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ABSTRACT Centralized traffic regulation systems are crucial in railway mass transit lines to automatically
control the trains to recover delays and provide headway regularity. Traditional traffic regulation systems
send control action to trains just at stations, through beacons, when they arrive or depart. The present
paper proposes a new predictive traffic regulation model for railway mass transit lines equipped with
CBTC (Communications Based Train Control) signalling system. This model takes advantage of continuous
communications between the centralized control centre and trains, to send control actions at any moment.
The proposed regulation system consists of two modules. The first one is a mathematical predictive control
algorithm, which generates the running time and dwell time control actions by an optimization model based
on the quantified delays of the trains and the operational constraints. The second module receives the control
actions (target times) from the first one and generates in real-time the automatic driving commands to be sent
to each train. This allows trains to modify their speed profile to speed up or slow down according to updated
target times, at any point along their route. Finally, a traffic simulator based on a real Spanish metro line
has been developed to verify the effectiveness of the proposed approach. Simulation results under normal
operating conditions, considering random delays, show that adherence to the schedule and nominal headway
improves by 33% and 49% respectively, and energy consumption is reduced by 5.4%.

INDEX TERMS ATO, ATR, CBTC, mass transit railway, railway traffic regulation.

I. INTRODUCTION
In recent decades, public subway transportation has become
a key factor for sustainable urban development and the
economic prosperity of cities. The use of this type
of transportation entails a drastic reduction in green-
house gas emissions, not only due to the use of elec-
trical energy as the primary power source but also
because it contributes to a decrease in the use of private
vehicles.

Similarly, the exponential increase in urbanization has led
to a significant rise in the demand for public transporta-
tion systems, causing congestion in these. The subway is
considered a fundamental solution due to its high capacity,
punctuality, and safety [1]. Moreover, the efficiency and
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reliability of the underground railway system are essential to
ensure smooth and sustainablemobility in these cities. Conse-
quently, the optimalmanagement of railway traffic on subway
lines has evolved into a complex challenge, prompting the
search for new solutions to improve the quality of service
provided to passengers, in terms of punctuality and headway
regularity.

The implementation of Automatic Train Operation (ATO)
in mass transit lines has contributed to improve the quality
of service in metro lines achieving more regular and pre-
dictable travel times compared to manual operation, with
better passenger comfort [2], and enables the automatic traffic
control. This translates into a better experience, with an
increased transport capacity and punctuality. Additionally,
energy consumption is reduced because of the application
of eco-driving techniques, which can be more accurately
executed [3], [4], [5], [6].
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Despite the benefits brought by ATO, the operation of
high-frequency metro lines must deal with frequent dis-
turbances. These disturbances cover from minor delays
originated during the passengers unloading and loading at
stations to major delays caused by door locks or other train
failures. It is known that these lines are prone to instability
because if a delay occurs in any of the trains, the accumulation
of passengers at the station will lead to an increase in these
delays [7]. Therefore, during traffic operation, corrections
must be taken to prevent line instability.

Traditionally, the traffic corrections were performed by
train drivers, who adapt the train speed and dwell time at
stations to recover their own delays, and by the line traffic
operators that dispatch trains in advance or hold trains depar-
ture based on the global traffic situation. On the other hand,
in lines equipped with ATO systems, these corrections can be
automatized.

Traffic corrections can be divided into two controlling
levels. On one hand, a rescheduling level is neededwhen a big
disturbance is detected and the goals of the planned timetable
cannot be met. Numerous methods have been developed to
detect and produce a new timetable that minimizes the disrup-
tion [8], [9], [10], [11], [12], [13]. Nowadays, in most metro
lines, the rescheduling decisions are taken by line operators
whose decisions can be supported by calculationmethods like
the previously mentioned.

On the other hand, traffic regulation level is needed con-
stantly to prevent line instability, dealing with the frequent
timetable deviations that do not impede the achievement
of the planning goals. Automatic train regulation systems
(ATR) have been developed and deployed along with ATO
with this objective. ATR is a central control system that
constantly supervises traffic performance and regulates the
dwell time and the running time of trains [2]. The corrections
produced by ATR could be oriented to adhere the train to
the timetable or to maintain a balance between headway reg-
ularity and timetable punctuality. Nowadays, ATR systems
are widespread in ATO metro lines where driving commands
are automatically sent to the trains, as well as dwell time
corrections.

ATR is based on a real-time traffic regulation algorithm.
In the literature, various regulation algorithms have been
proposed to enhance automatic traffic regulation. Among the
early developments, heuristics algorithms were developed,
standing out the one proposed by Araya and Sone [14]. In this
algorithm, the control actions for train travel and stops are
determined by a correction calculated based on the current
deviation from the schedule and the deviation from the
headway. A different heuristic approach is presented in [15],
where an algorithm based on local optimality determines the
most efficient strategies to correct the schedule when several
trains travel close together. In reference [16] several heuristic
algorithms are developed and compared. A predictive fuzzy
controller was designed in [17] to control the dwell time
at the station. The work presented in [18] proposes the

use of genetic algorithms to recalculate the timetable when
disturbances arise. A hybrid particle swarm optimization
and genetic algorithm is proposed in [19] to adjust the
timetable integrating the speed profile optimization modelled
with a convolutional neural network. The passenger flow is
modelled as a discrete Markovian process in [20], where
a constrained state-space model is proposed. Some models
have been proposed to directly minimize the passengers
waiting time [21] by means of multi-objective optimization.
The dwell time at stations and the coasting position of trains
were obtained by a dual heuristic programming method
for train regulation in [22]. Other approaches are based on
automatic learning [23], which uses the characteristics of
previous schedules to generate a new schedule with simi-
lar corrections as in the past. An adaptive optimal control
approach based on reinforcement learning is proposed in [24]
for train regulation.

The Model Predictive Control (MPC) [25] has become a
widely used tool for traffic regulation to include real-time
information about trains state and to meet the requirements
of an online application [26]. It is crucial to deal with factors
such as the long scale, nonlinearity, and stochastic events
in transportation metro systems. Studies such as the one
in reference [27] have compared models based on MPC
strategy with heuristic regulators, demonstrating that the
MPC strategy leads to better behavior. Pioneering approaches
with this technology can be found in references [7] and
[28], where the linear models proposed are very suitable
for optimal state feedback without considering operational
constraints. In [29], a classical optimization approach is
presented to minimize the excess waiting time, travel time,
and congestion after disturbances. In [30], a quadratic pro-
gramming modelling is proposed to define an MPC strategy
that includes the main operation constraints. The trade-off
between passenger comfort and operating costs is consid-
ered in [31], and an Approximate Dynamic Programming
method is used to solve the problem. A nonlinear optimal
control model is presented in [32] to improve operational
and energy efficiency considering the safety and control con-
straints. A distributed optimal control is proposed in [33]
for complex metro networks. In [34], a heuristic method
based on alternating directions of multipliers is proposed
to compute the problem in a distributed manner. Several
mixed-integer models have been presented to consider lim-
itations on control actions and operational constraints such
as a minimum headway between trains [35], to take into
account the presence of disturbances in passenger arrival
times [36], to consider stochastic disturbances due to uncer-
tainties in train operation [37], to meet control requirements
by transforming the optimization problem into a set of
quadratic programming problems [38], to accelerate the
process of schedule recovery [39], to minimize passenger
travel costs [40] and to generate energy-efficient train reg-
ulation strategies considering peak power reduction [41] or
energy storage [42]. The comfort of passengers has also been
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included in optimization [43] by treating passenger behaviors
as deterministic. Fuzzy logic is applied in [44] to include
passenger flow uncertainty in robust traffic control. A robust
fuzzy predictive control is proposed in [45] to account for
the uncertainty of passenger arrival and imperfect wireless
transmission.

FIGURE 1. Loop line with terminal stations.

In previous models, the control actions resulting from
optimization models and the detection of delays and
incidents occur when trains depart or arrive at a sta-
tion. However, modern signalling technologies, such as
the Communication-Based Train Control (CBTC) technol-
ogy [46], enable continuous communication between trains
and the centralized system through a bidirectional radio com-
munication system. That means that train position and delays
supervision can be calculated continuously and, therefore,
control actions can be executed when needed even if trains
are travelling between stations. This communication capabil-
ity of CBTC can be exploited to improve traffic regulation
performance.

In this paper, it is proposed a predictive traffic regulation
algorithm for a railwaymass transit line equipped with CBTC
technology, which allows the calculation and execution of
control actions at any point along the route without having
to wait for trains to arrive at stations. The contributions of
this algorithm include a continuous delay supervision method
to evaluate the current adherence of trains to timetable and
headway objectives. Based on that information, the main
contribution of this approach is the generation of updated
ATO driving commands when control actions provided by
the algorithm are recalculated for trains running between
stations, permitting the early correction of delays.

The main operational constraints, such as minimum inter-
vals between trains associated with the signalling system, the
capacity of train delay recovery at each interstation, and dwell
times limits, are included in the model.

Additionally, a simulator of a mass transit line has been
developed to test the behavior of the algorithm in comparison
to traditional regulation systems, proving that the proposed
approach leverages the advantages of the CBTC technology
to enhance the traffic operation of the line, and additionally
to improve the associated energy consumption.

Section II introduces the regulation problem and the
structure of the proposed traffic regulation model. Then,
in Section III, the traffic regulation model for CBTC is
described which is composed of two modules: the mathe-
matical predictive control algorithm and the ATO driving

commands generator. Section IV describes the simulator of
the real mass transit line used to test the proposed algorithm.
Sections V and VI present the results and the conclusions,
respectively.

II. PROBLEM DESCRIPTION
It is considered a mass transit loop line where terminal
stations are modeled as turnback platforms as presented in
Fig. 1. Trains travel in both directions along a closed circuit,
stopping along their journey at stations with one platform in
each direction. Traffic is modeled as a set ofN trains (i = 1 to
N ) circulating along M platforms (k = 1 to M ), where each
train i follows train i− 1 and stops at stations for passengers
to get on and off.

The target of a centralized traffic regulation system is
to recover the schedule when delays arise, balancing the
importance of timetable punctuality and headway regularity.
The traffic regulation system supervises the traffic measuring
trains delays and calculates the control actions to be sent to
each train in the line.

Nowadays, the traffic regulation systems are based on the
centralized calculation of control actions and their dispatch at
the stations arrivals and departures, which are the moments at
which train delays are calculated. In this type of line equipped
with discrete control center to train communication systems,
only the sending of control actions to the train is allowed at
those points, through beacons placed at the beginning and end
of the station.

In addition, the bandwidth of the beacons is limited, so the
information that can be transmitted is low. For this reason,
a small number of different train driving commands can be
sent to the train.

This paper proposes a new centralized predictive traffic
regulationmodel for a railwaymass transit line equipped with
CBTC (Communication-Based Train Control) technology,
where the control center can continuously quantify delays
in the convoy trains and send run and stop control actions
and ATO driving commands through a radio communica-
tion system at any moment. In addition, the associated high
bandwidth permits the sending of numerous different driving
commands to the train.

The interaction between the traffic regulation model and
the simulator is schematically represented in Fig. 2.

The proposed model for automatic traffic regulation con-
sists of two modules. The first one, the mathematical
predictive control algorithm generates control actions by an
optimization model based on the quantified delays of the
trains and the operational constraints. These control actions
calculated by this algorithm are the required increase or
decrease of running time and stop time with respect to the
nominal values for each train of the line. The second module
calculates ATO driving commands to be sent to each train
according to control actions provided by the predictive con-
trol algorithm.

Additionally, a simulator based on a real metro line has
been developed to verify the effectiveness of the proposed
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FIGURE 2. Algorithm and simulator structure.

approach. This simulator consists of a realistic ATO model,
which receives the driving commands resulting from the
traffic regulator model for CBTC and processes them to
calculate the force that the train’s motor must exert. Then,
the multi-train simulator is executed with a dynamic model
of each train of the metro line (Fig. 2) to calculate the train
speed and position along the route taking into account how
the signalling system affects the train motion. The essential
variables in the model are described in Table 1.

In the following sections, the traffic regulation model for
CBTC lines and the simulator are described.

III. TRAFFIC REGULATION MODEL FOR CBTC
In this section, the two modules of the proposed algorithm,
which constitute the centralized control for automatic traffic
regulation, will be detailed.

A. MATHEMATICAL PREDICTIVE CONTROL ALGORITHM
The mathematical predictive control algorithm (Fig. 2), cal-
culates the running time and stop control actions based on
the quantification of train delays using a quadratic program-
ming optimization model. This model takes advantage of the
continuous communication capabilities of CTBC systems,
to control trains continuously according to traffic state.

The objective of the model is to minimize timetable and
headway deviations of trains along a prediction horizon
defined as the next L stations for each train. The control
actions of the model are time corrections on the nominal
running time and dwell time for each train and each station
along the prediction horizon.

1) SCHEDULE DESIGNING
As it was mentioned before, traffic is modeled as a set of N
trains (i = 1 to N ) circulating along M platforms (k = 1 to
M ), where each train i follows train i−1 and stops at stations
for passenger to get on and off.

Given a scheduled departure time Tdik for train i from
platform k and a nominal stop time S0k at platform k, the
scheduled arrival time Taik of train i at platform k can be

obtained as follows:

Taik = Td ik − S0k (1)

Under nominal operating conditions, there exists a nominal
interval H between consecutive trains, where train i follows
train i− 1

H = Td ik − Td i−1
k (2)

With the nominal travel time Rk between platform k and
platform k + 1, the arrival time of train i at platform k + 1 is
obtained, if k ≤ M − 1:

Taik+1 = Td ik + Rk (3)

On the other hand, if k = M , it is necessary to establish
a relation between the arrival at platform k = 1 and the
departure of the platformM :

Tai1 = Td iM + RM (4)

2) TIMETABLE AND HEADWAY DEVIATION DEFINITION
At the departure time of the train from the platform and at the
arrival time, the measured times are denoted as td ik and taik
respectively. The associated measured headway of train i at
departure of platform k (hik ) is defined as:

hik = td ik − td i−1
k (5)

Thus, the following deviations can be defined:
• The deviation from the scheduled departure time Xdik of
train i at platform k

Xd ik = td ik − Td ik (6)

• The deviation from the scheduled arrival time Xaik of
train i at platform k

Xaik = taik − Taik (7)

• Deviation from the nominal interval Y ik for train i
measured at platform k departure. This deviation from
nominal interval arises from the difference between the
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TABLE 1. Variables description.

headway of a train i at platform k and the nominal
headway:

Y ik = hik − H (8)

The previous equation can be expressed as:

Y ik = (tdik − tdi−1
k ) − (Tdik − Tdi−1

k )

= (td ik − Td ik ) − (td i−1
k − Td i−1

k ) (9)

Consequently, it is easy to deduce:

Y ik = Xd
i
k − Xd i−1

k (10)

3) TRAFFIC MODEL
The traffic regulator corrects the timetable and headway devi-
ations modifying the trains’ nominal run time between two
consecutive platforms and the nominal stop time at platforms.
The optimization model includes the main operational con-
straints defined by the following traffic equations.

The signalling system is included in the traffic con-
trol model considering the minimum headway constraint.
In metro-type lines the arrival time of a train i to a platform
k is restricted by the departure time from k of the preceding
train i− 1:

taik − td i−1
k ≥ Imink (11)

where Imink is the minimum interval at platform k arrival.
Subtracting the nominal time equations (1) and (2) from (11),
the following time deviation is obtained.

Xaik − Xdi−1
k ≥ Imink + S0k − Hn (12)

The running time of train i from platform k to k+1 verifies:

taik+1 − tdik = Rk + urik + sgik (13)

where urik is the train i control action that modifies its nominal
run time from platform k to k + 1, and sgik is a positive
slack variable that allows long running times (greater than
comfortable running times) when trains have to brake due to
signalling intervention to maintain the minimum interval.

The control actions are bounded, that is:

URmink ≤ urik ≤ URmaxk (14)

where URmaxk represents the control action that adds the
maximum comfortable time to the running time between
station k and k+1, and URmink represents the control action
that subtracts the most time from the run time between station
k and k + 1 (defined by flat-out driving).
Subtracting equation (3) from the previous run time con-

straint equation (13), a time deviation expression is obtained

Xaik+1 − Xdik = urik + sgik (15)

It is worth noting that, as the predictive traffic algorithm is
equipped with CBTC technology, it is possible to recalculate
the ATO’s driving commands (upik and urik ) at any moment
during the travel. Therefore, the optimization problem may
be initiated while a train is traveling between stations. The
model includes this situation considering, for the first station
of the simulation horizon k0i, the current delay of these trains,
X i, rather than their delay at the station departure Xdik .
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It is worth noting that if the train is stopped at a station,
k0i would be the index of that platform and if the train
is travelling between two stations, k0i would be the index
of the platform where it has departed from. Therefore, the
simulation horizon for train i starts in platform k0i and ends
in platform k0i + L.
The calculation of current delays is detailed in Section IV.D.

Consequently, equation (15) will be replaced by equation (16)
for k = k0i if train i is traveling between stations.

Xaik0i+1 − X i = urik0i + sgik (16)

Additionally, for these trains is necessary to update the con-
trol actions limits URmaxk0i and URmink0i . This is because
the capability to recover and lose time is reduced during the
train travel respect to the initial situation at the departure from
the previous station. To obtain the new control actions limits,
it will be necessary:

1. To obtain the lower limit URmink0i , a simulation from
the train’s current space-speed point running as close
as possible to the maximum speed values is performed.
This way, the minimum running time to the next sta-
tion under this simulation scenario is measured. The
lower limit URmink0i is obtained by subtracting this
minimum running time from the nominal one.

2. To obtain the upper limit URmaxk0i , a simulation
from the train’s current space-speed point running at
a minimum comfortable speed is performed. This way,
the maximum running time to the next station under
this simulation scenario is measured. The upper limit
URmaxk0i is obtained by subtracting this maximum
running time from the nominal one.

As a clarification, Fig. 3 shows a graph where, after the
start of a run of any interstation, the velocity of that intersta-
tion is presented from a current time T against time. In this
representation, it has been assumed that the train follows a
faster speed profile than the nominal speed profile. Besides,
as mentioned before, it is necessary to simulate the fastest,
slowest, and nominal speed profile from the current spatial
point where the train is for the recalculation of the control
limits to be valid.

FIGURE 3. Schematical representation of the run control action limits.

So, when the current time of the train is T according to
Fig. 3, the arrival time at the next station according to the
nominal speed profile is TaN . Similarly, the shortest inter-
station run time from that current time T is obtained if the

train adopts the fastest speed profile which is marked by the
solid blue line, arriving at the station at time TaF . On the
other hand, the longest interstation run time from that current
time T is obtained if the train adopts the slowest speed profile
which is marked, arriving at the next station at time TaS .

Consequently, equation (14) will be replaced in the traffic
model by equation (17) if k = k0i.

URmink0i ≤ urik0i ≤ URmaxk0i (17)

On the other hand, the stop time at platforms is considered
linear with respect to de departure-arrival interval given that
the time required by passengers to get on and off increases
with that interval. This assumption has been considered in
references [7], [30], and [35] too. Consequently, the stop
time sik of train i at platform k is a function of the measured
departure-arrival interval, the stop time control action upik and
a proportional constant αk :

sik = S0k + αk

(
taik − tdi−1

k

)
+ upik (18)

The control action upik is positive when the train i is held at
platform k and negative when the stop time is reduced. Addi-
tionally, it is bounded between its maximum and minimum
values, in a similar way as the ur ik control action:

UPmink ≤ upik ≤ UPmaxk (19)

Also, it can be seen that tdik = taik + sik . Subtracting it from
equation (1):

tdik − Tdik

=

(
taik + sik

)
−

(
Taik + S0k

)
= taik − Taik + αk

[(
taik − Taik

)
−

(
tdi−1
k − Tdi−1

k

)]
+ upik

(20)

The time deviation expression is finally obtained:

Xdik − Xaik = Xsik + upik (21)

where Xsik = α
(
Xaik − Xdi−1

k

)
is the delay in the stop due

to passengers’ accumulation.
When a train i is stopped when the optimization is initiated,

the limits for the control actions UPmink and UPmaxk must
be updated at the first station k0i of the optimization horizon.
Fig. 4 shows a representative diagram of the evolution of the
time indicating the moment of the arrival Taik of train i at
platform k , the moment where nominal stop time Taik + s0k
is met, the initial maximum limit UPmaxk and the initial
minimum limit UPmink of the stop control action, as well as
the four scenarios in which the train can be found during the
stop.

In the first scenario, current time is less than the minimum
departure time Taik + S0k +Xsik−UPmink (for instance when
the current time is T1 in Fig. 4). In this case, there is still
capacity to recover or lose all the available time according to
the limits of the stop control action, therefore UPmaxk and
UPmink are the configured initial values.
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FIGURE 4. Schematic representations of the stop control action limits.

When the stop time has exceeded the value of theminimum
departure time (scenarios 2 and 3), there is a loss of the
capacity to recover time during the stop, so the lower limit
of the stop control action UPmink must be updated. In both
cases, this limit will be equal to the difference between the
current time and Taik+S0k+Xsik . In the second scenario, when
the current time is T2 (lower than the departure applying the
nominal dwell time), the limit of control action is negative,
giving the train the possibility to recover delays in this stop.
However, in scenario 3, when the current time is T3 (greater
than the departure applying the nominal dwell time), it will be
positive losing the possibility to recover delays in this stop,
resulting in an additional delay. The upper limit of the stop
control action does not change in both cases, maintaining the
configured initial value of UPmaxk .
Finally, in the fourth scenario, for instance when current

time is T4, current time is greater than the maximum depar-
ture time Taik + S0k + Xsik+UPmaxk . In this case, both
the upper and the lower limits are equal to the difference
between the current time and Taik + S0k + Xsik . Therefore,
the only possible command is an immediate departure from
the platform. It is worth noting that a stop control command,
as defined in equation (18), is an increase or decrease time
over the nominal dwell time (taking into account extra time
due to passenger affluence). Therefore, an immediate depar-
ture order means that the stop control action will be equal to
the difference between the current time spent at the station by
the train and the nominal dwell time.

Equations (22) and (23) model previous update of lower
and upper dwell limits for k = k0i if train i is stopped at a
station, where T is the current time:

UPmink0i = max
[
UPmink ,T −

(
Taik + S0k + Xsik

)]
(22)

UPmaxk0i = max[UPmaxk ,T − (Taik + S0k + Xsik )] (23)

Consequently, equation (19) will be replaced by
equation (24) if k = k0i.

UPmink0i ≤ upik0i ≤ UPmaxk0i (24)

4) PREDICTIVE TRAFFIC CONTROL MODEL
A prediction horizon is defined, which contains the next L
stations for which the arrival and departure delays are to be
calculated for each train (Xaik and Xdik ), as well as the travel
and stop commands for each station (urik and upik ) and the
slack variables sgik .

The cost function that minimizes regularity criteria during
the prediction horizon and the magnitude of control actions
and slack variables is defined as:

J = p
∑
i,k

(
Xdik

)2
+ q

∑
i,k

(
Xdik − Xdi−1

k

)2
+ a

∑
i,k

(
urik

)2
+ b

∑
i,k

(
upik

)2
+ c

∑
i,k

(
sgik

)2
(25)

For each train i : 1 ≤ i ≤ N and for each station k : k0i ≤

k ≤ k0i + L, where k0i is the next departure station of train i
and L is the number of stations included in the optimization
horizon. Additionally, constants p and q represent the weight
of the deviation from the nominal schedule and the deviation
from the nominal interval, respectively. Similarly, constants a
and b represent the weight of the control actions for run time
and stop time, respectively. Finally, constant c represents the
weight of the slack variable, large enough to minimize the
intervention of signalling systems.
The initial conditions of the optimization problem are the

position in the line and the delay of each train. For each train,
there are two cases:

1. The train is stopped at station: It is necessary to stablish
the deviation from the scheduled arrival time Xaik0 of
train i at the first station k0:

Xaik0 = Xaik (26)

2. The train is traveling between stations: It is necessary
to establish its current delay relative to the nominal
schedule Xi at the current position of train i:

X i = Xdik0 + 1X (27)

where Xdik0 is the departure delay of train i from the
last station k0, and 1X is the running time difference
between the real train driving and the nominal one
from the departure of the last station up to the current
train position. Positive values of 1X represent delay
increase from the last departure, and negative values
represent delay recovery.

In CBTC lines (with continuous communication) it is pos-
sible to calculate delays Xi at any current position of the
train. This permits the traffic regulation system to update
control commands as soon as delays arise to better correct the
incidences. In lines equipped with signalling systems based
on discrete communications, these delays are updated (and
corrected) just at the stations.
Finally, the optimization control problem is defined by its

cost function described in equation (25); the initial conditions
defined in equation (26) or (27) depending on each train
initial state; the traffic model constraints for k > k0i outlined
in equations (14), (15), (19) and (21); and the traffic model
constraints for k = k0i outlined in equations (16), (17) or (21),
(22), (23), (24) depending on each train initial state.
Commercial solvers for quadratic optimization problems

can be used to solve this optimization. In this case, the lsqlin
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solver integrated in MATLAB has been used, as detailed in
Section V-C.

This optimization model is executed at regular time inter-
vals (control cycle) to obtain the next dwell time control
action upik and the next running time control action urik .

B. ATO DRIVING COMMANDS GENERATOR FOR CBTC
TECHNOLOGY
This subsection refers to the second module (Fig. 2) of the
proposed traffic regulation model for CBTC, which trans-
forms the control actions calculated by the Mathematical
predictive traffic control algorithm (increase/decrease dwell
time at stations or increase/decrease running times with
respect to nominal values) into driving commands to be sent
to each train.

The proposed Traffic regulation model for CBTC is based
on continuous communication enabling continuous regula-
tion as trains can receive control actions at any point along
the journey. This represents an improvement in operational
efficiency improving the response to disturbances.

The proposed traffic regulation system modifies the driv-
ing commands of the ATO in real time, at any moment.
The type of driving commands of the ATO depends on the
specific characteristics of the equipment (which depends on
the manufacturer). The proposed traffic regulation model
is based on one of type of ATO in service nowadays in
many different metro lines. Specifically, the modelled ATO
permits 2 types of driving: maintaining a constant speed
defined by the speed regulation command vreg, or drivingwith
coasting-remotoring cycles based on the commands coasting
velocity vd and remotoring velocity vr .
An interstation governed by a coasting velocity and a remo-

toring velocity is shown in Fig. 5.When the train is in traction
and reaches the coasting velocity, the motor stops exerting
force, and the train starts to coast, moving by its own inertia
conditioned by the slope of the track. In case the train reaches
the remotoring velocity, traction will be applied again until
braking orders are given or another coasting point is reached
(coasting speed). In any case, the train will brake to observe
speed limitations and stopping points.

FIGURE 5. Interstation speed profile.

To update the ATO’s driving commands in real-time, the
model is executed at small time intervals to efficiently quan-
tify delays. This strategy allows for more effective traffic
regulation, resulting in shorter waiting times for passengers.

1) GENERATION OF DRIVING COMMANDS AT DEPARTURE
In existing traffic regulation systems, the set of driving com-
mands that the controller can select and send to the trains is a
reduced number, typically 4, due to limited communications.
This set of driving speed profiles, from station departure to
arrival at the next station, are usually pre-designed imposing
restrictions on travel time, consumption, and passenger com-
fort. When the traffic regulation system calculates the time
correction required for a train, it selects, from among the pre-
designed commands, the one that is closest to the required
time.

In the proposed model, thanks to the large bandwidth
available, the set of pre-designed speed profiles for each
inter-station can be much larger: a Pareto curve in which for
each travel time the profile that minimizes consumptionwhile
meeting comfort requirements is designed [48]. In this way,
traffic control can be more precise in the execution of the
optimal travel time and will have a positive impact on both
the quality of service and energy consumption.

When a train departs from station, the required running
time to next station is calculated:

tok0i = Rk0i + urik0i (28)

where tok0i is the objective running time from initial station
k0i to estation k0i + 1 for train i, Rk0i is the nominal running
time defined in the timetable for this stretch and urik0i is the
correction time for the running time for this train calculated
by the mathematical predictive control algorithm in the last
execution.

The driving commands vd , vr or vreg for this train are
selected from the pre-designed Pareto front for the required
objective running time tok0i .

2) UPDATE OF DRIVING COMMANDS ALONG THE
INTERSTATION
On the other hand, in the proposed model based on con-
tinuous communication, the mathematical predictive control
algorithm updates the control actions every control cycle
when the train is on the route. Then, the ATO driving com-
mands generator adapts the driving commands calculated at
the departure as described in the following.

Consider a stretch between two stations k0i and k0i + 1,
where the movement of train i is governed by a coasting –
remotoring type of driving. As can be seen in Fig. 6, the
inputs of the proposed driving commands generator are the
train’s position pos, the train’s time t , where t = 0 at the
moment the train departs from station k , the coasting velocity
vd , the remotoring velocity vr , and the target running time
tok0i . The objective of this module is to modify these ATO
driving commands vd ′ and vr ′ to achieve this updated target
time, even if it changes during the interstation.

The target time tok0i from the current position of the train
pos, to the next station is calculated as:

tok0i = Rposk0i
+ urik0i (29)
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FIGURE 6. ATO driving commands generator algorithm.

where Rposk0i
is the nominal running time from the current

position of the train pos, to the next station and urik0i is the
correction time for the running time for this train calculated
by the mathematical predictive control algorithm in the last
execution.

If all trains in the convoy adhere to the nominal schedule at
the time of predictive optimization execution, the run control
action urik0i will be null. Consequently, the target time tok0i
will coincide with the nominal time Rpik0i , resulting in no
changes in the ATO’s driving commands (nominal driving).

Once the target running time tok0i is calculated, the running
time from the current train location up to the next station is
simulated in a loop (using the simulation algorithm described
in Section IV). In each iteration of this loop, the current
coasting velocity vd and remotoring velocity vr are modified
by a velocity increment1v, small enough to achieve accurate
resolution. This process continues until the simulated running
time applying the modified commands is tok0i .

For the modification of these driving commands, two cases
can be considered:

1. If the train is in traction mode (it is approaching the
coasting point), the coasting velocity vd and remotor-
ing velocity vr will be modified with the same speed
increment 1v.
However, it can be possible that, due to the restric-
tion (30) that the remotoring velocity cannot be
lower than a minimum remotoring velocity vrmin, the
inter-station cannot be covered within the target time
tok0i . In this case, when remotoring velocity has reached
its lower value, the coasting velocity will be modified
in the same velocity increments 1v until the restric-
tion (31) of minimum difference between coasting and
remotoring velocity vdiffmin is met.

vrmin < v′r (30)

vdiffmin < v′d − v′r (31)

2. If the train is coasting (it is approaching the remotoring
point), the remotoring velocity vr is reduced until the
minimum remotoring velocity restriction is met. If this
is not sufficient to achieve the target time tok0i , the
coasting velocity vd is then reduced until the minimum
difference between coasting and remotoring velocity
vdiffmin restriction is met or until the target time is
reached.

It is worth noting that, in the case when the driving
command is speed regulation vreg (to maintain a constant
velocity), the procedure of the model is similar: the regulation
velocity v′reg is reduced in velocity increments 1v until the
target time ton is achieved or until the minimum regulation
velocity restriction vreg.min is reached

vreg.min < v′reg (32)

IV. SIMULATOR OF THE MASS TRANSIT LINE
To evaluate the benefits of the proposed algorithm, a sim-
ulator based on a real mass transit line has been designed
with the ability to model the movement of N trains simul-
taneously. This simulator (see Fig. 2) consists, on one hand,
of an onboard control that includes the ATO, which receives
the driving commands generated by the predictive algorithm
equipped with CBTC technology and delivers to the train the
force that the motor must exert. The onboard control will read
the position, time, and speed of each train, and those data will
be used as inputs to repeat the process described in Fig. 2.

All trains within the convoy are considered identical and
are modeled in the same way. For each train, its length l, mass
m, and three coefficients ares, bres, and cres involved in rolling
resistance are defined [49]. Therefore, the running resistance
force Fres is defined as

Fres = ares + bresv+ cresv2 (33)

The track grade is defined as gr being positive if it is
increasing and negative if it is decreasing. Considering the
resistance force due to the track slope Fgr , it is obtained

Fgr = m · g · gr (34)

Themotor force Fm that the train needs to apply is obtained
from the implemented ATO algorithm, where a distinction
is made between acceleration and braking situations. The
parameter k is the gain of the proportional controller, and the
variable a0 is the ratio of traction force which is saturated
between 0 (coasting) and 1 (maximum traction effort).

In the case of acceleration, considering the maximum track
velocity vmax and the maximum traction force dependent on
the train velocity Fmax(v), the calculation is performed as
follows:

a0 = k(vmax − v) (35)

Fm = aoFmax(v) (36)

The model takes into account the driving commands
received. When the train reaches the current vd command
it starts coasting (null traction effort Fm). When the train
reaches the current vr command the traction effort is calcu-
lated again as (36) to accelerate.
In the case of braking, three scenarios are considered. The

first occurs when braking is necessary due to a reduction in
the maximum track velocity. The second scenario happens
when the train is approaching a station, and the third scenario
is executed when train i + 1 detects an excessive approach
to train i, typically due to situations like excessive delays
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or unplanned stops along the route. For each of the three
previous scenarios, a braking curve is calculated so that the
train can observe these limitations.

In this case, defining the ATO parameters kbr , deceleration
decel, and the velocity limit for the train vns calculated as the
minimum speed at the train’s position of the braking curves,
determined by the most restrictive braking curve resulting
from the three situations, the calculation is as follows:

a0 = kbr (vns − vi) − decel + gr·g (37)

Fm = a0mi (38)

where mi is the total inertial mass of the train including the
rotatory inertia mass.

It is important to mention that, when calculating the trac-
tion effort for both acceleration and braking, the variations
are such that a jerk limit of 0.7 m/s3 is not exceeded to ensure
passenger comfort.

Given the forces Fres, Fgr and Fm calculated in equa-
tions (33), (34), and (36) or (38), the acceleration ac of the
train is calculated at each simulation step st, defined by the
time increment 1t:

ac(st) =
Fm − Fres − Fgr

mi
(39)

And, in turn, the values of velocity v and the train’s position
pos are deduced from the acceleration at each simulation step

v (st) = v (st − 1) + ac (st) · 1t (40)

pos (st) = pos (st − 1) + v (st) · 1t +
1
2
ac (st) · 1t2 (41)

The multi-train simulator has been equipped with a model
that quantifies delays caused by passenger boarding and
alighting at stations. This phenomenon is simulated by adding
an extra stop time sdk to the nominal stop time S0k and to the
current dwell control action upk , resulting in the actual stop
time srk at station k

srk = S0k + upk + sdk (42)

In reference [47], it is explained that the most accurate
statistical distribution to simulate these types of events is a
lognormal distribution. Therefore, the model implemented in
the simulator obtains the extra stop time sdk from a lognormal
distribution with a mean equal to the nominal stop time and a
standard deviation of value.

V. RESULTS
The proposed traffic regulation model has been implemented
and tested using the traffic simulator.

The simulator is based on a fixed-increment time advance,
using a simulation step of 0.1 s. The main characteristics
of the simulated loop line (travel times, stop times, ATO
characteristics, track profile, speed limitations), are based on
a real Spanish mass transit line. The implemented system
consists of 35 stations and 15 trains, and the parameters
characterizing the line have been defined with a nominal stop
time of 20 s per station and a nominal interval of 210 s. The

nominal travel time between stations depends on the distances
between them and the track layout, varying between 49 s for
the shortest interstation and 116 s for the longest interstation.

Additionally, the line configuration does not allow to
recover delays during station stops, but the dwell time can
be extended up to a maximum of 20 s beyond the nominal
stop time. Similarly, the running time that a train can lose or
gain at each interstation respect to the nominal one is defined
by the range of speed profiles available to be executed at each
interstation.

The CBTC control cycle has been adjusted to 1 s, so control
actions are computed and sent at this rate, regardless of
whether the train is stopped at a station or in transit.

A. SCENARIOS CONSIDERED
In Scenario 1, the ATO Driving Command generator,
described in Section III-B, is tested by requesting a new
running time at intermediate points between two consecutive
stations, obtaining the new speed profile that the train must
follow to comply with the target arrival time.

In Scenario 2 the evolution of the traffic is studied when
a delay of 120 seconds arises to one train in the convoy.
In this case, no uncertainty is applied to the stop times due
to passenger boarding and alighting, as the goal is to study
the recovery transient of the traffic regulation algorithm.

Finally, the traffic evolution is examined under normal
operating conditions when dwell times depend on statistical
probabilities resulting from disturbances caused by passen-
gers (Scenario 3).

The selection of the weights in the cost function
(equation (25)) has been chosen as follows. The weights
of the regularity of interval and the stop and travel control
actions have been defined equally to promote the interval
objective (q = a = b = 1). On the other hand, the schedule
weight has been set to p = 0.15 to achieve total recovery
of delays once the trains’ intervals have been regulated. The
weight of the slack variable is set to a big value to be used only
when necessary (c = 1.000). Finally, the simulation horizon
in Scenario 2 and 3 has been defined as one complete round
on the metro line (L = 35 stations), big enough to predict
completely the recovery of delays of Scenario 2.

B. TESTING PHILOSOPHY
The performance of three different controllers that corre-
spond to different controllers is compared to demonstrate
the advantages of the predictive traffic regulation algorithm
proposed equipped with continuous communication and a
high bandwidth (which permits to use the generated Pareto
curve explained in Section III-B):

• Controller (A) implements the proposed mathematical
predictive model, explained in Section III, to generate
the control actions in a line equipped with a discrete
control center to train communication system, with low
bandwidth, offering a choice of four predesigned speed
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profiles. Delay quantification and control action gener-
ation are only performed at stations.

• Controller (B) implements the proposed mathematical
predictive model, explained in Section III, to generate
the control actions in a line equipped with a discrete
control center to train communication system, with high
bandwidth, offering all the velocity profiles existent in
the Pareto curve. Delay quantification and control action
generation are only performed at stations.

• Controller (C) implements the proposed mathematical
predictive model, explained in Section III, to generate
the control actions in a line equipped with a continuous
radio communication signalling system with high band-
width, offering all the velocity profiles existent in the
Pareto curve. This last controller constitutes the regu-
lator where the proposed predictive algorithm equipped
with CBTC is implemented. Delay quantification and
control action generation are continuously performed.

The performance indicators for the proposed traffic reg-
ulator will be determined by the objectives in the cost
function: deviations from the nominal schedule, deviations
from the nominal interval, and the evolution of control actions
throughout the simulation scenario.

C. COMPUTATIONAL PERFORMANCE
The predictive optimization mathematical model generating
control actions has been implemented using the MATLAB
programming language. The lsqlin solver is employed, which
can solve linear least squares problems with linear con-
straints.

The problems have been solved using an Intel Core i7
processor with a base frequency of 2.6 GHz. The average
time elapsed in generating control actions is 0.85 seconds.
This time is sufficiently fast to be applied to a control cycle of
1 second, which is the frequency at which CBTC technology
recalculates train velocity profiles based on the provided
control actions.

D. SIMULATIONS RESULTS
1) SCENARIO 1. SIMULATION OF THE ATO DRIVING
COMMAND GENERATOR IN ONE INTERSTATION
The first scenario described in SectionV-A is presented in this
section. The selected interstation has a nominal running time
of 49.5 seconds, designed according to a coasting velocity of
45 km/h and a remotoring velocity of 30 km/h. Due to a traffic
disturbance, it is supposed a control command of 4 seconds
slower than the nominal interstation run time.

Two scenarios are presented to demonstrate the operation
of the calculator of the ATO driving commands: in the first
situation, Scenario 1.1, the speed profile recalculation com-
mand is received at the beginning of the run while the train is
accelerating; in the second situation, Scenario 1.2, the speed
profile recalculation command is received while the train is
coasting, after having reached the coasting velocity.

TABLE 2. Scenario 2 results.

The objective of the CBTC speed profile calculator is to
find new ATO driving commands that allow extending the
interstation travel time by 4 seconds. In Fig. 7, the speed
profile obtained in the two scenarios are shown.

It is observed that, depending on the situation, different
strategies are employed to achieve the new target time. In Sce-
nario 1.1, both coasting and remotoring velocities have been
adjusted to reach the goal because the train has not started to
coast when calculating the new speed profile. In the second
Scenario 1.2, only the remotoring velocity has been modified
given that the train is coasting when the new speed profile is
generated. The obtained speed profiles performed the target
running time 53.5 s.

2) SCENARIO 2. SIMULATION OF THE TRAFFIC REGULATION
ALGORITHM IN A COMPLETE LINE WHEN ONE TRAIN IS
INITIALLY DELAYED
A delay of 120 seconds is applied to one train of the con-
voy, and the goal is to analyze the system’s behavior during
the transient period until the nominal schedule is recovered.
To analyze this, the metrics used are the terms of the cost
function (J ), namely, the deviation from the nominal schedule
(SchD), the deviation from the nominal interval (HD), the
control actions for travel (RCA) and stop (SCA) executed and
the slack variable (SG), with all previous terms squared and
summed for all trains and all stations.

Additionally, the energy consumption (E) of the convoy
has been calculated to compare the three traffic regulators in
terms of both operation and energy consumption.

In Table 2, the results for the previously mentioned param-
eters and the energy consumption for the three controllers are
presented, and in Table 3, the percentage improvements of the
CBTC-equipped regulator (Controller C) over the other two
controllers are shown.

The proposed traffic regulator of CBTC lines represents
a significant improvement over the other two regulators in
all parameters except for the deviation from the nominal
schedule. To enhance the regularity of the nominal headway
between trains, it is necessary to compromise schedule adher-
ence. The balance between headway and timetable adherence
is represented by the cost function (J ), which is improved by
the proposed controller by 17.68% and 7.18% compared to
Controller A and B respectively.

96872 VOLUME 12, 2024



Á. Cidoncha et al.: Predictive Traffic Regulation Model for Railway Mass Transit Lines Equipped

TABLE 3. Scenario 2 percentual results of Controller C.

In terms of energy consumption, in the face of significant
delays in operation, the proposed regulator in this article
is capable of consuming 6.28% less energy than traditional
regulators based on discrete communications (Controller A)
thanks to the high resolution of driving commands. It can
be observed that controllers B and C present similar energy
consumption results. That means that, although continuous
communication improves headway regularity, the effect on
energy consumption can be neglected.

To better understand the results, Fig. 8 and Fig. 9 illustrate
the evolution of the delay recovery transient period. Fig. 8
shows the delay evolution of the initially delayed train and of
the preceding train (i − 1) with the 3 controllers described.
Fig. 9 shows the delay evolution of the initially delayed train
and of the following train (i+ 1) with the 3 controllers.

FIGURE 7. ATO driving commands recalculation.

These two trains have been chosen for representation as
they are the ones most affected by the delay-induced velocity
regulation.

The initially delayed train recovers the schedule running as
fast as possible, taking into account that the time that can be
recovered is different at each interstation. The transient of the
preceding train starts running slower than the nominal time
to reduce the headway deviation with the delayed train. Once
this headway deviation is small enough, the preceding train
starts to run faster to recover its own delay. As can be seen
in Fig. 8, the advantage of continuous communication is that

FIGURE 8. Transient evolution (i − 1).

FIGURE 9. Transient evolution (i + 1).

the preceding train reacts earlier when the train is running.
Similarly, the follower train initially increases its own delay
to separate from the delay train, and runs faster when the
headway delay is reduced (Fig. 9). As in the previous case,
Controller C allows an earlier reaction.

Fig. 10, Fig. 11, and Fig. 12 depict the evolution of
the deviation from the nominal headway for the preced-
ing and follower train. As can be seen in these figures,
using Controller C, the early reaction of the preceding train
causes its headway delay rises some stations before the
other controllers. However, it allows it to get closer to
the delayed train to reduce its headway deviation. On the
other hand, the early reaction of the follower train allows
him to maintain more distance with the delayed one and,
as a consequence, experiments significantly lower headway
deviation.

To conclude the results of scenario 2, Fig. 14 and Fig. 15
show the evolution of the convoy’s sum of squared deviation
from the schedule and the evolution of the convoy’s sum of
squared deviation from the headway over time, respectively.

Once again, the improvement in maintaining the nominal
interval can be observed due to the proposed regulator, even
though there is a sacrifice in adhering to the nominal schedule
according to the preferences defined in the objective function
weights.
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FIGURE 10. Headway deviation of the preceding train (i − 1).

FIGURE 11. Headway deviation of the follower train (i + 1).

FIGURE 12. Headway deviation of the delayed train.

3) SCENARIO 3. SIMULATION OF THE TRAFFIC REGULATION
ALGORITHM IN A COMPLETE LINE WITH RANDOM DELAYS
AT EACH STATION
Finally, Scenario 3 is introduced, where the aim is to analyze
the system’s behavior under nominal operating conditions
considering the statistical dwell time deviations. In this sce-
nario, no initial delays are imposed on the trains (as in
Scenario 2). Instead, the system evolves by introducing noisy
dwell times at the stations due to passenger boarding and
alighting. This phenomenon has been simulated using a

FIGURE 13. Sum of squared schedule deviation. Scenario 2.

FIGURE 14. Sum of squared headway deviation. Scenario 2.

TABLE 4. Scenario 3 results.

log-normal distribution with a mean of the nominal station
stop time (20 seconds) and a standard deviation of 5 sec-
onds [47]. Specifically, in this scenario, the delays occurring
at the stations are relatively small, not exceeding 24 seconds
in the most unfavorable case. The simulation window is long
enough to observe the effects of the three regulators over time.

Like Scenario 2, Table 4 displays the results of the compo-
nents of the objective function and the energy consumption
for the three regulators. Additionally, Table 5 presents the
percentage improvements of the CBTC-equipped (Controller
C) over the other two controllers.
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TABLE 5. Scenario 3 percentual results of Controller C.

In this scenario that represents the normal traffic of the line
with small disturbances at each train departure, the proposed
Controller C significantly improves all the studied parame-
ters. Based on the results, both the deviation from the nominal
schedule and the deviation from the nominal headway are
improved.

Additionally, comparing Controller C with Controller A,
run control actions are reduced by half, and stop control
actions are nearly eliminated (a reduction of 99.20%). Pas-
senger comfort at stations is therefore increased by Controller
C, because dwell time increase is unpleasantly perceived by
passengers. Comparing Controller C with Controller B, run
control actions are reduced 1.16%, and stop control actions
are reduced 4.85%.

Finally, in terms of energy efficiency, implementing the
proposed Controller C would result in an energy savings
of 5.42% compared to what would be consumed with the
low-bandwidth Controller A.

VI. CONCLUSION
Traffic regulation systems are crucial in mass transit lines to
prevent line instability and improve the quality of service,
dealing with the frequent delays of this kind of line.

The traffic regulation system constantly supervises the
traffic performance in terms of timetable and headway adher-
ence, and regulates the dwell time and the running time of
trains.

The present paper proposes a new centralized pre-
dictive traffic regulation model for a railway mass
transit line equipped with CBTC signalling system.
This model takes advantage of continuous communica-
tions between the centralized control center and trains,
to send control actions at any time and at any point of
the line.

The contributions of this algorithm include a continu-
ous measure of schedule and headway deviations. Based
on that information, the proposed mathematical predictive
control algorithm calculates the running time and stop control
actions using a quadratic programming optimization model
that includes the traffic constraints. The main objective of
the control is the minimization of the timetable and the head-
way deviations weighted according to operators’ preferences.
Then, the proposed generator of updated ATO driving com-
mands modifies the speed profile of the trains when a new

target running time is provided by the predictive control for
trains running between stations, permitting the early correc-
tion of delays.

To verify the impact of the proposed model on the
operation of a mass transit line, this algorithm has been
implemented and tested by means of a detailed simulation
model of a real Spanish metro line. Two traffic cases have
been analyzed.

The traffic case considering a significant single delay in
a train is used to study the system’s transient response of
the proposed CBTC regulation model compared to traditional
regulation models based on discrete control center to train
communications. According to the results, it can be con-
cluded that when a train experiences a significant delay, the
proposed model improves the adherence to nominal head-
way by 19%, at the expense of deviating from the nominal
schedule by a similar proportion. In this case, travel and
stop control actions are reduced to about one-fourth of the
control actions generated with traditional regulation systems,
which implies a passenger comfort increase. Globally, the
cost function that reflects the timetable and headway prefer-
ences is improved by 18%. In addition, energy consumption is
reduced by 6.3%.

The traffic case under normal operating conditions consid-
ers random delays at each station. In this case, the adherence
to the schedule and nominal headway improves by 33% and
49% respectively, due to the capability to provide an early
reaction to the delays that arise in the line. Furthermore,
control actions are significantly reduced, resulting in better
passenger comfort, and the energy consumption is reduced
by 5.4%.

These results show that modern signalling systems based
on continuous communications, that permit a better trans-
port capacity, require the design and implementation of new
regulation models to improve traffic regularity, energy con-
sumption, and quality of service.
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