which can have at least two categorical values, V1 and
V2. The function overrepresented(T, gAttr, V1, V2) calculates
the frequency of instances in T based on the gAttr values
and outputs the absolute difference between the frequencies
of V1 and V2 normalized to the size of T. The set of paths
in Figure 2b corresponds to dataset T, and overrepresented
can be computed for attributes News, Publishers, and Users,
e.g., overrepresented(T, News, ‘‘Fake’’, ‘‘Real’’) is equal to
|19−13|

32 = 0.1875.

B. PROPOSED SOLUTION
We propose a hybrid AI system able to trace the life cycle
of datasets ingested and processed by the predictive model
h, and capture knowledge about bias aspects to enable
the production of comprehensive documentation artifacts.
For instance, in our example, a bias pattern exists if the
overrepresented of Fake and Real News exceeds 0.15, i.e.,
biasPattern(overrepresented(T, News, ‘‘Fake’’, ‘‘Real’’), 0.15).
By computing this metric, we can identify a problem that
was not observable in the original News dataset but in their
integration.

The operationalization of the analysis of model performance
allows for quantification and supports the understanding of
the impact of detected biases in machine learning pipelines,
i.e., identifying under-representation (or over-representation)
of data or model output and loss of performance for certain
sub-sets in the data. Built on design patterns proposed by van
Bekkum et al. [27], Figure 3 depicts a design pattern that
models this hybrid AI system. A design pattern can comprise
input datasets in the form of data or symbols (yellow rectangle),
models (pink hexagons), processes (blue oval rectangles),
output datasets in the form of symbols (blue rectangles),
symbols documenting bias (yellow rectangles), and symbols
representing factual statements of a KG (gray rectangles). This

hybrid AI system is defined with four basic design patterns
(See Figure 3).
Training and Predicting: This pattern models a system that

solves the problemP . It receives the inputX and trains a model
h from the spaceH based on the training data D. An inference
process allows for the generation of the predictions as symbols.
The design pattern in Figure 2c corresponds to an instance of
Training and Predicting pattern for the problem of Fake News
detection.
Tracing and Documenting Bias in Input: This pattern

describes a system designed to capture knowledge about bias
patterns in both the input data of the AI system and the
generated training set, denoted as D. A tracing model defines
the family F of bias measures and identifies specific bias
aspects to be traced within the input and training data. The
output is a set of factual statements documenting the identified
bias insights supported by the bias measures.
Tracing and Documenting Bias in Models and Predictions:

A system that documents how the predictive model h works
and traces bias is represented with this pattern. It comprises
two processes: one to integrate traces describing the model’s
execution and the predictions, and another to generate
integrated traces and documentation following a tracing
model. As a result, this system produces factual statements
documenting the observed bias patterns.
Explaining Bias Impact: This pattern represents a system

that receives factual statements describing the traces and
measurements of bias and, following a semantic model, creates
a knowledge graph (KG). Two processes compose this system:
one that performs the KG creation and another that performs
deduction over the KG to infer bias patterns. The output
produced by this system are traces and explanations– in the
form of symbols– that can be used to capture and uncover
insights about bias patterns, rendered implicit otherwise,
to determine their effect on the model’s performance h and
the generated output.

V. TRACING THE FAKE: A USE CASE
The documentation pattern presented in Section 3 is
instantiated for the problem of FakeNews detection. In order to
show the versatility and effectiveness of our proposed solution,
we perform two implementations. First, we implement Doc-
Bias as a hybrid AI system using an integrated approach;
we demonstrate it with a classification model based on
probabilistic soft logic. Second, we implement it following
a principled approach using Random Forests and Decision
Trees.

A. IMPLEMENTING AN INTEGRATED HYBRID AI SYSTEM
Chowdhury et al. [29] define a Fake News classification
pipeline as a credibility score-based model (CSM). This
ML model is implemented in Probabilistic Soft Logic
(PSL) [28], a statistical relational learning framework that
utilizes weighted first-order rules, serving as a fuzzy or
continuous relaxation of Boolean first-order logic, to assess the
authenticity of News. The PSL model relies on five rules that
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FIGURE 4. Tracing as an Integrated Approach. The Design Pattern represents Doc-Bias as an Integrated Hybrid AI System, and boxed in blue are the
main differences from the generic pattern. A Probabilistic Soft Logic Model is trained (Training and Predicting). Two symbolic systems trace the PSL
model, learning and inference processes, and quantify bias in data and in the trained predictive model and predictions. Another symbolic system
integrates the traces and documentation about bias into Doc-Bias KG. Results of analytical methods on top of the KG describe results based on bias.

play a crucial role in achieving accurate and reliable results:

r0w0 : UserCred(U ),UserShare(N ,U ) → ¬FakeNews(N )

r1w1 : MBFC(P) → PublisherCred(P)

r2w2 : ¬MBFC(P) → ¬PublisherCred(P)

r3w3 : PublisherCred(P),NewsPub(N ,P)

→ ¬FakeNews(N )

r4w4 : FakeNews(N ),NewsPub(N ,P) → ¬NewsPub(N ,P)

Furthermore, [29] defines several key predicates denoted by
1) to 6) to represent various aspects of the problem. These
predicates are essential to jointly learn the credibility of
publishers and users and infer the authenticity of news.
1) UserCred(U): This predicate indicates the credibility of

User U .
2) UserShare(N, U): A Boolean predicate representing that

News N is shared by User U .
3) FakeNews(N): Represents the label for Fake News.
4) MBFC(P): Models the credibility score of Publisher P

based on a website, e.g., MBFC.
5) PublisherCred(P): Indicates credibility of Publisher P.
6) NewsPub(N, P): A Boolean predicate representing that

Publisher P has published News N .
The model aims to jointly learn PublisherCred(P) and
UserCred(U) using prior knowledge captured by rules r2 and
r3. Furthermore, the model infers the authenticity of News
(FakeNews(N)) based on the available data.

Following this, we leverage the capabilities of PSL as a
logic and statistical relational learning framework to present
the integrated implementation of the Doc-Bias approach (see
Figure 4). The proposed hybrid AI system first traces the PSL
implementation of the AI model for Fake News detection,
i.e., Training and Predicting pattern represents this AI system.
Then, the system that uses the Tracing and Documenting Bias
in Input pattern collects all the features that describe news,
publishers, and users and their relations. Figure 5a illustrates
a portion of the Doc-Bias KG that comprises the factual
statements traced when the PSL model ingests the PolitiFact
and BuzzFeed datasets. Note that in addition to labels and
credibility scores, values representing over-representation and
frequencies are also included. The execution of the SPARQL
query on the bottom of Figure 5a allows determining if News
is over-represented based on User interaction.
Lastly, the system specified by the Tracing and Docu-

menting Bias in Models and Predictions pattern traces and
integrates the weight learning, inference, and optimization
processes involved in executing the PSL model to detect
Fake News. Information about random variables captures
the statements inferred by the model during the different
applications of a rule. Figure 5b illustrates the RDF triples that
represent the traces collected by this system. For example, the
entity nobias:News179 is described in its properties (e.g.,
User and Publisher credibility, ground truth labels) and the
predictionsmade by themodel stated by the entity representing
the random variable nobias:RVA14196. The PSL model
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performance is described in terms of over-representation,
prediction probability, number of ground rules, convergence
point, and credibility class. The bottom of Figure 5b also
depicts a SPARQL query whose evaluation retrieves per
classified News, the prediction probability, bias measure, bias
score, and over-representation.

1) DOC-BIAS KG IN DETAIL
The Doc-Bias KG comprises the classes, characteristics, and
relationships needed to represent and trace bias across the
ML pipeline whilst measuring documentation production at
three steps of the ML life cycle: data ingestion, training
and prediction, and bias assessment. The Doc-Bias ontology,
or schema, defines classes, i.e., News, Publishers, Users,
dataset, ML model, and their attributes, and the relationships
between classes, i.e., shares, follows, and publishes. The
data sources are then enriched by semantic representations,
thus encoding information in a machine-readable format
that consequently enhances interpretability. This prompts
the Doc-Bias KG to produce bias-aware documentation
artifacts at coarse- and fine-grain levels that observe the FAIR
principles.
The Doc-Bias KG is created by the system described by

the Explaining Bias Impact pattern. The semantic model
is a data integration system DIS=⟨O, S,M⟩ [59], where O
corresponds to the Doc-Bias ontology defining concepts and
properties of the traced entities, S is the set of data sources
collected by the tracing system, and M comprises mapping
rules expressing correspondences between O and S specified
in the RDF Mapping Language (RML) [60]. 211 RML rules
define the Doc-Bias KG; they are available in GitHub.11

A set of bias metrics captures bias patterns related to a target
entity across the ML pipeline. The ontology that is integrated
with the data sources consists of the necessary vocabulary to
describe and contextualize the implementation of our use case.
Moreover, the ontology used here is partly built by extending
and re-using existing vocabularies to describe datasets and
the characteristics of ML models. Concretely, the PROV-O
Ontology [61], DCAT [62], ML schema [63], Description
of a Model (DOAM)12 ontology, FOAF Vocabulary [64],
Data Quality Vocabulary [65]. The rest of the classes and
characteristics in the Doc-Bias schema have been defined to
account for actors associated with the Fake News domain,
i.e., News, social media Users, and fact-checkers, as well
as the vocabulary needed to describe the characteristics of
PSL, i.e., rules, weights, atoms. Finally, we define classes to
describe bias assessments, i.e., bias measure, bias detection
method, and bias type. Table 2 summarizes the number of
instances by classes in the Doc-Bias KG segmented by its
corresponding Documentation Step according to the ML
pipeline life cycle. In Appendix A, we show some of the
queries used to retrieve information from the Doc-BiasKG in
relation to the Documentation Steps stated here.

11https://github.com/SDM-TIB/DocBiasKG/
12https://www.openriskmanual.org/ns/doam/index-en.html

TABLE 2. Summary of relevant classes in the doc-bias knowledge graph.

B. IMPLEMENTING A PRINCIPLED HYBRID AI SYSTEM
This section describes implementing the Doc-Bias approach
over a hybrid AI framework, InterpretME [39], where the
prediction task is to classify News based on the characteristics
of Users and Publishers. Figure 6a demonstrates the workflow
of the InterpretME pipeline. In the Training layer of
InterpretME, the pipeline as an input accepts raw data about
the News, Users, and Publishers from two different benchmark
datasets, Dataset 1: BuzzFeed News and Dataset 2: PolitiFact
News. Table 4 depicts the statistics of the datasets utilized for
training the classification model. The dataset includes features,
e.g., News, User, User credibility, Publisher credibility, and
Publisher source. InterpretME as a pipeline offers an ensemble
learning technique, such as random forests and decision trees.
The pipeline performs data curation to handle categorical
values for the classification model. Based on the pre-processed
data, the optimized model and their hyperparameters are
obtained through AutoML, e.g., the random forest model
with the depth of the tree: 5 and entropy: gini. The prediction
problem involves the binary classification of News published
by Users or Publishers as Fake. Henceforth, the target classes
are obtained as Class 0: Real News (0) and Class 1: Fake
News (1). Here, the trained ML model, i.e., decision trees,
performs the prediction task with the list of best features
generated from the random forest model. Additionally, the
pipeline provides LIME interpretations, i.e., the interpretation
of each News locally involved in the prediction task. Further,
these interpretations generate a list of the top 10 relevant
features with their weights, as well as prediction probabilities
of classifying each news into target classes, such as real (0)
and fake (1) news. In the Tracing and Documenting layer,
InterpretME traces all the metadata, such as input features,
model selection, hyperparameters, predictions, and results
of LIME interpretations. For documentation, the pipeline
utilizes the RML mappings to semantify the results obtained
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FIGURE 5. Running Example. Figure (a) depicts classes (News, Publisher, User), relationships (published by, shared by), properties (ground
truth, bias label, overrepresented, credibility), and entities (News179, Publisher11, User10277) found in the Doc-Bias KG. The SPARQL query
retrieves over-representation information of News calculated based on User interaction. Figure (b) depicts RDF triples that represent the
traces collected by the system. Entities belonging to the class Random Variable item are described based on properties such as prediction,
credibility class, convergence speed, ground rule count, and over-representation. The SPARQL query retrieves over-representation information
of the selected News calculated based on its training process.

FIGURE 6. Tracing as a Principled Approach. Figure 6a demonstrates the use-case employing a principled Hybrid AI approach. The InterpretME pipeline
preprocesses the input datasets of News collections and performs hyperparameter optimization for the ML classification task of Fake News detection.
The trained model generates predictions, and LIME generates local explanations for each prediction. In the tracing layer, InterpretME traces and
semantifies traces to generate the InterpretME KG. Figure 6b depicts the results produced by InterpretME (e.g., LIME and Decision Trees).

and generate the InterpretME KG. Moreover, InterpretME
facilitates the visualization of decision trees and feature
importance plots to understand the trained predictive model.
An example of executing the use case of Doc-Bias over
InterpretME is publicly available in the GitHub repository.

C. COMPARING TRACING POWER
Given the intrinsic characteristics of the implementations
of our Hybrid AI system (i.e., integrated and principled),
we provide here a comparative of the tracing power for each
approach. Primarily, we want to emphasize and elaborate on
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TABLE 3. Comparative overview of the systems.

the level of granularity (fine-grain vs. coarse-grain) we can
attain with each type of implementation.

• Integrated Approach: The tracing power obtained
through this approach is high, which provides fine-
grained, human-interpretable, and machine-readable
insights into the decision-making processes of the ML
pipeline. The drawbacks of this approach are related to
how much more expensive it is to achieve that. Higher
computing and longer execution times, as well as more
data storage space, are required. Further, access to the
learning process and higher expertise and knowledge of
how the model works are also required. This is crucial
in determining what parts of the process should be
integrated to obtain useful insights.

• Principled Approach: The tracing power obtained
through this approach is lower than those of an integrated
approach, which implies coarse-grained insights into the
decision-making processes of theML pipeline. That does
not necessarily translate into lower quality, and yes, into a
less expensive approach. The main drawbacks here have
to do with the level of abstraction obtained with regard
to how ML processes work. These subjects describe the
input and output levels and the results of local searches.

Table 3 presents an overview of both implementations based
on a selection of properties to facilitate further comparison.

VI. EMPIRICAL STUDY
We empirically assess the effectiveness and versatility of our
approach over two implementations of a hybrid AI system in
the context of Fake News detection. In particular, we aim at
answering the following research questions:RQ1)What types
of bias patterns are observed across theML pipeline?RQ2)Do
bias patterns impact the model performance?RQ3)Are biases
traced at input present in the output? We set up the following
configuration to assess our research questions.

A. BENCHMARKS
We conduct our evaluation over the FakeNewsNet catalog
[30], which includes data from two fact-checking platforms:
BuzzFeed and PolitiFact. The catalog includes News ID,

TABLE 4. Input variables description across datasets.

TABLE 5. Variables description across different scenarios.

textual content, labels, publishingwebsites (a.k.a., Publishers),
and social engagement information. The news collected for
the elaboration of the PolitiFact dataset were sampled from the
fact-checking website PolitiFact and corresponded to News
published in the time leading up to the 2016 U.S. Presi-
dential Election. PolitiFact dataset comprises 86 publishers,
23806 users, 120 Fake news, and 120 Real news. Similarly,
the BuzzFeed news data were sampled from news stories
published on Facebook one week before the same Election and
were fact-checked by BuzzFeed journalists. The BuzzFeed
dataset includes 28 publishers, 15253 users, 90 Fake news,
and 90 Real news. In our experiments, we do not resort to
the content of the news, however, on contextual data (i.e.,
Publishers’ credibility and Users’ interaction).
Publishers are also identified through a unique ID and

some corresponding metadata such as publishing websites. For
instance, Publisher9 is used to identify CNN, http://cnn.it, and
Publisher25 is used to identify the Washington Post, with their
website being accessible via http://washingtonpost.com. Addi-
tional information on Publishers includes their trustworthiness
scores obtained from Media Bias Fact Check.13 The values of
these scores range from 0.0 to 1.0.Moreover, the social context
associated with the News on both datasets was extracted from
Twitter. This refers to the engagement between a particular
News item and social media Users, and is understood as the
number of times a News item is shared by a given User in a
particular social media platform. To summarize, the variables
used in our experiments for the Fake News classification
task are News, Publishers, Users, and the relations derived
from News-Publisher and News-User interactions. The target
variable is the credibility of the News: Fake (1) or Real (0).
The breakdown of this information is summarized in Table 4.

B. EXPERIMENTAL SETTINGS
1) SETTINGS FOR INTEGRATED APPROACH
To implement the integrated Hybrid AI system, we reproduce
the classification pipeline based on Probabilistic Soft Logic
and define the credibility score-based model (CSM) as
stated in Section V-A. All experimental settings are those
reported in [29]. We highlight the following settings: We use

13https://mediabiasfactcheck.com/
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TABLE 6. Evaluation results for the News classification using the PolitiFact
and BuzzFeed datasets in various scenarios. The table shows the results of
implementing Random Forests (RF) considering publisher credibility
regarding precision, recall, and f1-score. Bold indicates the best
performance in each scenario.

TABLE 7. Evaluation results for News classification using the PolitiFact and
BuzzFeed datasets in various scenarios with oversampling technique. The
table shows the results of implementing Random Forests (RF) considering
publisher credibility regarding precision, recall, and f1-score. Bold indicates
the best performance in each scenario.

continuous random grid search to learn the weights of the
rules. We randomly choose 80% of data for model training
and to learn hyperparameters and 20% of the data for testing.
We repeat the experiments 30 times. We also evaluate the
models with accuracy, precision, recall, and F1 measures.

2) SETTINGS FOR PRINCIPLED APPROACH
In our empirical study, the principled approach utilizes
ensemble learning techniques such as random forests and
decision trees. The evaluation of these predictive models
shows the efficacy of news classification. A random forest
model consists of numerous decision trees; each tree branch is
created on the subset of features, and the outcome is generated
by aggregating the predictions from all trees. However, the
decision tree model utilizes the random forest traits to perform
predictions. The method facilitates the interpretation and
visualization of predictions. We evaluate the performance
of the predictive models in terms of Precision, Recall, and
F1-score. Here, the predictive pipeline utilizes AutoML14

recommendations for optimal hyperparameters (e.g., max
depth of the tree is 5). Additionally, for the robust performance
of the predictive models, the approach employs 5-fold cross-
validation split-method. After each fold, the relevant features
are traced from the predictive models and used to train the
decision tree classifier. We randomly choose 70% of data
for training and 30% for testing. We repeat the experiments
5 times and report the average metrics values.

3) UNDERSTANDING THE IMPACT OF DOCUMENTING BIAS
In the scope of documenting bias, we take our original datasets
and design three scenarios for both of them (i.e., Scenario 1,

14https://www.automl.org/

Scenario 2, and Scenario 3) to reveal the impact of the two
predictive variables Publisher and User on the Fake News
classification task, implementing the use of oversampling
techniques (i.e., a technique to handle imbalanced datasets)
over them (see Figure 7). Moreover, the MIN, MAX, and
AVG counts, for example, Publisher - News represents MIN,
MAX, and AVG counts of news per publisher; User - News
represents MIN, MAX, and AVG counts of news per user; and
similarly for News - Users counts of users per news, and News
- Publisher counts of publisher per news. We describe each
scenario below:

• Scenario 1 involves the proportion of users in the
benchmark higher than that of publishers for sharing
news. Figure 7 depicts the interaction between Publisher-
News (1 : N ) and User-News (N : M ). In BuzzFeed,
the count of N in Publisher-News interaction ranges
from 1 to 32. Moreover, in User-News interaction,
the count of N ranges from 1 to 40, and M varies
from 1 to 1196. However, in the PolitiFact dataset,
the maximum publisher count per News is 43 and the
user’s count in sharing the news is 40. Furthermore,
BuzzFeed involves 28 publishers and 15253 users for
sharing political news, and the PolitiFact dataset includes
86 publishers and 15253 users. This demonstrates the
real-world scenario where users actively share news,
highlighting the potential bias in the classification of
Real news.

• Scenario 2 consists of more publishers than the user. The
dataset comprises an imbalance distribution to investigate
publisher bias in classifying news as Fake. The BuzzFeed
benchmark includes 22752 publishers and 15253 users.
Whereas, in the PolitiFact dataset, 32669 publishers
and 23806 users share news. Here, the count of N
for Publisher-News interaction is 1 to 29. Additionally,
in BuzzFeed, the maximum count of News shared by
users is 29. In PolitiFact, the count of users sharing news
is 1 to 26. In both datasets, the average user interaction
with news is 126.4 and 137.2, respectively.

• Scenario 3 comprises the equal distribution of users
and publishers count. This distribution provides a fair
comparison for evaluating the ML model’s performance
between the Publisher-News (1 : 1) and User-News (1 :

N ) relationship. Further, in both datasets, the maximum
count of users interacting with news is 1196 and 2969.
Moreover, the scenario represents the ideal situation
where the variable distribution is balanced. Here, the
distribution of users and publishers is 29708 in PolitiFact
and 18695 in the BuzzFeed dataset, respectively.

Table 5 summarizes the descriptive statistics for the resulting
datasets under all three scenarios.We evaluate the performance
of the predictive models in the aforementioned scenarios to
detect potential biases creeping into the output generated
by the ML model. Here, we also follow the same criteria
as reported in [29] and consider the credibility scores of
publishers and users for the classification task. Table 6, and
Table 7 shows the observed results for the RF model with and
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FIGURE 7. Datasets’ Description. Three scenarios are used to evaluate the impact of Users and Publishers on the outcomes of predictive models.
Scenario 1 represents the original distribution of the studied two state-of-the-art benchmarks. Scenario 2: extends the dataset Scenario 1 and comprises
an equal number of users and publishers in the dataset. Scenario 3 also extends datasets in Scenario 1 but is composed of more publishers than users in
the original benchmarks. Values of MIN, MAX, and AVG for out-degrees from Classi to Classj are reported.

without oversampling technique in the respective scenarios.
In BuzzFeed, the random forest model accurately classifies
Real news, with precision scores ranging from 0.94 to 1.00 in
various scenarios.Moreover, when the oversampling technique
is applied, the performance of the RF model remains stagnant.
However, in the PolitiFact dataset, the RF model struggles to
recognize Real news due to an imbalance distribution of input
variables. Without oversampling, the value of the precision
metric is 0.00. The lower performance in the PolitiFact
dataset is attributable to a higher number of publishers
disseminating Fake News than Real. Furthermore, the RF
model with oversampling reveals the improved performance
of the RF model with values ranging from 0.85 to 0.97 in Real
News classification. Thus, the results underline that potential
distribution biases in the dataset can impact the model’s output,
with a bias towards Fake News. Table 8 and Table 9 indicate
the RF model performance based on the User credibility
score used in Fake News classification. The RF model on
the BuzzFeed dataset demonstrates its best performance when
classifying Real News. In all scenarios except Scenario 2,
the precision score is 1.00. However, in the PolitiFact
dataset, the performance remains consistent with previous
experiments and highlights the model-biased behavior toward
classifying news as Fake. Moreover, in both datasets with
oversampling, the model outperforms all scenarios. Here, the
predictive model accurately classified news as Real, with
a precision score of 0.99. The evaluation results elucidate

TABLE 8. Evaluation results for the News classification using the PolitiFact
and BuzzFeed datasets in various scenarios. The table shows the results of
implementing Random Forests (RF) considering user credibility in terms of
precision, recall, and f1-score. Bold indicates the best performance in each
scenario.

the need for assistance in understanding, analyzing, and
interpreting the biases present in the output generated by
predictive models. The reported evaluation results summarized
in Table 6,7,8 and 9 are generated using SPARQL queries
over the InterpretME KG. Appendix B shows an exemplar
query to retrieve the RF model performance in Fake News
classification.

C. BIAS MEASURES
Our implementation uses the following bias measures:
overrepresentation, similarity metric for Users, and frequency
measure. Overrepresentation(O), as a relaxation of functional
enrichment analysis [66], enables us to analyze a dataset (T )
by assessing the distribution of a grouping attribute (gAttr),
based on its frequency for each x ∈ T (freq(x)). O quantifies
the degree to which an instance of (gAttr) is overrepresented
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TABLE 9. Evaluation results for the News classification using the PolitiFact
and BuzzFeed datasets in various scenarios with oversampling technique.
The table shows the results of implementing Random Forests (RF)
considering user credibility regarding precision, recall, and f1-score. Bold
indicates the best performance in each scenario.

at the top of a ranked list.

O(x,Pt , gAttr,T ) = 100 ·
freq(x,T , gAttr) − Pt

Pt

The degree of over-representation is determined following a
specified threshold (t). In our implementation, the threshold
is a percentile (P) in the context of the distribution of the
values of (gAttr). For Pt corresponding to 90% all entities
that fall over that threshold are flagged as overrepresented.
Further, we apply Fisher’s exact test to determine whether the
distinction of being overrepresented is significantly associated
with the label. We also resort to the Jaccard index [67] to
define three measures to quantify the similarity of Users. The
first one, named UNews(.,.), receives the News posted by a
pair of Users, denoted by News(ui) and News(uj), and returns
value between 0.0 and 1.0 representing the commonalities
between the News posted by Users ui and uj.

UNews(ui, uj) =
|News(ui) ∩ News(uj)|
|News(ui) ∪ News(uj)|

Using Jaccard index, we also define URealNews(.,.)) and
UFakeNews(.,.), where RealNews(ui) and FakeNews(ui)
denote the real and Fake posted by User ui, respectively.
And assume a threshold of 0.75 to identify bias patterns in
both cases. Additionally, we compute the similarity between
Users based on their sharing behavior of Real News (a.k.a.
URealNews(.,.)) and also according to Fake News (a.k.a.
UFakeNews(.,.)).

URealNews(u1, u2) =
|RealNews(ui) ∩ RealNews(uj)|
|RealNews(ui) ∪ RealNews(uj)|

UFakeNews(u1, u2) =
|FakeNews(ui) ∩ FakeNews(uj)|
|FakeNews(ui) ∪ FakeNews(uj)|

We use the latter metric to measure interaction overlap
between Users and the label of the News they share to emulate
in-group bias by observing similar news sharing behavior. The
Jindex value ranges from 0 to 1, with a higher value indicating
higher similarity regarding this behavior; spotting this pattern
is enabled by setting a high Jindex value. Finally, the frequency
measure (F) receives a multi-set and returns the frequency of
each element in the multi-set; we set a threshold (F>10) to
identify prominent reoccurring entities.

Informed by the literature, Table 10 summarizes the types
of bias we have identified to be relevant within the context
of our classification problem. The measures associated with
them are also specified. While far from comprehensive, this
compendium of metrics lays the foundation to support the
interpretation and understanding of bias in our case study at
domain-agnostic and domain-specific levels.

D. DOC-BIAS AS AN INTEGRATED HYBRID AI SYSTEM
1) BIAS IN INPUT DATA
We start our analysis by further characterizing the input
datasets, Dataset 1: BuzzFeed News and Dataset 2: PolitiFact
News. We have three input variables: News, Publishers, and
Users. News and Publishers’ information is obtained from the
same tabular dataset and originates in the News source, i.e.,
a fact-checking website, while the information about Users is
mined from Twitter to be added during data pre-processing.
Prior to this step, both datasets are balanced in terms of
News labels, Fake (1) and Real (0). Upon pre-processing,
the inclusion of User engagement data significantly impacts
the initial distribution of the labels across two dimensions.
Figures 8a, 8b, and 8c illustrate how the distribution of
all three input variables becomes skewed towards the Fake
News, exacerbated in the PolitiFact dataset. Not only that, but
another skew that we can already perceive related to users’
interaction when coupled with News entities is the creation
of overrepresented entities across the variables, as well as a
stark skew in the distribution of the Users and the number
of News they share. Concisely, Figure 8d shows how 90%
of Users share between 1 and 2 News, while there are a
few numbers of Users that share a larger amount. Regarding
the News and Publishers, we observe a slight reverse effect
where it is easier to depict fewer actors capturing most of the
shares. This is the case in BuzzFeed, where most of the Real
News is associated with two Publishers. Fake News displays
a higher diversity of publishing sources. In order to quantify
the number of overrepresented entities at the input level,
we implement the overrepresentated measure to detect them
in all three of the variables and across both datasets. We then
apply Fisher’s exact test to determine whether the distinction
of overrepresented entity is significantly associated with
the label. The test results are significant for the User-Label
association in both datasets. This implies that the distribution
of overrepresented users in each dataset is different from the
ones that are not, illustrating skew in the input data at the level.
Additionally, the News-Label association in the PolitiFact
dataset also yields significant results for the same test. This
could imply a higher bias in this dataset with respect to the
BuzzFeed one regarding this dimension. Due to the results
obtained here, we monitor this pattern as we move along the
classification pipeline.

a: USER’S BEHAVIOR
Motivated by the significance of the User’s behavior in
our initial assessments, we opted to take a fine-grained
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TABLE 10. Bias measures.

FIGURE 8. Distribution of labels per input variable across datasets and distribution of User-News combination.

look at their characteristics. We aim to detect any potential
behavioral patterns that could emulate real-world phenomena
associated with Fake News dissemination, i.e., in-group
bias or confirmation bias, in our data sources. To analyze
User-News relationships, we implement the similarity metric
UNews and visualize the results as shown in the heatmaps in
Figure 10 (a) and (b). Dendrograms are also depicted, and
the label (Fake or Real) is used for the corresponding news.
Unsurprisingly, few patterns can be spotted in both datasets
without sub-setting our data (we attribute this difficulty to
the increased amount of noise Users-News combinations
that only share one News produce). Despite this, some of
the identified patterns allow us to determine that there is
a long range of Users in the BuzzFeed dataset (e.g., from
User5865 to User13222) that show a similar behavior in News
sharing. More interestingly, most of the news shared by these
clustered users is real. A similar cluster of users is also visible
on the lower right of BuzzFeed and in the PolitiFact heat
maps.

We perform a more in-depth analysis to characterize social
interactions among Users. Upon implementing similarity
metrics,UReal and UFake, we can uncover a hidden pattern
in relation to User behavior and the News’ credibility.
Figure 10 (c) denotes the expected bimodal distribution
of the predictions (values comprehended in the range
[0.0, 1.0]). Nevertheless, a notable concentration around
values representing Real News (0) is observed, depicting that
Users with a higher similarity score share more Real News
than Fake.

2) BIAS IN MODEL
We now assess the model’s handling of the skewed distribution
of User-News interactions that was discovered at the input
level, as seen in Figure 8 (d). The frequency measure allows
us to observe how the classification process prioritizes popular
Users (News share counts > 10) over less popular Users
(News share counts < 10). Figure 12 depicts a correlation plot
between several shares and the prediction error for the User’s
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FIGURE 9. Ground rules characterization. (a) Ground rules count representing input variables (absolute terms), (b) Distribution of ground rules linked to
instances representing input variables, (c - d) Distribution of RVA convergence speed. Skews in distributions impact the model’s convergence; it learns
faster labels for Fake News and no-credible Users and Publishers.

FIGURE 10. User sharing behavior patterns. In sub-figures (a) and (b), similarity metric UNews is implemented to detect clusters of Users and assess
News sharing patterns.

predicted credibility. We characterized this as potential activity
bias, which aligns with how PSL favors random variable
atoms of louder Users due to higher significance (or higher
ground rule count). While this is not necessarily problematic
for the model’s performance, it is interesting to further our
understanding of how it works.
To trace the irregularities in User-News interactions we

observed in the input data, it is necessary to dive deeper into
the distribution of ground rules. Ultimately, it is the ground
rules that connect the different entities - represented by ground
atoms - with each other and, therefore, emulate relations

between them. The intuition is that News-User and News-
Publisher interactions are translated into ground rules in the
classification process.
One of the irregularities observed in the data was how a

few Users shared many news stories, while others shared
only a few. This leads to more constraints— manifested
by ground rules— for the random variable atoms (RVAs)
representing the credibility of users who are overrepresented.
This has an effect on the training process because the
classifier favors those User RVAs with higher ground
rule count, as small value changes in those RVAs can
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FIGURE 11. User sharing behavior patterns 2. In sub-figure (c), a fine-grain
analysis is performed by implementing similarity metrics, UReal and UFake.
Here, social interactions with a high similarity score correspond with users
sharing real news (0) over those who share fake news (1).

FIGURE 12. Activity Bias pattern.

have a higher impact on the total incompatibility of
constraints.

We can see how RVAs with more ground rules (i.e., News)
are highly favored in Figure 9 (a) and (b). Their values
also take longer to reach convergence. Figure 9 (c) and (d)
shows the convergence speed for News, Users, and Publisher
atoms, respectively, and across both datasets. Figure 13
illustrates how rules associated with the credibility of the
Users overwhelmingly contribute (90 percent) to the final
classification to the detriment of the credibility of the
Publishers (around 10 percent). This can lead us to imply
that the User’s credibility is a predictive feature in the
PSL model that heavily impacts the model’s inference
process. Interestingly, this happens for both datasets, and the
distribution followed is quite similar.

3) BIAS IN PREDICTIONS
As a last step in our study, we evaluate the output or predictions
generated by the CSM model. Figure 14 (a - b) illustrates
data points representing classified instances by type, News,
Users, and Publishers. They are colored by the inferred truth
value. Blue points represent entities that the model classified
as credible, in case of News this implies real; the red points
represent those that the model classified as not credible, for
News entities this implies Fake. Here, we determine that
the CSM model predicts more ‘‘not credible’’ entities than
‘‘credible’’ entities for all variables. Further, and to better
interpret the output produced for the entities representing
News, we perform a correlation analysis. The results show
there is a strong correlation between News credibility and the

User’s credibility, less so with the Publisher’s credibility. This
is reflected in the analysis of false positive rates and how the
common characteristic was an inferred low User credibility
across all misclassified entities. There is also a correlation
between the credibility of the News and the number of times
it was shared. This could be indicative of a slight skew that
denotes high sharing counts associated with Fake News.

E. DOC-BIAS OVER INTERPRETME
1) MODEL’S BEHAVIOR
We analyze the impact the model’s behavior has on the
produced output, as the input dataset characterization is the
same for both implementations. The pipeline of InterpretME is
evaluated with 8 test beds. Figure 15a, Figure 15c, Figure 15b
and Figure 15d represent the results of decision trees with
the User and Publisher credibility role in the classification
problem over the PolitiFact and BuzzFeed datasets. Figure 15a
and Figure 15b illustrate the decision tree considering the
impact of User credibility on the classification of Fake News.
Here, the visualization of the PolitiFact dataset states that
Users with a credibility score of 1.0 (23966 data samples in
Class 1) are more likely to publish Fake News, whereas Users
with a credibility of 0.0 (6694 data samples in Class 0) and
Publisher source -(Publisher17- 253 data samples in Class 0)
are more likely to publish Real News. Users with credibility
scores between 0.0 and 1.0, 70% of the population publish
Fake News. Further, in the BuzzFeed dataset, the decision tree
exemplifies that a User credibility score of 0.0 (10344 data
samples in Class0) and with Publisher sources -(Publisher19
(391 data samples in Class 0), (Publisher2 (122 data samples in
Class 0), and (Publisher9 (580 data samples)- are more likely
to publish Real News. Conversely, a User with a credibility
score of 1.0 (10154 data samples in Class 1) is more likely to
publish Fake News. The trained classification model reports
an accuracy of 0.97 for both datasets. Further, in PolitiFact,
the precision of 0.99 for Fake News and 0.95 for Real News is
reported, while in BuzzFeed, the precision reported is 1.0 for
Real News and 0.97 for Fake News. Figure 15c and Figure 15d
illustrate the decision tree considering the impact of Publisher
credibility in the classification of Fake News. In the PolitiFact
dataset, the decision tree depicts that a Publisher with a
credibility score of 0.75 (3661 data samples in Class 0) and
1.0 (23560 data samples) is more likely to publish Real News,
whereas a Publisher with credibility of 0.0, and Publisher
source -Publisher28- (6013 data samples in Class 1) is more
likely to publish Fake News. Other important publishing
sources are -Publisher2 and Publisher56- which publish Real
News. Further, in the BuzzFeed dataset, the decision tree
demonstrates that a Publisher source, i.e., Publisher19 (5145
data samples in Class 0), is more likely to publish Real News.
Conversely, a News item with a Publisher credibility score
of 1.0 and -Publisher11, Publisher28, and Publisher24- are
more likely to publish Fake News. Furthermore, the trained
ML model reports an accuracy of 0.97 for PolitiFact and
0.98 for BuzzFeed. Additionally, for PolitiFact, the precision
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FIGURE 13. Rule’s weight contribution to News classification.

FIGURE 14. Output generated by CSM model per dataset. Truth values for predicted instances are ‘‘credible’’ (blue) and ‘‘not credible’’ (red). The CSM
model predicts more ‘‘not credible’’ entities than ‘‘credible’’ entities for all variables.

FIGURE 15. InterpretME generates decision trees representing interpretations for the News classification task based on PolitiFact and BuzzFeed datasets.
Figure 15a and Figure 15b demonstrate the output of decision trees considering User credibility. Figure 15c and Figure 15d reveal the output of decision
trees considering Publisher credibility. Here, 0 in yellow color represents Real News, and 1 in green color represents Fake News.

of 0.95 for Fake News and 1.0 for Real News is reported, while
in the BuzzFeed dataset, the precision score reported is 1.0 for
Real News and 0.97 for Fake News. Figure 17 illustrates how
the classifier is more confident at classifying Fake News across
both datasets, Moreover, by calculating the Overrepresentation
measure over News items, we can observe how the model
correctly classifies all these data points.

Pearson Correlation and Linear Regression Analysis.
Figure 16 depicts the statistical analysis performed over
the InterpretME KG based on the BuzzFeed dataset. The
execution of SPARQL queries over the InterpretME KG
retrieves the results regarding the impact of LIME features
(e.g., publisher credibility) and the probability of predicting
fake news. The linear regression analysis allows us to observe
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FIGURE 16. Pearson Correlation and Linear Regression Analysis plots illustrate the statistical and comparative analysis of Fake News classification
based on the BuzzFeed dataset. Figure 16a, Figure 16b, and Figure 16c represent the comparison of User and Publisher credibility with average,
maximum, and minimum impact on the prediction probability of Fake News classification. The analysis shows that User credibility has more impact on
the classification of Fake News. Here, the blue color represents User credibility, and the green color is Publisher credibility. A straight line depicts the
regression line, summarizing the relationship between feature impact and prediction probability and scatter plot, with each data point representing an
impact value and their corresponding prediction probability.

FIGURE 17. Output generated by the predictive model integrated into the InterpretME system. Truth values for predicted instances are ‘‘Real’’ (blue)
and ‘‘Fake’’ (red). The model predicts more ‘‘Fake’’ entities than ‘‘Real’’ entities across both datasets. Overrepresented entities are least likely to be
misclassified.

the relationship between probability and average feature
weight generated by LIME. Figure 16a shows the average
Pearson correlation to be positive for User credibility score
as compared to Publisher credibility. This reveals that an
increase in feature weights predicted by LIME also increases
the probability of the predictive models for Fake News
classification, considering the User credibility as one of the
features in the BuzzFeed dataset. Therefore showing a strong
positive correlation. On the other hand, Figure 16b studies
the maximum impact of feature weights predicted by LIME
considering User credibility and Publisher credibility on the
prediction probability. The maximum impact in terms of the
Pearson correlation coefficient was found to be the same
for both User credibility and Publisher credibility. Similarly,
in Figure 16c, when considering the minimum impact features,
the User credibility impacts more in comparison to Publisher
credibility. To summarize the Pearson correlation and linear
regression study, we can infer that User credibility always
has a significant positive correlation compared to Publisher
credibility. These investigations demonstrate useful insights
into the elements that influence Fake News detection tasks.

VII. DISCUSSION
A. INSIGHTS FROM DOCUMENTING BIAS WITH A HYBRID
AI SYSTEM
Here, we discuss how implementing the Doc-Bias framework
as a Hybrid AI system to a use-case of Fake News detection

provides us with insights at varying degrees of granularity
depending on the type of implementation. Based on these
insights, we set out to answer the research questions guiding
this work. Regarding RQ1, RQ2), our assessment enables
us to determine the importance of User entities. We can also
prove its role as a predictive feature in this implementation
of PSL and when employing Random Forests. Specifically
for the latter, Figure 15 shows the decision trees generated by
InterpretME that represent Real and Fake News classification
for both datasets. From the attributes examined, the one
that contributed the most to the classification task was User
credibility; in the PolitiFact dataset, in particular, higher User
credibility makes it more likely that a News item will be
classified as Fake. At the dataset level, we have quantifiably
more data about Users than we do for News and Publishers.
Upon pre-processing, we have more information about User
and News interactions than we do about Publishers and News.
Employing our integrated system, we were able to show how
this translates into an over-representation of ground atoms
that have more constraints (ground rules) that pertain to Users
(in absolute terms), in comparison to those that pertain to
Publishers. Thus, overwhelmingly contributing more to the
final prediction of the News truth value. We deduce that
the huge difference in the number of instances can force
the model to deprioritize Publishers and News interactions
and exclusively focus on Users to assign credibility scores.
We see this manifest again in the accuracy of the model,
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FIGURE 18. Semantic Enrichment results On the left is the percentage of semantic enrichment across Documentation Steps for both datasets. On the
right, the distribution of semantic enrichment for the target entity, News, across datasets.

as all false positives are explained by low User credibility
over Publisher credibility. Further, Figure 13’s revelation
that User credibility overwhelmingly contributes to the final
classification, underscores the importance of understanding
and addressing biases associated with predictive features; in
our case this pertains to the User’s interactions with News
and their undeniable impact on model predictions. In relation
to the label unbalance and the skewness towards Fake News,
we are able to demonstrate how the exacerbation of labels
at input is reflected in how both models have an affinity
to favor the ‘‘Not Credible/Fake’’ label in its classifications.
When it comes to RQ2, RQ3), using our integrated model,
we were able to uncover interesting patterns related to
the User’s emulation of real-world behavior: in-group bias
and activity bias. Regarding the latter, News and Users
relations with higher frequency at input level prompted their
over-representation during optimization. In turn, the model
gives higher significance to these combinations of user and
news relations and adheres to their characteristics better than
in comparison to those with lower frequencies. This highlights
the challenges that persist in training models with imbalanced
datasets. Ultimately, what started as an observational study
reported in Section III-B, through our methods, we are able
to empirically demonstrate how bias patterns arise across the
pipeline, and their implications. Hence, we advocate for a
comprehensive assessment of data-driven pipelines and not
neglect ‘‘debugging’’ [68] tasks, especially during the data
preprocessing stage [69].

B. IMPLICATIONS OF FINE-GRAINED BIAS
DOCUMENTATION AND OPEN CHALLENGES
1) IMPLICATIONS
To better explicate the implications of using our integrated
AI system to trace bias, we illustrate the degree of semantic
enrichment gained across the Documentation Steps of the
classification pipeline. Figure 18 (a) depicts the amount
of instances (in relative terms) attributed to each of the
steps. Unsurprisingly, the metadata generated for the learning

TABLE 11. Characteristics of Outlier - BuzzFeed.

TABLE 12. Characteristics of Outlier - PolitiFact.

process is significantly bigger than the other components. This
accounts for integrating the whole sub-symbolic system into
our tracing pipeline and the degree of affinity we achieved with
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our model description. Figure 18 (b) shows the distribution
of semantic enrichment gain for the target entities, News.
We can observe a relatively evened-out distribution across
labels and datasets. However, the outliers on the upper
fence represent entities with richer profiles due to their
characteristics. Particularly, they are News entities with a
higher User Share count and, given the calculation of our bias
metrics, have been identified as Overrepresented at the input
and during the learning and prediction process. We report on
the profile generated.15 for two entities with the maximum
value with regard to information gain, one from each dataset,
BuzzfeedNews179, and PolitiFact195, in Table 11 and 12
respectively.

2) CHALLENGES
While our fine-grained documentation approach has allowed
us to capture knowledge on biases found in data to further
elucidate how these affect the behavior of the model and
the generated output, there are still several open challenges
from a technical and practical side when it comes to tackling
this problem. Some examples of technical challenges are
mostly related to how the behavior of sub-symbolic systems
is highly constrained by the characteristics of the data they
are trained on [70]. Additionally, ML pipelines, in general,
are subjected to a particular context upon deployment despite
the great strides made in transfer learning techniques. This
means that deploying these systems inattentively can lead
to them not performing as expected or producing outcomes
unsuitable for a particular decision-making scenario [71].
In terms of performing documentation tasks, best practices
dissuade decoupling training datasets from the model, as it can
make the traceability of the pipeline more challenging and thus
hinder efforts to perform thorough evaluation exercises [14].
For this reason, we advocate for the production of compressive
end-to-end documentation artifacts. By doing so, it is possible
to improve the overall interpretability of automated decision-
making systems, and is fundamental in efforts to understand
bias in data, and to mitigate instances of algorithmic
harm.

From amodeling perspective, our particular approach is also
constrained to the characteristics of the ML pipeline under
assessment, which increases the complexity of the process
when it comes to determining the right level of generalization
to be achieved, and not only that, but it requires technical
and domain knowledge that can capture pipelines intricacies.
In our case, documentation efforts reached a fine-grained level
of detail in terms of generated descriptions; however, this also
comes at a cost, in terms of compute and data storage.
Further, and as already discussed, bias assessments are

highly complex tasks, which implies that our modeling cannot
account for all potential biases that might be present in
an ML pipeline. However, this is true for all types of bias

15All documentation generated by the Doc-Bias KG is available as a
FAIR resource and is human- and machine-readable: https://github.com/SDM-
TIB/DocBiasKG.

analysis and documentation frameworks. This highlights
the importance to disclose the limitations of any audits
performed upon deployment, establish guidelines to enable
constant monitoring of the systems, and update existing
documentation regularly. From a practical point of view, the
remaining open challenge is working towards the adoption of
our documentation approach outside a research environment.
Lessons from qualitative research highlight the frictions that
arise from practitioners integrating documentation frameworks
into their existing workflows [26]. Some of the influencing
factors include time constraints, business objectives, lack of
training (i.e., what metrics to use, how to identify sensitive
attributes, how to interpret algorithmic output), and lack of
access to domain knowledge [26], [46].
Concerning neuro-symbolic systems in particular,

we adhere to common knowledge that despite the AI and
Semantic Web communities making enormous advances,
integrating these approaches in transparent frameworks
remains an open challenge. They still require elucidating on
the requirements to develop hybrid neuro-symbolic systems
that remain human- and machine-understandable, but that
also ensure the transparency required for humans to control
decision-making.

VIII. CONCLUSION AND FUTURE WORK
We have presented a documentation pattern that resorts to
a hybrid AI system to enable the trace of machine learning
pipelines. Our objective is to support ML practitioners and
researchers in the interpretation of these pipelines in terms of
the biases captured across them. We empirically assessed our
approach through two implementations of a hybrid AI system
(integrated and principled), and presented a use-case based
on Fake News classification. The results derived from our
evaluation demonstrate the ability of the Doc-Bias approach to
capture bias patterns across the pipeline to varying degrees of
granularity, particularly regarding over-representation, activity,
and label unbalance. Albeit, all these results, our work still
faces open challenges associated with the complexities of
modelling and describing intricate pipelines in terms of
measured biases; however, we see them all as an opportunity
for future work. In particular, we will re-use our approach
to trace bias in other predictive tasks (i.e., link prediction),
assess the requirements to model more complex problems and
liaise with ML practitioners to evaluate the suitability of our
framework in real-world scenarios. Lastly, wewill continue the
development of a controlled vocabulary for bias. We believe
these resources can facilitate effective communication among
actors involved with or impacted by AI systems, thereby
enhancing their understanding of bias patterns at various stages
of the AI pipeline.
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APPENDIX A
Appendix A demonstrates two queries used to retrieve
interpretable information from the Doc-BiasKG. Particularly,
these queries are used to compute information gain given
semantic enrichment across two Documentation Steps (see
Figure 18): Listing 1 is used for Step 1 - Data Ingestion and
Listing 2 is used for Step 3 - Bias Assessment.

Listing 1: SPARQL Query to retrieve Information Gain through
semantic enrichment at Dataset Ingestion Step over a particular
dataset.

Listing 2: SPARQL Query to retrieve Information Gain
through semantic enrichment following Bias Assessment Step
performed over a particular dataset.

APPENDIX B
Appendix B to represent different statistical and comparative
queries employed over the InterpretME KG. These queries
highlight the importance of traceability and documenting the
ML model characteristics. Listing 3 demonstrates SPARQL
query utilized over the InterpretME KG to retrieve the
trained predictive model characteristics for Table 6, 7, 8, 9 in

Listing 3: SPARQL Query to retrieve the evaluation results of
random forest model.
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terms of precision, recall, and f1-score. Listing 4 illustrates
the comparative analysis of key features such as publisher
credibility influence on the outcomes of Fake news in terms of
average, maximum, and minimum impact in target class Fake.
Lastly, the statistical analysis depicting the counts of news
and their prediction probability in class Fake is presented in
Listing 5.

Listing 4: A statistical SPARQL Query to retrieve the impact of
publisher credibility over the Fake news classification.

Listing 5: SPARQL Query to retrieve the count of news and
their prediction probability in class Fake.
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