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ABSTRACT Diabetic Retinopathy (DR) is a prevalent outcome of diabetic mellitus. This causes lesions to
form on the retina, impairing eyesight.Most likely, blindness can be avoided if theDR condition is discovered
at an initial stage. Since DR is a non-reversible condition, early detection and treatment can significantly
reduce the chance of visual loss. Fundus images manually detect DR, which is a laborious and error-prone
procedure. In assessing and categorizing medical images, machine learning and deep learning have emerged
as the most efficient methods, surpassing human performance, common image processing methods, and
other computer-aided detection systems. For this article, the most recent approaches for utilizing fundus
images to classify and detect DR using machine learning and deep learning methods have been researched
and evaluated. The freely accessible DR Datasets consisting of fundus images have also been discussed.
We reviewed several DR pipeline components, including the datasets that researchers frequently used and
the preprocessing and data augmentation steps, feature extraction methods, commonly used detection and
classification algorithms, and the generally used performance metrics. This paper ends with a discussion
of current challenges that have to be tackled by researchers working in this field to translate the research
methodology into actual clinical practice. Finally, we conclude with a discussion of the future perspectives
of DR.

INDEX TERMS Diabetic retinopathy, machine learning, fundus images, computer-aided diagnosis, retinal
diseases.

I. INTRODUCTION
The eye is the human body’s most essential and complex
organ [1]. It assists us in visualizing objects in a light
colour and depth perception. It consists of the following parts
(Fig 1).

• Sclera: The eye’s sclera, or white component, serves as
the exterior covering and is a robust protective layer.

• Cornea: The cornea is the transparent front portion of the
sclera. Through the cornea, light enters the eye.

The associate editor coordinating the review of this manuscript and

approving it for publication was Carmelo Militello .

• Iris: The iris is a ring-shaped black muscular tissue
structure below the cornea. The eye’s colour may be
determined by looking at the iris. Changing the iris, the
iris also contributes to regulating or adjusting exposure.

• Pupil: Pupil refers to the tiny opening of the iris. The iris
aids in controlling its size. It controls the amount of light
that reaches the eye.

• Lens: The lens is a transparent object behind the pupil.
It transforms into a different shape to concentrate light
on the retina through the action of ciliary muscles.When
focusing on nearer items, it gets thicker and gets thinner
as it gets farther away.
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FIGURE 1. Eye anatomy.

• Retina: This layer has numerous nerve cells, which are
also light-sensitive. It alters the lens’s generated photos
into electrical impulses. These electrical impulses are
subsequently sent to the brain via the optic nerves.

• Optic Nerve: Optic nerves consist of cones and rods. 1.
1) Cones: Cones are the nerve cells more sensitive

to bright light. They help in detailed central and
colour vision.

2) Rods: Rods are the optic nerve cells that are more
sensitive to dim lights. They help in peripheral
vision.

Any disorder in the eye can cause serious effects, from
visual impairment to blindness. Although there are numerous
eye disorders, the four most prevalent ones that result in
vision loss or blindness are

• Age-related Macular Degeneration (AMD)
• Glaucoma
• Cataract
• Diabetic Retinopathy
Macular degeneration (age-related macular degeneration)

is a visual disease that can harm central vision. The macula,
the middle portion of the retina that enables us to see tiny
details, is hurt by it. It is projected to be the primary cause of
blindness in people over 60. Glaucoma is a visual disorder
brought on by excessive eye fluid pressure. The pressure
harms the optic nerve, which alters the visual data transmitted
to the brain. Lens clouding in the eye is known as a cataract.
One or both eyes may develop this cloudy lens.

A. DIABETIC RETINOPATHY AND ITS EPIDEMIOLOGY
Diabetic retinopathy, a severe complication of diabetes
mellitus, results from prolonged periods of uncontrolled high
blood sugar levels that progressively damage the retinal blood
vessels. This condition, if left untreated, can lead to signifi-
cant visual impairment and even blindness. As highlighted
in Table 1, the symptoms and causes of diabetic retinopathy,
alongside other retinal diseases, underscore the critical need
for early detection and intervention. Fig 3 visually represents
the impact of these diseases.

According to theWorldHealth Organization (WHO) report
from 2022, approximately 2.2 billion people globally suffer

FIGURE 2. Graphical representation of rise in retinal diseases in 2022.

FIGURE 3. The appearance of various retinal diseases (a) Age-related
macular degeneration (b) Glaucoma (c) Cataract (d) Diabetic Retinopathy.

from some form of visual impairment, whether at a near
or distant range (Fig.2). Alarmingly, at least one billion of
these cases involve vision loss that could have been prevented
or remains untreated. Among these individuals, 94 million
experience moderate to severe distance vision impairment or
blindness due to untreated cataracts, 8 million are affected
by age-related macular degeneration, 7.7 million suffer from
glaucoma, and 3.9 million have diabetic retinopathy.

The prevalence of diabetic retinopathy, affecting nearly
4 million people worldwide, highlights a significant public
health challenge. Given the increasing global prevalence
of diabetes, the burden of diabetic retinopathy is expected
to rise, exacerbating healthcare systems and economic
resources. This condition not only diminishes the quality of
life for millions but also imposes substantial costs on health-
care systems and economies worldwide. Therefore, under-
standing the epidemiology of diabetic retinopathy is crucial
for developing effective prevention and treatment strategies.

This review aims to synthesize current knowledge on
diabetic retinopathy, to inform healthcare professionals,
policymakers, and researchers about the latest advancements
and gaps in the field. By enhancing our understanding
and response to diabetic retinopathy, we can mitigate its
impact, improve patient outcomes, and ultimately contribute
to reducing the global burden of visual impairment.
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TABLE 1. Symptoms and effects of various eye diseases.

Among other retinal diseases, the most significant cause
of blindness worldwide is diabetic retinopathy. It is that
condition of the eye that diabetics experience when their
excessive blood sugar levels harm the blood vessels in their
retina. These blood vessels can expand and leak, or they can
block the flow of blood. Abnormally new blood vessels on
the retina can occasionally form and cause visual loss. The
WHO estimates that the number of DR patients is increasing
exponentially and will reach approximately 439 million
by the year 2030 [2]. Blindness can result from diabetic
retinopathy (DR), an optical symptom of diabetes. Diabetes
patients have more chances of DR in between 40 and 45%
of cases. [3]. Non-proliferative diabetic retinopathy (NDPR)
and proliferative diabetic retinopathy (PDR) are the primary
stages of diabetic retinopathy. A proliferative retinal disease
causes the retina to develop unusual blood vessels. Tiny
red dots are present in the retina at the starting stage of
the condition, known as a non-proliferative retinal disease
(NPDR). (Fig 4). These tiny spots could be microaneurysms
(MA) or unusual pouching of blood vessels, which would be
hemorrhage (HM). These blood vessel linings are exposed to
damage, allowing fluid and fatty substances called exudates
(EX) to flow out. Yellow lesions called hard exudates (HE)
result from plasma leakage. They span the retina’s outer

FIGURE 4. Retinal images (a) NDPR fundus image with Microaneurysms,
Haemorrhage, and Exudate (b) PDR fundus image with abnormal blood
vessels (c) Normal Retina.

layers and feature sharp edges. Due to swelling of the nerve
fibres, Soft Exudates (SE) appear on the retina as white ovals.
NPDR is further subdivided into mild, moderate, and severe
NPDR (Fig 5); refer to Table 2 for their details.

To prevent blindness, the foveal avascular zone (FAZ), the
optic disc (OD), and neovascularization (NV) are additional
markers that can be utilized to identify and characterize
DR at the starting stage. The lack of blood vessels and the
inner retinal tissue that covers it is believed to improve the
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TABLE 2. Brief description of stages of DR.

FIGURE 5. Different retinal images representing the severity levels of DR.

fovea pit’s optical quality by minimizing light scattering.
The foveal avascular zone refers to this core avascular area.
A vast, unstable, dispersed microaneurysm foveal avascular
zone indicates diabetic retinopathy. The Optic Disc is the
brightest, homogenous, circular structure in a usual eye
fundus image and appears yellowish [4]. Identifying any
anomaly in the OD’s area, size, shape, or structure will
indicate the early changes leading to vision loss. Because
of the severe oxygen deficiency in red blood cells (RBC),
there is less blood flow to the eye’s tissues, which leads
to the growth of new, unstable blood vessels and a dense
OD. Neovascularization, the collective term for these new
blood vessels, poses a major threat to vision [5]. The
intimidations of NPDR can be minimized if it is detected
and treated at early stages. Manually identifying DR patients
is a very time-consuming and challenging process that is
always subject to ophthalmologists’ judgment [5]. Further,
with the demand for screening services, manual diagnosis
for many DR patients is insufficient, and manual screening
often leads to significant inconsistencies among retinal
specialists [6]. Around seventy-five percent of DR patients
come from low-income nations, where they don’t have the
infrastructure and retinal specialists needed for DR screening
[7] Therefore, automated methods of detection of DR are
important to solve these problems with manual diagnosis and
help ophthalmologists.

B. DR DETECTION IMAGING MODALITIES
There are various imaging modalities used for DR detection
(see, (Fig 6)), which includes

• Slit lamp Images
• Ultrasonic Images
• Digital Images
• Fundus Images

A microscopic slit lamp with strong light is used during an
eye exam. It allows ophthalmologists to look closely at the
several structures in the eye and on the front of the eye.

FIGURE 6. Imaging modalities used for examining eye (a) Slit lamp
(b) Ultrasonic image (c) Digital image (d) Fundus image.

It is a crucial tool for assessing eye health and spotting
eye problems. It is made up of expensive equipment. It can
raise eye pressure, making people feel sick or hurt their
eyes. Sound waves of high frequency are used in imaging
ultrasound to observe the body’s interior. These real-time
ultrasound images can display blood moving through BV
and the body’s interior organs’ movement. Ultrasonic eval-
uation takes time, and a specialist is needed to ensure the
evaluation’s quality. Creating a digital representation of an
object’s visual qualities, such as the object’s inner structure,
is called digital imaging. It doesn’t contain high-resolution
images. Retinal images are also known as fundus images.
A non-invasive diagnostic method called retinal imaging can
produce detailed retina pictures. Specialized cameras and
scanners are utilized to enlarge the eye’s retina, optic nerve,
and blood vessels. Fundus photography has a sensitivity and
specificity that is superior to ophthalmoscope methods.

Machine learning (ML) and deep learning (DL) techniques
are utilized to detect and classify diabetic retinopathy.
Many algorithms of machine learning are used in DR for
classification, including neural networks (NNET), random
forest (RF), K-Nearest Neighbor (KNN), Decision trees
(DT), Naive Bayes (NB), and support vector machine (SVM).
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DR detection and grading have extensively utilized deep
learning methods. Even when numerous diverse sources
are combined, it may still learn the characteristics of the
incoming data. Numerous DL-based techniques exist, includ-
ing convolutional neural networks (CNNs), autoencoders,
restricted Boltzmann machines (RBMs), and sparse coding.
Contrary to machine learning approaches, these techniques
work better as the amount of training data increases with
the increase of learned features. The difference between
them is that DL methods don’t require hand-crafted feature
extraction, but the machine learning method requires it.
DL methods require large data, but ML doesn’t require large
data [8].

The contributions of this study are as follows:

1) A study and analysis of the most recent machine
learning and deep learning strategies for detecting and
grading DR using fundus photographs.

2) We discussed various aspects of the DR pipeline, rang-
ing from commonly used datasets by the researchers,
the employed preprocessing methods and data aug-
mentation steps, feature extractionmethods, commonly
used detection and classification algorithms, and the
generally used performance metrics.

3) We thoroughly analyze the current trends and explore
future trends of DR.

4) In addition, various open problems and limitations of
DR that need further study are discussed.

A systematic literature review is presented in Section II, Sec-
tion III presents a framework for DR detection and grading,
and Section IV presents open problems and discussion.

II. LITERATURE REVIEW
The earlier detection of diabetic retinopathy has been
proposed using various ML and DL techniques. This study
provides a detailed review based on two categories, i.e.
ML methods and DL methods for the detection and grading
of DR. The difference between these two methods is given in
Table 3.

A. LITERATURE SEARCH DETAILS
The systematic literature review was based on both ML
and DL methods. The methods used for detecting and
grading DR are discussed in detail (Table 4 and 5). Initially,
we searched research papers related to diabetic retinopathy
and then filtered them according to our required criteria.
We want papers relevant to the detection and grading of
DR. Secondly, we explore those research papers where
authors used fundus images to evaluate their proposed
methods. We searched on different repositories, i.e. Google
Scholar, IEEE Xplore, Springer, and Science Direct. The
keywords used for searching research papers were DR,
DR Detection, DR grading, DR Classification, Lesions,
Retinal Diseases, and PDR/NDPR. The chosen research
papers range from 1995 to 2023. The search strategy used

FIGURE 7. Flowchart of summarizing the Literature search.

to find relevant research publications required for the study
involved these main steps (Fig 7).

B. MACHINE LEARNING APPROACHES
Machine learning-based DR classification approaches are
divided into lesion-based and binary/multilevel classification.
The details of these classifications are given in the subsequent
sections.

1) LESION BASED CLASSIFICATION
An overview of themachine learning (ML) techniques used to
diagnose and grade early-stage DR utilizing fundus images is
provided in this section.Walter et al. suggested amethod that
automatically detects MA in fundus images. In a preprocess-
ing step on the set of 5 fundus images, noise reduction, shade
correction, image normalization, and contrast enhancement
were performed. After this, image enhancement andGaussian
filtering were performed. Morphological top-hat transform is
used to extract the dark details from the image. Automatic
thresholding is then generated based on image quality.
False positives are eliminated during the last phase. After
an experiment, 86.4% of accuracy was achieved [9]. The
study [10] develops a system for identifying exudates,
hemorrhages, and microaneurysms in colour retinal pictures.
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TABLE 3. Difference between machine learning and deep learning methods.

Retina’s photographs were taken from a clinical diabetic
retinopathy screening service for 1273 patients in a row. The
method employed segmentation to identify potential lesions,
preparing images to uniformly color and improve contrast,
and artificial neural network categorization of lesions.
The system was tested against a set of test photos from
773 patients after being trained on a subset of photographs
from 500 patients. On each patient, the maximum sensitivity
for retinopathy identification was 95.1%, with a specificity of
46.3%. Although sensitivity decreased to 70.8%, specificity
could be raised as high as 78.9%. No cases of retinopathy
posing a threat to one’s ability to see were overlooked at
a location with 94.8% sensitivity and 52.8% specificity.
Niemeijer et al. describe and assess an automated technique
that utilizes ML to find exudates and soft exudates in digital
color fundus images. It also differentiates soft exudates
(cotton-wool spot) from hard exudates (drusen). A diabetic
retinopathy telediagnosis database had 300 retinal pictures
from one eye of 300 diabetic patients. A statistical classifier
is used in the system to classify. The system obtained the
ROC of 0.95. Sensitivity/specificity pairs of 0.95/0.88 for
identifying any bright lesions and 0.95/0.86, 0.70/0.93,
and 0.77/0.88 for the detection of exudates, soft exudates,
and hard exudates, respectively, were also attained [11].
An automated system developed by Silberman et al. to detect
diabetic retinopathy from retinal photographs. The images
were preprocessed through global colour-balancing opera-
tion, increased pixel luminosity, customized derivative filter,
and grayscale conversion. They extracted exudates from the
dataset of 1000 fundus images through SIFT. SVM is further
used for classification. After an experiment, they achieved
90% accuracy [12].

To execute a DR grading methodology based on FAZ
enlargement utilizing fundus pictures of the retina, a less
intrusive computerized DR system was designed [13].
An external fundus camera that can take high-definition
retinal images is attached to a computer for image processing
that can digitize and analyze retinal fundus images. For
analysis, 315 fundus photos were collected. Through CLAHE
(Contrast Limited Adaptive Histogram Equalization), the
contrast of the RBVversus the background image is improved
in the first procedure. Independent component analysis (ICA)
is also implemented to get a more accurate estimation of
vessel endpoints. Segmenting RBV in the fundus picture
is the second step. The third step involves identifying and
choosing retinal blood vessel endpoints in the perifoveal

capillary network to define and compute the FAZ area
by linking the endpoints of the RBV. The performance
of the classifier is assessed using V-Fold cross-validation
(VFCV). For all DR phases, the system attained 84%
sensitivity, 97% specificity, and 95% accuracy. The goal
of the study [14] is to identify RBV, which is essential
for minimizing the progression of diabetic retinopathy and
preventing vision loss. The algorithm’s primary modules
include converting color images (RGB) to grayscale images,
contrast improvement, background elimination, thresholding,
and postfiltration. An automatic segmentation method for the
RBV is provided by contrast enhancement and thresholding.
The technique has been tested on collections of fundus photos
taken from the Drive database, a freely accessible database.
It consists of 40 retinal photographs. The proposed system
achieves 96% accuracy.

Mahendran et al. identify exudates in five-colour fundus
retinal pictures to detect diabetic retinopathy automatically.
Additionally, they categorize how severe the lesions are. The
preprocessing of the retinal images initially includes colour
space conversion, image enhancement, and restoration. They
suggested a technique in which the blood vessels and optic
disc are first removed because their intensity level is the
same as that of exudates. The presence and distribution of
exudates are then determined using morphological processes,
including dilatation and erosion. Additionally, the SVM
classifier determines whether the patient is moderately
impacted or seriously affected by the condition [15]. Different
machine learning (ML) techniques were used to diagnose
DR earlier [16].ML techniques were applied to fundus pho-
tographs and DiaretDB0 datasets, which consist of 350 and
130 images, respectively. First, for the segmentation of blood
vessels, image processing techniques such as grey channel
extraction, adaptive histogram equalization (AHE), discrete
wavelet transform, gaussian matched filter response, and
fuzzy C-means clustering are utilized. Extraction of the green
channels, thresholding, and operations of morphological
dilation are just a few techniques of image processing used
to retrieve features like blood vessels, hemorrhages, and
exudates from raw pictures. The various classifiers (PNN,
BC, and SVM) are then fed the retrieved features for
classification. According to experimental findings, PNN has
an accuracy rate of 89.6%, BC has a rate of 94.4%, and
SVM has a rate of 97.6%. This implies that the SVM model
performs better than every other model. A framework was
designed by Antal et al. to classify colour fundus images
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based on DR. They experimented by using the Messidor
dataset consisting of 1200 images. Firstly, images were
compressed with an FOV of 450 and various resolutions.
Lesion detection and anatomical part recognition algorithms
were used to extract features. A group of classifiers is then
used to classify these features. This framework achieved 91%
Specificity and 90% Sensitivity [17].
Bhatia et al. used parameters such as the diameter of the

optic disc, lesion specific (microaneurysms, exudates), and
image level (prescreening) from the output of several retinal
image processing algorithms to focus on automatic iden-
tification of diabetic retinopathy (DR). They experimented
by using the Messidor dataset consisting of 1200 images.
Firstly, images were compressed with a FOV of 450 and
several resolutions. After training several classifiers, the best
individual classifier determines DR or non-DR categories.
94% of the accuracy was achieved by the experiment [18].
Mankar et al. detect haemorrhages and Exudates using
fundus images for early DR detection. They used two
image-based techniques of preprocessing i.e. Median Filter-
ing and histogram equalization. From the gray level matrix
for an image, texture features were derived. 100 fundus
photographs are used for SVM training. To determine if
an image is normal or has diabetic retinopathy, features
are entered into the classifier. They achieved an accuracy
of 89.50% [19].
The identification and grading of DR depend on the

early and precise detection of microaneurysms (MAs) [20].
Several preprocessing techniques are used to create images
appropriate for candidate and feature extraction. Two open
databases were used to evaluate the suggested strategy:
E-optha and ROC, which comprise 148 and 100 fundus
images. Illumination equalization, CLAHE, and smoothing
were performed on images as a preprocessing step. After
Candidate extraction, Hessian matrix-based features, Shape
and intensity features, and profile features were retrieved.
Three supervised classifiers–K-Nearest Neighbour (KNN),
Naive Bayes (NB), and AdaBoost–are the underlying clas-
sifiers to select an appropriate classifier for the feature
collection. The ROC database is used to evaluate these
three classifiers. According to the evaluation results, the
KNN and AdaBoost classifiers perform similarly to one
another and outperform the NB classifiers. This method
achieved an FROC score of 0.202 and 0.273 on ROC and
E-optha datasets, respectively. For the early diagnosis of
diabetic retinopathy, a novel technique was put forth that uses
several textural features and a machine learning classification
algorithm [21]. They experimented by using the Messidor
dataset consisting of 1200 images. Grayscale conversion of
images was performed as a first step. Using the local ternary
pattern (LTP) and a local energy-based shape histogram
(LESH), two features, i.e. haemorrhage and exudates, are
retrieved. LTP and LESH feature vectors are utilized to
classify using SVM. 0.841 accuracy and 0.916 AUC of
LTP, while 0.904 accuracy and 0.931 AUC of LESH were
achieved.

Revathy et al. concentrated on a hybrid machine-learning
model for auto-mated computer-aided identification of
diabetic retinopathy. Edge zero padding, median filtering,
and adaptive histogram equalization were all carried out
during the pre-processed phase of images. They extracted the
features of haemorrhage, micro-aneurysms, and exudates by
using the Kaggle dataset. This dataset consists of 244 images.
Exudates were segmented using smoothing, masking, and
bitwise AND after image preprocessing. Median blurring,
thresholding, image erosion, and image dilation were used to
segment haemorrhages and micro-aneurysms. This proposed
model employs a hybrid SVM, RF, and KNN classifier. The
maximum accuracy value obtained from the experiment data
was 82%. Precision, recall, and f-measure scores from the
hybrid technique were each 0.8119, 0.8116, and 0.8028 [22].
Akif used ML methods to diagnose DR early. 300 fundus
photographs are taken from credential sources. First, the
original fundus image is converted to grayscale, enhancing
image contrast. The canny detection algorithm is utilized to
find OD and blood vessels. The image processing techniques
like thresholding and morphological operation were utilized
to retrieve features from photographs of the fundus. For
classification, these photographic features are taken to the
classifiers (PNN, BC, SVM, K-Means clustering). Following
an experiment, it was determined that PNN, BC, SVM, and
K-Means Clustering all had accuracy levels above 89%. The
preliminary findings demonstrate that SVM was the best
approach for DR detection [16].

2) BINARY/MULTILEVEL CLASSIFICATION
Identification of the several stages of DR utilizing 124 retinal
optical Photos was performed [23]. The stages of DR
include mild, moderate, severe, and proliferative DR. Firstly,
pre-processing of images is performed, which essentially
comprises histogram-based image contrast improvement.
Morphological operations and thresholding are employed to
extract features from retinal pictures. The extracted features
are then inputted to the feedforward neural network for classi-
fication. The classifier has obtained a sensitivity of over 90%
and a 100% specificity. Acharya et al. automatically identify
the different stages of DR. The stages include normal, mild,
moderate, severe, and prolific DR. Firstly; they perform the
pre-processing step on the dataset of 300 retinal photographs.
This increases image contrast via histogram equalization.
For feature extraction, they have applied higher-order spectra
(HOS). The SVM is then fed the extracted features (HM,MA,
HE, and SE) for classification. 82% of sensitivity and 88% of
specificity were obtained after an experiment [24]. AM-FM
(amplitude-modulation, frequency-modulation) multiscale
approaches have been proposed for differentiating between
healthy and diseased retinal pictures. The online ETDRS
(Early Treatment Diabetic Retinopathy Study) database was
used to choose the images. They employ 120 sections
of 40*40 pixels, each including two different types of
normal retinal regions and four lesions frequently found in
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diabetic retinopathy (DR). A professional analyst manually
chose these regions. The region’s types were MA, EX,
NV on the retina, HM, normal retinal background, and
typical vessel patterns. The textural characteristics vectors
are the instantaneous amplitude’s cumulative distribution
functions, the instantaneous frequency magnitude (FM), and
the relative instantaneous frequency angle from various
scales. They evaluate inter-structure similarity using metrics
of the distance between the retrieved feature vectors. The
output shows that diseased lesions and normal structures
of the retina can be statistically distinguished. This method
achieves accuracy up to 92% [25].
Naveen et al.identified DR by using a technique for

extracting blood vessels from photographs of the human eye’s
retina. In the preprocessing step, they converted the image
RGB to a grey image. The HRF (High-Resolution Fundus)
Dataset’s fundus images are given a contrast enhancement
using an Adaptive Histogram Equalization (AHE) image.
This dataset is made up of 10 images. To prevent the
over-noise amplification that AHE can bring about, CLAHE
was created. The outcome demonstrated that affected DR
has been identified in the fundus image and that DR is not
detected in the healthy fundus image [26]. A novel model
was proposed in which the sub-datasets were generated from
Messidor fundus images [27]. This sub-dataset consists of
1151 images. Then the feature selection process is performed
through Information Gain Attribute Evaluation (IGAE) and
Wrapper Subset Evaluation (WSE). IGAE, often called
entropy evaluation, recognizes the most informative char-
acteristics for further processing in the classification model
while ignoring those that provide less insightful information.
The WSE technique compares the performance of various
subsets of the original dataset’s features using a fast-learning
yet effective pre-defined algorithm. The ensemble framework
was then constructed using a selection of specialized
features. Three primary classification algorithms–Random
Forest, Neural Network, and Support Vector Machine–were
integrated into the ensemble to predict the final result of DR.
The accuracy of the given model was 75.1%.

Machine learning in diabetic retinopathy detection uti-
lizes algorithms like SVM, Decision Trees, and Random
Forests to analyze retinal images and identify signs of the
disease. Studies like those by Walter et al. demonstrated
the effectiveness of SVM in detecting microaneurysms
with high accuracy. Niemeijer et al. developed a machine
learning-based system for detecting exudates in digital colour
fundus photographs, achieving significant sensitivity and
specificity. Machine learning models can efficiently handle
structured data and provide clear insights into decision-
making, facilitating easier clinical interpretation. They are
generally less computationally intensive and faster to train
than deep learning models. These approaches may struggle
with the high dimensionality of image data and require exten-
sive feature engineering to achieve optimal performance.
They can suffer from overfitting, especially in cases with
limited training data, affecting their ability to generalize

to new, unseen data. The potential of machine learning in
diabetic retinopathy detection is substantial, especially in
environments with limited computational resources. Future
work should focus on combining machine learning with deep
learning to leverage the strengths of both approaches, such
as using machine learning for preliminary feature extraction
followed by deep learning for detailed image analysis.

C. DEEP LEARNING APPROACHES
Same as ML-based approaches, deep learning approaches
are split into lesion-based classification and binary/multilevel
classification. The details of these DL-based approaches will
be given later.

1) LESION BASED CLASSIFICATION
The different methods used to detect and grade DR through
fundus images are presented in this section of DL. Gardner
et al. took fundus images to detect DR. 179 fundus images,
which were taken under consideration. Histogram equaliza-
tion, edge detection, and median filtering were performed
on fundus images as a preprocessing step. They used the
squares produced by non-overlapped slicing a retinal image
with a resolution of 700 × 700 pixels into several smaller
squares of 20 × 20 pixels to train an ANN to distinguish
between the presence and absence of a haemorrhage, exudate,
or blood vessel. For identifying DR on fundus images, the
network attained 88.4% sensitivity and 83.5% specificity
[28]. A method presented in [29] used the ‘‘Moat Operator’’
segments haemorrhages and exudates and improves repetitive
segmentation of regions of 30 digitized retinal pictures.
An image’s RGB components were converted into an
intensity, hue, and saturation (IHS) model. The intensity
band underwent adaptive, local contrast enhancement, and
the resulting image was again changed into RGB to display.
Ophthalmologists identified haemorrhages and exudates in
multiple small, 10*10 square, non-overlapping cut pictures.
The authors used segments rather than pixel segmentation to
assess their segmentation instead of pixel segmentation. The
NPDR method identified hemorrhages and micro-aneurysms
with 77.5% sensitivity and 88.7% specificity and exudates
with 88.5% sensitivity and 99.7%.specificity.

Kande et al. use pixel categorization and mathematical
morphology to identify microaneurysms and haemorrhages
in red lesions. They randomly took 89 images from Stare,
DiaretDB0, and DiaretDB1 datasets for an experiment. In the
pre-processing step, the Red and green channels of images
were extracted. Contrast stretching and median filtering were
performed on images. To determine whether the image had
red lesions, they examined the red and green extractions of an
image. Then, candidate locations for red lesion containment
are classified using the SVM technique. The suggested
method had 100% sensitivity and 91% specificity [30]. Using
the k-Nearest Neighbours algorithm as a splat-based feature
classifier chosen using an envelope and filter approach,
Tang et al. identified haemorrhages. They used a Messidor
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TABLE 4. Systematic analysis of literature review of ML approaches.
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TABLE 4. (Continued.) Systematic analysis of literature review of ML approaches.

dataset consisting of 1200 images for an experiment. The
FOV was automatically determined during a preprocessing
stage, and the imagewas resized to 1026× 681 pixels, with an
FOV that was roughly 630 pixels in diameter throughout the
whole dataset. With the Mes- sidor data set, the experiment
produced a 0.96 receiver operating feature (ROC) curve
score [31].

To detect DR, the study [32] has presented a Retinal Blood
Vessel (RBV) segmentation method utilizing a DNN (Deep
Neural Network) that was trained on 400,000 samples. This
method uses improved, contrast-normalized, and amplified
images. Images of Drive, Stare, and Chase datasets were used.
The network training was performed using backpropagation
and dropout in this model. PLAIN BALANCED and
NO-POOL are the two fundamental configurations proposed
in the model. They rely on structure prediction for the
concurrent classification of numerous pixels. The maximum
AUC was attained by the PLAIN BALANCED model,
which was 0.9738 on Drive and 0.9820±0.0045 on Stare.
The area under the ROC curve for this model was 99%,
and its classification accuracy was 97%. The method has
an 87% sensitivity rating for identifying fine vessels and
is resistant to central vessel reflex phenomena. A CNN
architecture was created by Grinsven et al. by using nine
layers made up of carefully chosen samples and 41 × 41-
inch patches labelled with or without haemorrhage evidence;
it is possible to detect haemorrhage. Messidor and Kaggle
data sets consisting of 6679 and 1200 images were used
for an experiment. In preprocessing, the FOV of the fundus
images was segmented, and circular template matching was

used. Images were cropped and resized to 512 × 512-pixel
dimensions to reduce computational costs. Image contrast
was improved. Haemorrhages were detected on images from
the Messidor and Kaggle data sets with 84.8% sensitivity
and 90.4% sensitivity, respectively [33]. A couple of CNN
models are composed of a single CNN and heterogeneous
CNN modules.

Both models were trained using gradient descent and
backpropagation, respectively, proposed by Paul et al. [34].
Using theDiaretDB0 dataset, they are contrasted to determine
how well they can identify DR. The multilayer perceptron
network classifier utilized in the proposed framework and
its output show normal pictures, MAs, HEs, hard EXs, soft
EXs, and NV, respectively. The experiment was performed
with heterogenous CNN and single CNN with varied filter
sizes and receptive field sizes using 130 colour images
from the DiaretDB0 dataset. For MAs, HEs, hard EXs,
soft EXs, and NV, the model’s accuracy on a single CNN
was 95%, 75%, 62.5%, 67.5%, and 95%, respectively. The
feature was detected and extracted with 100% accuracy
on the heterogeneous CNN compared to a single CNN.
Using fundus images, a DL technique has been developed
for the automated detection of DR and Diabetic Macular
Edema (DME), and for the detection of DR, Inception-
V3- architecture Neural Networks have been used to
identify HEs and MAs [35]. The EyePACS-1 dataset of
9963 photos and the Messidor-2 dataset of 1748 photos
have both been used in the proposed methodology. The
model has undergone preprocessing, distributed Stochastic
Gradient Descent (SGD) network weight optimization, and
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hyperparameter optimization. An ensemble of 10 networks
was utilized to process the whole developed set consisting of
128,175 photos, and the ensemble predictions were used to
generate the final linear average prediction. With a 0.991 and
0.990 AUC for EyePACS-1 and Messidor-2, the algorithm
has successfully recognized DR. To increase the accuracy of
EXs identification for DR detection, Prentašić and Sven
Lončarić [36] recommended a DCNN (Deep Convolutional
Neural Network) that takes RBVs and OD into account to
detect DR. The Frangi vesselness filter, Total Variation (TV)
regularisation denoising, split Bregman algorithm for denois-
ing, morphological operations, dynamic thresholding, pixel-
wise feature extraction and classification, and clustering
techniques are all included in the model’s per-formed image
preprocessing. The proposed approach combines various
landmark detection algorithms to detect and locate EXs. The
proposedmodel uses a variety of preprocessing, thresholding,
localization, and object detection algorithms, including
the entropy-based method, the method of brightness, the
Simulated annealing method, and the Hough transformation
of vessels. Using 50 images of the DRiDB dataset, the
provided CNN model successfully distinguished between
an EX and a non-EX, with 78% sensitivity,78% Positive
Predictive Value, and 0.78 F-score. A 10-layer multiclass
neural network was developed to segment HM, MA, and EX
in the retinal fundus images. CNN automatically performs
segmentation and simultaneously discriminates these lesions.
The images used belong to the Cleopatra dataset, which
consists of 298 images. No preprocessing was performed
on the photos. Hemorrhage, micro-aneurysms, and exudates
segmentation had a sensitivity of 62.57%, 46.06%, and
87.58%, respectively [37].

According to Quellec et al., a CNN model was developed
using the ConvNets network structure that produces heat
maps to simultaneously detect lesions: MA, HM, HE, and
SE. Three CNNs were trained to classify each image in the
dataset as referable DR (refer to moderate stage or more) or
non-referable DR (no DR ormild stage). Three datasets, Kag-
gle, DiaretDB1, and private E-ophtha, each containing 88702,
89, and 463 photos, were used. The photos were reduced in
size, cropped to 448 by 448 pixels, normalized, and had the
FOV degraded by five percent in the pre-processing stage.
The data were augmented and a big filter of Gaussian was
utilized. CNN architecture pertained to the AlexNet and the
two networks of the o O solution. The CNNs foundMA, HM,
SE, and HE. For hemorrhages, hard exudates, soft exudates,
and microaneurysms, the model showed AUC values of
0.614, 0.735, 0.809, and 0.500, respectively [38]. Lam et al.
investigated five CNN models, including AlexNet, VGG16,
GoogLeNet, ResNet, and Inception-v3 to find various types
of lesions in retinal pictures,. The ophthalmologist looks at
the photos of the fundus that belong to the Kaggle retinopathy
dataset and the eOphta dataset, which contain 31,126
and 463 photos, respectively. They generate patches from
photographs of haemorrhages, microaneurysms, exudates,

retinal neovascularization, or structures that appear to be
normal. CNN is trained using these image patches to forecast
the appearance of these 5 categories. The window of sliding
approach is utilized to produce a probability map for the full
image. The suggested model successfully detected exudates
and microaneurysms with an AUC of 0.94, 0.95, and ROC of
0.86, 0.64 [39].

By combining DL approaches with domain knowledge for
feature learning, red lesions were found in DR images [40].
Following that, the photos were categorized using the
Random Forest technique. The green band was extracted
from the datasets of Messidor (1200 images), E-ophtha
(463 images), and DiaretDB1 (89 images) datasets. The
FOV was also expanded. A Gaussian filter, an r-polynomial
transformation, a thresholding operation, and numerous
morphological closure functions were also applied. Then,
patches of red lesions were enhanced for CNN training and
scaled to 32*32 pixels. The custom CNN comprises 4 CONV
layers, 3 pooling layers, and 1 FC layer. They obtained
Competition Metrics (CPM) of 0.4874 on DiaretDB1 and
0.3683 on E-ophtha, respectively. Utilizing a modified
DCNN model based on VGG-Net has been considered to
identify DR features such as drusen, EXs, MAs, SEs, and
HEs [41]. They employed the Kaggle, e Messidor-2 dataset
for DR detection, which consists of 88,696 photographs.
The 81,670 photographs were utilized for training, and the
remaining pictures, combined with the Messidor- 2 dataset,
which consists of 1748 enhanced images, were used for
testing. Preprocessing, assessment module of image quality,
augmentation of random images, localization and segmented
features, dropout, and retinal lesions classification make up
the diagnostic pipeline of the proposed model. The model has
scored 0.923 AUROC, 92% sensitivity, and 72% specificity
with theKaggle dataset while operating at the high sensitivity.
The 80% sensitivity and 92% specificity of the suggested
model with the Kaggle dataset at the operational point of
high specificity. The 99%, 87% of sensitivity and 71%,
92% of specificity were recorded at a high sensitivity and
high specificity, respectively withMessidor-2. Deep Residual
Learning (DRL) was used to develop a CNN to detect DR
automatically in the proposed data-driven DL technique for
deep feature retrieval and to classify images. Testing of the
model was performed with the Messidor-2 dataset and E-
Ophtha dataset, having 1748 and 463 photos, respectively.
It was also trained with EyePACS dataset (75,137 images).
Image Preprocessing, dataset augmentation, batch normal-
ization, ReLU activation, and categorical cross-entropy loss
function for class discrimination utilizing gradient boosting
classifiers have all been carried out in the model. The
convolutional approach was used to retrieve 1024 deep
features from the model. The model has identified retinal
HMs, HE, and NV by displaying heat maps. The proposed
model achieved 0.97 AUC with the EyePACS dataset with
an average of 94% sensitivity and 98% specificity, compared
to AUCs of 0.94 on the Messidor-2 dataset with an average
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of 93% sensitivity and 87% specificity and 0.95 on the
E-Ophtha dataset with an average 90% sensitivity and
94% specificity [42]. To distinguish MA from DR images,
a distinctive CNN architecture was applied [43].
This study included three datasets with 100, 381, and

89 pictures each: ROC, E-ophtha, and DiaretDB1. The
green plane was extracted from these datasets before being
processed with cropping, scaling, and Otsu thresholding to
create a mask, weighted sum, and morphological functions.
After that, random alterations were applied to the collected
MA patches. The employed CNN has 18 CONV layers, four
skip connections between the two routes after each CONV
layer, a batch normalization layer, three max-pooling layers,
and three fundamental up-sampling levels. The experiment
received FROC (Free-response ROC) scores of 0.355 for
the ROC dataset, 0.392 for the DiaretDB1 dataset, and
0.562 for the E-ophtha dataset, respectively. To locate EX
in DR images,Adem employed a customized CNN with
Circular Hough Transformation (CHT). The three public
datasets they utilised were the DiaretDB0, DiaretDB1, and
DrimDB, each containing 130, 89, and 125 images. The
datasets were all made into grayscale images. Next, adaptive
histogram equalization functions and canny edge detection
were utilized. CHT found the OD and eliminated it from the
datasets. 3 CONV layers, 3 max-pooling layers, and an FC
layer that employs softMax as a classifier make up the custom
CNN. This CNNwas given the photos’ 1152*1152 pixel data.
The accuracy of detecting EX was 99.17 with DiaretDB0,
98.53 with DiaretDB1, and 99.18 with DrimDB [44].
Mo et al. used deep residual networks to segregate and

classify the exudates to identify exudate lesions in the
publicly accessible E-optha dataset and HEI- MED dataset
which contains 381 and 169 pictures, respectively. The EX
were grouped using a fully convolutional residual network.
This network includes two modules, up-sampling and down-
sampling. A deep residual network was then used to classify
the exudates. This network consists of 5 residual blocks,
1 CONV layer, and 1 max-pooling layer. The up-sampling
module uses CONV and deconvolutional layers to enlarge the
image as input. In contrast, the down-sampling module uses
a CONV layer, a max pooling layer, and 12 residual blocks.
The residual block contains three CONV layers for batch
normalization. This work achieved a sensitivity of 0.9227 and
0.9255 and an AUC of 0.9647 and 0.9709 for the E-optha and
HEI-MED datasets, respectively [45]. A ten-layered CNN
was presented to detect DR. On the fundus photographs,
it employs patch image-based analysis. The model consisted
of 284 retinal photographs from the DiaretDB1 and e-ophtha
datasets; 75 of these images were used for patch-based
analysis training on the DiaretDBI dataset, and the remaining
photos were used for image-based analysis testing from
both the DiaretDB1 and e-ophtha datasets. The model
performed contrast enhancement to retrieve EX,HE, andMA.
Next, it divided 50 × 50 patch sizes to create rule-based
probability maps. 0.96 Sensitivity, 0.98 specificity and

0.98 accuracy were achieved for identifying EXs by model,
correspondingly during the patch-based analysis, as well as
HEs with sensitivity, specificity, and accuracy of 0.84, 0.92,
and 0.90 and MAs with 0.85, 0.96, and 0.94 respectively.
On the DiaretDB1 test set, the proposed method segmented
EXs, HEs, and MAs with accuracy of 0.96, 0.98, and 0.97,
respectively, and error rates of 3.9%, 2.1%, and 2.04%.
On the e-Ophtha dataset, EXs and MAs were segmented
with accuracy of 0.88 and 3.0, and error rates of 4.2%
and 3.1%, respectively. It has been found that feature
detection performed simultaneously rather than individually,
without redundancy, can more accurately reduce potential
blunders. It has been found that feature detection performed
simultaneously rather than individually, without redundancy,
can more accurately reduce potential mistakes. Additionally,
it has been noted that by considering the surroundings and
history of potential lesions, the Post-processed phase has
improved image quality and reduced mistake rates [46].

A 5-stage expert-guided statistical model to resolve an
imbalanced MAs detection problem has been proposed by
the study [47] to close the semantic gap between fundus
images and clinical data through image-to-text mapping.
The proposed methodology is a‘‘ partition frequency-inverse
lesion frequency’’ model that depicts and forecasts specific
lesions. An ‘rxr’ patch with an r-value of 64 has been taken by
the MS-CNN, upon which selection of candidates, filtering,
and MA segmentation through Gaussian filter and top-hat
transform are carried out. A cascaded CNN classifier is then
utilized to classify images. The suggested model was trained
and tested using a dataset of 646 photos and 89 fundus
images of the DiaretDB1 dataset. The model had a first-stage
MS-CNN score of 30.4%, 100% precision, 17.8% accuracy,
and 17.9% recall. It completed the second level with 87.8%
recall, 99.7% precision, 96.1% accuracy, and a 93.4% F1
score. It is noted that the model is practical and offers
space for incorporating DL approaches in the classification
of images, extraction of deep features, and text-to-image
mapping. Using 88,702 images from Kaggle’s EyePACS
dataset, of which 35,126 are used to train and 53,576 serve
for testing, Islam et al. [48] presented a DCNN to detect
DR through MAs identification. The model has undergone
rescaling, data augmentation, feature blending, orthogonal
weight initialization, stochastic gradient descent (SGD)
optimization, L2 regularization, and Adam optimizer for the
model’s training. The obtained results have a 0.844 AUROC
and 0.743 F-Score. MAs, HMs, HEs, SEs, and the OP were
automatically segmented using a fully convolutional deep
neural network that was trained end-to-end [49].

For their experiment, they employed the Drishti-GS
dataset. Vertical and horizontal flipping of images were
included after image resizing. The ‘‘SegNet’’ network has a
decoder that controls pixel-by-pixel classification and a 13-
layer convolutional VGGNet encoder. The ‘‘SegNet’’ net-
work consists of a decoder that controls classification pixel-
by-pixel and a 13-layer convolutional VGGNet encoder.
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The experiment yielded sensitivity scores for the OD, MAs,
HEs, HMs, and SEs of 0.8572, 0.0059, 0.5498, 0.0829, and
0.1823, respectively. To segment various forms of retinal
disorders, Ananda et al. adjusted the U-Net deep neural
network by lowering the filter’s number and layers of
coding. They experimented using the 81 and 1200 picture
IDRiD and Messidor datasets. Through simple fundus image
rotation and resizing, they improved the training data. One
of DR symptoms, such as HMs, MAs, HEs, SEs, and OD,
is segmented using each of the U-Net models. For bleeding
segmentation, the U-Net model scored a 0.86 value of dice
coefficient [50]. The DR signs such as HMs, MAs, SEs, and
HEs were all detected by the L-Seg model [51]. Each image
in the IDRiD, e-ophtha, and DDR datasets contains 81,463
and 13673 photos and is resized. More training samples
were produced using the data augmentation method through
rotating, horizontal, and vertical flipping. The suggested
approach combines multiscale features to effectively address
the challenge of segmenting small areas. When the IDRiD
dataset is used, the L-Seg architecture yields better results;
this method produced 67.34 AUC for hemorrhage. Yan et al.
presented a model of GlobalNet and LocalNet. By combining
the results of these two U-net models, they performed
segmentation of HMs, MAs, HE, or EX in each image
of the Segmentation subchallenge dataset. The dataset for
the segmentation subchallenge consists of 245 photos. The
images are first down-sampled and trimmed. HE and MA
may be successfully segmented using the combinationmodel.
While segmentation rates of HM and SE in the GlobalNet
model were the highest. The FusedModel produces 0.889 and
0.525 AUPR for EX and MA, respectively.

Yan et al. [52] used a Random Forest classifier in
combination with a handcrafted and enhanced pre-trained
LeNet architecture to detect red lesions in DR dataset.
89 photographs make up the DiaretDB1 dataset. The images
were improved using CLAHE, and the green channel was
clipped. The Gaussian filter also eliminated the noise
and applied a morphological approach. The U-net CNN
architecture was then used to segment the blood vessels from
the images. Four convolutional layers, three max-pooling
layers, and one Fully Connected layer comprise the upgraded
LeNet design. Red lesion identification in this study has
a sensitivity of 48.71% [53]. To detect MAs and diagnose
DR, Eftekhari et al. presented a Deep Learning Neural
Network (DLNN). It is a training network made up of
two CNN structures that are completely different. These
CNN structures are called the basic CNN and the final
CNN. Retinopathy Online Challenge (ROC), which contains
100 photos, and E- Ophtha-MA, which has 381 images,
were two datasets utilized to train and evaluate the proposed
model. A balanced dataset resulted from pre-processing per-
formed by the suggested model, which, in the basic CNN,
also produced a probability map to distinguish between MAs
and non-MAs. The model uses Stochastic Gradient Descent
(SGD), dropout, and binary cross-entropy loss function
for training, as well as backpropagation for parameter

optimization and post-processing on the output of the final
CNN. For the ROC dataset and the E-Optha dataset, the
suggested model has attained 0.660 and 0.637 Free-response
Receiver Operating Characteristic Curves (FROC or FAUC),
respectively [54]. To detect the existence of hemorrhages,
Huang et al. used a CNN that combined RetinaNet and a
bounding box refining network (BBR-Net). It increases the
annotation’s accuracy of data related to training. A private
dataset with 80 and 590 photos was used in addition to the
IDRiD. The method in question begins by preprocessing a
fundus image using adaptive gamma correction and CLAHE
for contrast adjustment. The technique improved manually
traced hemorrhage annotations, outperforming the default
RetinaNet system. On the IDRiD data set, a mean IoU
(Intersection over Union) value of 0.8715 was noted [55].
By fusing the features of a custom-built and hand-

made CNN with a Random Forest classifier, hard exudate
lesions were identified in the E-ophtha dataset and the
HEI-MED dataset [56]. 463 and 169 images are in the
HEI-MED dataset and E- ophtha, respectively. Cropping,
color normalization, changing the camera’s aperture, and
detecting the candidates through morphological construction
and dynamic thresholding were all steps in processing these
datasets. After that, 32*32-inch patches are gathered and
enhanced. To find the patch features, the customizedCNNhas
three convolutional layers, three pooling layers, and a fully
connected layer. For the E-ophtha and HEI-MED datasets,
this work achieved 0.8990 and 0.9477 sensitivity values and
0.9644 and 0.9323 of AUC. Pour et al. employed CLAHE-
based pre-processed images in conjunction with Messidor,
Messidor-2, and IDRiD datasets to perform feature extraction
and classification using EfficientNet B5. The model has a
0.945 AUC on Messidor and a 0.932 AUC on IDRiD [57].
EfficientNet B7 was utilized in the study [58] to extract
and classify features, while Global Average Pooling was
employed to find DR. The model has been trained using
the Kaggle Eye-PACS and Asia Pacific TeleOphthalmology
Society (APTOS) 2019 datasets, and features including EXs,
HEs, and MAs have been retrieved using Grad- CAM
(Gradient-weighted Class Activation Mapping). The model
has a 0.990 and 0.998 value of AUC on the EyePACS dataset
and APTOS 2019 dataset, respectively. The detection and
classification of diabetic retinopathy through deep learning
models, emphasizing red lesion identification in retinal
images, is given in [59]. Utilizing UNet for semantic seg-
mentation and CNN for classification, the study demonstrates
promising results across multiple datasets.

2) BINARY/MULTILEVEL CLASSIFICATION
Alghamdi et al. [60] proposed two consecutive DL architec-
tures to detect DR with integrated cascade CNN classifiers
and feature learning. The AdaBoost ensemble technique was
employed in the model to train the classifier and select
features. The suggested method has used five thousand seven
hundred eight photos from datasets like Drive, DiaretDB1,
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Messidor, Stare, Kenya, Hapiee, Pamdi, and KFSH. The
model trained and evaluated the abnormality detector using
the annotated OD photos from Pamdi and Hapiee. The
model’s accuracy for OD localization on Drive, DiaretDB1,
Messidor, Stare, Kenya, Hapiee, Pamdi, and KFSH was
100%, 98.88%, 99.20%, 86.71%, 99.53%, 98.36%, 98.13%,
and 92%. Takahashi et al. developed a trained, modified,
and randomly initialized GoogLeNet DCNN to detect DR.
This suggested model combines the two models, i.e., AI1 and
AI2. ResNet was used to train the AI1 model using ResNet.
These models were trained with a modified version of Davis
grading on a concatenated picture of 4 images. Simple DR,
Pre-proliferative DR, and PDR are all part of the modified
Davis grading system. The AI2 model of the network is used
to detect retinal HM and HE. On 496 photos the model scored
0.74 Prevalence and Bias Adjusted Fleiss’ Kappa (PABAK)
and 81% accuracy. It has been noted that the research has
found the retina’s reflection of the surface as an anomaly
present in people of younger age that may help to detect DR
earlier [61].

Wang et al. recommend Net-5 and Net-4 CNN models
with larger datasets of DR to minimize the number of
parameters that are needed to detect DR. These models
incorporate a Regression Activation Map (RAM) layer and
fully linkedGlobal Average Pooling (GAP) layers. Themodel
has created a baseline model of three (small, medium, and
large) networks. It has used 35,126 images from the Kaggle
dataset to train and test the model. The performance of the
suggested model has been evaluated and compared using
orthogonal initialization, data augmentation, and feature
blending. This approach applied a Fully Convolutional
Neural Network (FCNN) to the combined features to produce
the final projected regression values discretized at the
different thresholds and to get integer levels for the Kappa
scores computation. Using the Net-5 and Net-4 settings of
the architecture, without feature blending, the highest Kappa
score of the proposed network was 0.81 [62]. To classify
DR, Li et al. have developed a pure DCNN approach and a
modified DCNN strategy that uses fractional max-pooling.
The model was trained using 34,124 preprocessed Teaching-
Learning-Based Optimization (TLBO) parameterized images
from the freely accessible DR dataset obtained from Kaggle.
This model has a recognition rate of 86.17% after using
1000 validation photos and 53,572 testing images [63].
For early DR identification, Chaturvedi et al. used

3662 images of fundus photography APTOS2019 dataset and
a pre-trained DenseNet121 network. The proposed technique
has achieved 96.44% and 96.51% accuracy for the classi-
fication of a single class and multi-level DR classification,
respectively [64]. Hattiya et al. compared different CNN
architectures upon 23,513 retinal images and concluded that
AlexNet is the most suitable CNN architecture to detect DR.
AlexNet has achieved 98.42% and 81.32% accuracy values
for the training and testing sets [65]. The study [66] has
proposed amodel for the Kaggle APTOS 2019 contest dataset

using Transfer Learning and aggregation of deep features
from multiple convolution blocks of pre-trained models like
NASNet and VGG-16 to enhance feature representation.
This has established a comparison with manually created
features for determining the severity of DR. Averaging
pooling with straightforward fusion methods on top of Deep
Neural Networks (DNN) performs better, according to the
model’s comparison of various feature pooling and fusion
procedures. The model’s accuracy was 84.31%, and its AUC
was 97. Due to the increased strength and capacity to
automatically extract features compared to machine learning-
based approaches, deep learning-based systems have grown
in popularity, as the related work shows. Deep learning also
enables precise localization of the boundaries of the retina.
The only drawback is that it requires time and challenging
training.

The study [67] investigates two deep learning models
for Diabetic Retinopathy (DR) detection and classification:
a hybrid model combining VGG16 and XGBoost and
a DenseNet 121 model using the APTOS 2019 dataset.
The DenseNet 121 model achieved a superior accuracy
of 97.30%, demonstrating deep learning architectures’
effectiveness in early DR detection. Another study [68]
presents a hybrid method for Diabetic Retinopathy (DR)
detection using a novel CNN model, GraphNet124, and
ResNet50 for feature extraction from the Kaggle EyePACS
dataset. It incorporates Local Binary Patterns (LBP) for
texture features and optimizes the feature vector using
the Binary Dragonfly Algorithm (BDA) and Sine Cosine
Algorithm (SCA). The optimized features are classified
using SVM, achieving high accuracy and showcasing the
method’s effectiveness in DR detection and classification.
The Study [69] explores deep learning and transfer learning
algorithms to detect various stages of Diabetic Retinopathy
(DR) using a large dataset of approximately 60,000 images.
The study evaluates the performance of four deep learning
models: ResNet-101, DenseNet121, InceptionResNetV2, and
EfficientNetB0. DenseNet121 was the most effective, with
accuracies for the models reported as 97%, 96%, 95%, and
94%, respectively.

Upon reviewing prior methodologies, we advocate
for microaneurysm detection as it offers insights into
the progression of diabetic retinopathy. Enhancing this
approach with the segmentation of retinal vessels could
further aid ophthalmologists in assessing disease advance-
ment, facilitating timely intervention and management for
patients [70], [71]. The commonly used frameworks for
detecting and classifying DR are explained in the subsequent
section.

Deep learning uses neural networks with multiple layers
(e.g., CNNs) to automatically learn features from retinal
images for diabetic retinopathy detection. Gardner et al.
utilized deep learning to detect hemorrhages and exudates in
fundus images, demonstrating high sensitivity and specificity.
Grinsven et al. developed a CNN architecture for hemorrhage
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FIGURE 8. Framework for detection and grading DR.

detection, achieving high accuracy and validating the power
of deep learning in medical image analysis. Deep learning
models can automatically learn complex features from data,
reducing the need for manual feature extraction. These mod-
els have shown superior performance in image classification
tasks due to their ability to capture hierarchical features in
images. Deep learning models require large amounts of data
and significant computational resources for training. They
are often considered ‘‘black boxes,’’ making it difficult to
interpret their decision-making processes, which can hinder
clinical acceptance. Deep learning continues transforming
diabetic retinopathy detection, offering advanced capabilities
in analyzing retinal images. However, to enhance their
adoption in clinical practice, future research should aim at
improving the interpretability of these models and developing
methods to train them effectively with smaller datasets.
Integrating deep learning models with clinical knowledge
can provide more comprehensive and reliable diagnostic
tools.

III. FRAMEWORK FOR DR DETECTION AND GRADING
Based on the literature review, most existing studies
employed a common framework for detecting and classifying
diabetic retinopathy. The framework comprises the following
steps: (1) Retinal Datasets, (2) Preprocessing and Data
Augmentation, (3) Feature Engineering, (4) Detection and
Grading Algorithm, and (5) Performance Metrics. The
proposed framework includes commonly used steps extracted
from a detailed examination of the literature review. Numer-
ous ML and DL techniques are used to detect and classify
diabetic retinopathy. The framework for DR detection and
grading is visually illustrated in Fig.8.

A. RETINAL DATASETS
The number of public retinal datasets used for the DR
detection and grading experiment. Some of the publicly
available datasets are discussed below.

1) DIARETDB1
It has 89 retina fundus images that are freely available to
the public. 84 images belong to DR affected; the remaining
are normal images annotated by four medical experts.
Quellec et al. [38], Orlando et al. [40] and Adem [44] have
utilized this dataset for the experiment of red lesion detection.

2) DIABETIC RETINOPATHY DETECTION
It includes 88,702 high-quality images gathered from various
cameras and range in resolution from 433 * 289 pixels to
5184 * 3456 pixels. Different phases of DR are utilized
to categorize all photos. Many Photographs on Kaggle
Retinopathy are not of good quality and have inaccurate
labels [72]. For the retinal lesion, Grinsven et al. [33] and
Lam et al. [39] have used the Kaggle dataset.

3) E-OPHTHA
Both sections of EX and MA are included in this dataset,
which is openly accessible. The exudate section consists of
35 regular photos and 47 EX images. 148 photos with MA
and 233 images without MA4 are included in MA section of
E-ophtha. Mo et al. [45] and Wang et al. [56] have utilized
this dataset for EX detection.

4) DOUBLE DATA RATE (DDR)
This dataset, open to the public, has 13,673 fundus images
taken at a 45-degree FOV and labeled for five different DR
stages: normal, mild, moderate, severe, and PDR. The dataset
includes 757 pictures with DR lesions labeled. Various
authors have used DDR datasets for DR detection.

5) DIGITAL RETINAL IMAGES FOR VESSEL EXTRACTION
(DRIVE)
The segmentation of blood vessels is done using this publicly
accessible dataset. It has 40 photos that were taken with a
FOV of 45 degrees. The images are 565 by 584 pixels in
size. Seven of these are small DR images, while the rest are
pictures of a normal retina. Various authors have used the
DRIVE dataset for DR detection.

6) HIGH RESOLUTION FUNDUS (HRF)
For blood vessel segmentation, these publicly accessible
images are offered. It has 45 photos. 15 images belong to
glaucomatous, 15 are healthy images, and 15 images are of
DR. Naveen et al. [26] have used the HRF dataset for DR
detection through image processing.

7) MESSIDOR
The 1200 fundus color images in this freely available dataset
were taken at an FOV 45-degree. Images are annotated to
four DR stages (Normal, Mild NDPR, Moderate NDPR, and
PDR). Bhatia et al. [18], Chetoui et al. [21] and Odeh et al.
[27] have used theMessidor dataset for DR detection through
machine learning techniques. Its extended dataset named
Messidor-2 contains 1748 images acquired at a 45-degree
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TABLE 5. Systematic analysis of literature review of DL approaches.
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TABLE 5. (Continued.) Systematic analysis of literature review of DL approaches.
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TABLE 5. (Continued.) Systematic analysis of literature review of DL approaches.

FOV. Various authors have used the Messidor-2 dataset for
DR detection.

8) STRUCTURED ANALYSIS OF THE RETINA (STARE)
Blood vessel segmentation is carried out using this freely
accessible dataset. It has 20 photos that were taken with a
FOV of 35 degrees. 10 of the images are normal. Several
authors have used the STARE dataset for DR detection.

9) CHASE-DB1
For blood vessel segmentation, this publicly accessible
dataset is offered. It has 28 photographs at a resolution of
1280 * 960 pixels that were taken with a 30-degree FOV.
Several authors have used the CHASE DB1 dataset for DR
detection.

10) INDIAN DIABETIC RETINOPATHY IMAGE DATASET
(IDRID)
The 516 fundus images in this publicly available dataset were
taken at a 50-degree FOV and labeled to five DR phases.

Guo et al. [51] and Huang et al. [55] have used the IDRiD
dataset for automated DR detection.

11) RETINOPATHY ONLINE CHALLENGE (ROC) DATASET
It includes 100 retinal images taken at a 45-degree FOV and is
publicly available. Its pixels range in size from 768 by 576 to
1389 by 1383. The photos were annotated to find MA. There
are just training ground realities. Chudzik et al. [43] have used
a dataset for microaneurysms detection.

B. PREPROCESSING
The dataset’s blurred or less-than-clear photos cause issues.
By minimizing unexpected distortions or increasing specific
features that are essential for further processing, pre-
processing seeks to enhance the image data. Different steps
for preprocessing images are performed; some common steps
are mentioned below.

1) GRAYSCALE CONVERSION AND IMAGE ENHANCEMENT
As processing grayscale images is more pleasant than
processing color images, the images are transformed to
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FIGURE 9. Visualization of original Vs processed fundus image.

FIGURE 10. Original image Vs filtered image.

FIGURE 11. (a) Original Fundus image (b) the results after applying
CLAHE technique on the original fundus image.

grayscale (Fig. 9). The Histogram equalization adds contrast
to the filtered image by doing the contrast enhancement as
applied in [15].

2) MEDIAN FILTERING
The adaptive median filter’s primary goals are to eliminate
salt and pepper noise and smooth and minimize image
distortions (Fig. 10) as applied in [15].

3) CLAHE
Contrast LimitedAdaptiveHistogramEqualization (CLAHE)
is a type of adaptive histogram equalization. The CLAHE
(Fig. 11) was created to stop the excessive noise amplification
that might result from adaptive Histogram Equalization
(AHE). Limiting AHE’s contrast enhancement helps achieve
this, as shown in [26] and [27].

4) GREEN CHANNEL EXTRACTION
Because of the highest intensity of the color images and
superior contrast than the other color channels (Red and

FIGURE 12. (a) Original Fundus image (b) Green Extraction of the original
fundus image.

FIGURE 13. (a) Without Brightness Fundus image (b) With Brightness
Fundus image.

Blue), the green level extraction of the RGB fundus images
(Fig. 12) is usually performed during DR process as applied
in [8].

5) BRIGHTNESS
The fundus images are often dark, so we can add brightness
(Fig 13).

C. DATA AUGMENTATION
Generating new images from ones already in the dataset
is known as augmentation. Data augmentation techniques
would increase the number of photos (Fig 14) i.e., vertically
and horizontally rotating, flipping, cropping, and resizing.

D. FEATURE ENGINEERING
The different feature extraction methods applied to fundus
images are discussed here.

1) TEXTURE FEATURES
The texture is a feature used to divide and classify regions of
interest in photographs. The way that colors or intensities are
distributed spatially in an image is revealed by texture. The
spatial distribution of intensity levels within a neighbourhood
defines the texture. Texture features may be beneficial for
illustrating certain local patterns that repeat themselves and
arranging regularity in particular areas of photos. It could
provide defining metrics like smoothness, roughness, and
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FIGURE 14. (a) Original Fundus image (b) Vertically Flipped fundus image
(c) Rotate fundus image (d) Cropped fundus image (e) Resized fundus
image.

regularity, which could describe the local properties of
images [21], [73].

2) GLCM FEATURES
Considering the spatial relationship between pixels, the grey-
level co-occurrence matrix (GLCM), also known as the
grey-level spatial dependence matrix, is a statistical method
for analyzing texture. The GLCM functions calculate the
frequency of pairs of values and spatial relationships in an
image, creating a GLCM. From this matrix, statistical mea-
sures are then extracted to describe an image’s texture [74],
[75].

3) WAVELET FEATURES
A wavelet mathematical function is utilized in digital signal
processing and image compression. Its primary goal is to
enhance image quality. Wavelets can also separate signals
into their temporal and frequency components. A signal is
broken down into its frequency components using a wavelet
transform. One of the fundamental advantages of wavelets
is the simultaneous localization in the domain of time and
frequency. The second important advantage of the wavelet
transform is its extraordinarily rapid computation speed. One
of themain advantages of wavelets is their capacity to identify
the smallest details in a signal [76].

4) COLOUR FEATURES
Color is the most useful visual element and has been
extensively utilized in picture retrieval systems. Three-

dimensional color spaces are typically used to define colors.
Red, Green, and Blue (RGB), Hue, Saturation, and Value
(HSV), or Hue, Saturation, and Brightness (HSB) are some
examples of these. The most popular method for displaying
color features is using color histograms. The RGB color area
is used to hold image data in the majority of image formats,
including Joint Photographic Experts Group (JPEG), Bitmap
(BMP), and Graphics Interchange Format (GIF) [77].

5) HISTOGRAM FEATURES
The original image can be utilized to retrieve the features
of a histogram. The histograms are processed to produce
the meta-features that the semantic mapper uses as an
input to create the semantic features [78], [79]. The image
histogram depicts the grey level distribution in a photo in two
dimensions. A histogram is merely a graphic representation.
It reveals the image’s optical composition. The amount
of light and darkness in an image is what is meant by
optical content. Using statistical torques associated with the
histogram of the intensity of an image or region is one of
the simplest ways to characterize a texture, and numerous
features can be retrieved from it [80].

6) EDGE FEATURES
The margins of the two consecutive grey levels or the
brightness values of the two pixels, which occur at a specific
point in the image, serve as the boundaries between an object
and its background. Edge detection aims to find the areas of
an image where the light intensity abruptly changes. Vision
may be possible at the edges. They can alter depending on
the point of view and, typically, the scene’s geometry, the
items that cross paths with one another, and so on. They can
also be influenced by perspective, which typically depicts the
characteristics of the things seen, such as marks and surface
shape. This action can be done by several operators like
Sobel [81], Pewit et al. [82], Armi and Fekri-Ershad [80]

E. DETECTION AND GRADING ALGORITHMS
The number of algorithms used to detect and classify DR.
Some commonly used algorithms are discussed below.

1) ARTIFICIAL NEURAL NETWORK
By having the ability to recognize patterns in data, an artificial
neural network (ANN) computer program can be said to
replicate the analytical functions of the human brain. An input
layer, an output layer, and a hidden layer comprise the three
layers of the ANN. The hidden layer comprises several
nodes coupled to the input and output nodes by mathematical
formulas (weights). The network is trained by repeatedly
exposing it to data instances with known results, known as an
iteration [83]. After training has changed the hidden layer’s
weights, the network can be presented with an unknown
input and classified into the proper output. It can identify
handwriting or speech patterns and forecast financial or
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economic trends [28].

Y = W1XI +W2 × 2 + b (1)

In equation (1), X1 and X2 feature, W1 and W2 are
weights. The weights of the features are multiplied by one
another, and the bias is added up. Following the application
of this summation function over an activation function, the
output of this neuron is multiplied by the weight W3 and
sent as input to the output layer. ANN-based models have
been integrated with deep learning layers to improve pattern
recognition in fundus images, as seen in the work by Gardner
et al., where preprocessing steps like histogram equalization
and edge detection helped train ANNs for haemorrhage and
exudate detection.

2) SUPPORT VECTOR MACHINE
Support Vector Machines (SVMs) are supervised learning
methods for detecting classification, regression, and out-
liers [84]. SVMs aim to find the optimal separating hyper-
plane, maximising the margin between different classes. The
data points that lie closest to the hyperplane and which
determine its position are known as support vectors. This
reliance on only the closest points makes SVMs robust to
outliers and capable of producing generalized models that
avoid overfitting. The decision function of an SVM is defined
by the inner products of the input features and the support
vectors, weighted by the support vectors’ coefficients. The
kernel function, which can be linear, polynomial, radial basis
function (RBF), or sigmoid, plays a critical role in this
process. It enables the SVM to access higher-dimensional
space without directly computing its dimensions, allowing
it to fit the maximum-margin hyperplane in a transformed
feature space. The choice of kernel and its parameters can
significantly influence the performance of an SVM classifier,
making model selection and tuning an important part of
using SVMs effectively [18], [24]. Recent advancements
in SVM for diabetic retinopathy detection have explored
advanced feature selection techniques and kernel optimiza-
tion. An enhanced SVMmodel, leveraging feature extraction
from retinal images, showed improved performance in
classifying DR stages, as evidenced by Acharya et al., who
achieved 82% sensitivity and 88% specificity.

Y = w.x + b (2)

In equation (2), W is the normal direction of the plane and b
represents the threshold.

3) K-NEAREST NEIGHBORS
The k-nearest neighbours (KNN) is a straightforward and
simple-to-implement algorithm that is employed to address
classification and regression issues [85]. The function
generates a suitable result when fresh, unlabeled input is
provided to the algorithm. KNN quantifies similarity, which
is frequently referred to as distance/proximity/closeness
[22]. Recent advancements in k-NN for diabetic retinopathy

detection have incorporated feature engineering to improve
classification accuracy, as demonstrated by Niemeijer et al.,
who used k-NN in conjunction with other machine learning
techniques to classify retinal images. Finding which data
points are closest to a certain query point requires figuring
out the distance between the query point and the other data
points. This can be calculated by Euclidean distance eq (3).

d(p, q) =

√
6n
i=1(qi − pi) (3)

4) RANDOM FOREST
Random Forest is an ensemble learning method that operates
by constructing a multitude of decision trees at training
time and outputting the class that is the mode of the
classes (classification) or mean prediction (regression) of
the individual trees [86]. It combines the simplicity of
decision trees with flexibility, resulting in a vast improvement
in accuracy. Random Forests create a forest of decision
trees, usually through the bagging method. Instead, the best
split among a random subset of features is chosen. This
strategy of selecting a subset of features at each split point
adds an extra layer of randomness to the model, which
helps in increasing the diversity among the trees in the
model, leading to more robust overall predictions. Random
Forests are known for their high accuracy, robustness,
and ease of use. By looking at how much the accuracy
decreases when a feature is excluded, one can gauge the
significance of each feature in the prediction process [22].
Advanced implementations of Random Forest algorithms
have been applied to diabetic retinopathy classification,
utilizing ensemble learning to enhance predictive accuracy.
Studies have focused on optimizing tree structures and
integrating RF with deep learning frameworks for better
retinal image classification.

5) NAIVE BAYES
The ‘‘naive’’ assumption that each pair of features is
conditionally independent given the value of the class
variable underlies a class of supervised learning algorithms
collectively referred to as ‘‘naive Bayes methods.’’ Both
binary and multiclass classification benefit from this method
of categorization [87]. Naive Bayes performs better when
dealing with categorical input variables than it does when
dealing with numerical input variables. Making forecasts
based on historical data and anticipating data are both aided
by it. Enhanced Naive Bayes classifiers, integrating image
preprocessing and feature extraction methods, have shown
improved performance in detecting diabetic retinopathy, with
studies indicating the use of NB in conjunction with neural
network frameworks to leverage probabilistic classification
alongside deep learning’s feature learning capabilities.

6) K-MEAN CLUSTERING
The K-Means algorithm extracts the characteristics from the
retinal images. K-Means determines which cluster employs
the feature extraction technique [88]. When this algorithm
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is used to process the information gathered about blood
vessels, it can benefit grading DR severity [16]. In dia-
betic retinopathy detection, k-means Clustering has been
utilized for segmenting retinal images, aiding in identifying
pathological features. Recent innovations include adaptive
clustering algorithms that dynamically adjust to the specific
characteristics of retinal photos, improving lesion detection.

7) LOGISTIC REGRESSION
The statistical regression model known as logistic regression
uses a categorical output variable rather than a continuous
one. The output variable’s categorical nature may represent
separate classes. One vs. all is the algorithm used for multi-
class categorization. The outcome of logistic regression is the
probability of whether the example falls into category 0 (No
DR) or 1 (DR), with the features being fed into the trained
hypothesis [18]. Logistic Regression has been refined with
machine learning techniques to better model the probability
of occurrence of diabetic retinopathy, with innovations
including the use of regularized Logistic Regression to
handle high-dimensional data from retinal images, preventing
overfitting and improving model generalizability.

8) CONVOLUTIONAL NEURAL NETWORK
Convolutional Neural Networks (CNNs) excel in capturing
hierarchical patterns in data, making them especially suited
for image recognition and processing tasks. Central to CNNs,
the convolution operation involves sliding a filter or kernel
over the input data to produce a feature map that summarizes
the presence of detected features in the input. This process
allows CNNs to automatically and adaptively learn spatial
hierarchies of features from input images, from simple edges
to more complex patterns, by stacking multiple convolutional
layers, each learning to recognize increasingly complex
features. After several convolutional and pooling layers, the
high-level reasoning in the neural network is done through
fully connected layers, where all neurons from the previous
layer are connected to each neuron [89]. The ability of CNNs
to learn from vast amounts of data and their efficiency in
recognizing patterns across different contexts and domains
make them a cornerstone of modern AI applications [90].
CNNs have been at the forefront of recent advances in
diabetic retinopathy detection. Studies have shown that deep
CNNmodels, pre-trained on large datasets and fine-tuned for
specific DR features, offer superior accuracy in detecting and
grading diabetic retinopathy.

9) AUTOENCODERS
Autoencoders are used to learn efficient coding of unlabeled
data, typically for dimensionality reduction or feature learn-
ing. An autoencoder learns to compress (encode) the input
into a lower-dimensional latent space and then reconstruct
(decode) the input from this latent representation, effectively
learning a compact representation of the input data [91]. The
key idea is to train the network to minimize the reconstruction

error, encouraging the autoencoder to capture the most
salient features of the data in the encoding. Autoencoders
consist of an encoder, a decoder, and a loss function
that measures the difference between the input and its
reconstruction [92]. Autoencoders are used for unsupervised
feature learning in diabetic retinopathy diagnosis. They
effectively reduce dimensionality and extract meaningful
features from fundus images, enhancing DR detection and
grading, as demonstrated in the research, combining them
with other deep learning models for improved accuracy.

10) RESTRICTED BOLTZMANN MACHINES (RBMS)
RBMs are a class of generative stochastic artificial neural
networks that can learn a probability distribution over its
set of inputs. RBMs are composed of visible and hidden
layers with bidirectional connections between them but
no connections within a layer, making them a type of
bipartite graph. Unlike general Boltzmann machines, they
are ‘‘restricted’’ because they do not allow intra-layer
communication, simplifying the learning algorithm [93].
Their ability to represent complex distributions and capture
correlations between variables makes them valuable for deep
learning and unsupervised learning tasks [94]. RBMs are
explored for their potential in unsupervised feature learning in
diabetic retinopathy detection, with recent approaches using
RBMs to pre-train layers of deep neural networks, enhancing
the feature extraction process and leading to more accurate
classification of disease stages.

F. PERFORMANCE METRICS
The usefulness of the suggested methods can be assessed
through the various metrics. Measures employ a variety of
common words, including True positive, True negative, False
positive, and False negative. True positive (TP) refers to the
circumstance in which a test is positive, and an individual
can identify the disease. When the test is negative and an
individual is not given a disease diagnosis, the condition
is known as a true negative (TN). False positive (FP) is
the circumstance in which a test result is positive, but an
individual cannot show it. False negatives (FN) occur when
a result is negative, yet an individual can have it. The used
performance metrics are mentioned below.

1) ACCURACY
Accuracy refers to the degree of agreement between a
quantity value that has been measured and the actual quantity
of a measurand (i.e., the quantity that is being measured).
Accuracy can be measured by equation (iv).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(4)

2) RECALL
A recall metric counts the percentage of correct pos-
itive predictions among all potential positive guesses.
A recall is also known as sensitivity. The recall is
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measured by equation (v).

Recall =
TP

TP+ FN
(5)

3) PRECISION
A measure of precision counts how many correctly positive
forecasts were made. Precision is measured by equation (vi).

Precision =
TP

TP+ FP
(6)

4) F-MEASURE
The F-score or F-measure tells you how accurate a test is.
It is determined using the test’s recall and precision. It can be
measured by equation (vii).

F −Measure = 2 ∗
Precision ∗ Recall
Precision+ Recall

(7)

5) SPECIFICITY
The ability of the proposed model to estimate true negatives
for each accessible category. It can be measured by equation
(viii).

Specificity =
TP

TN + FP
(8)

6) AREA UNDER CURVE
AUC stands for the area under the curve. Classification analy-
sis is done to identify the model that most accurately predicts
the classes. ROC (Receiver Operating Characteristics) curves
are one application of it.

The entire two-dimensional region beneath the full ROC
curve from (0,0) to (1,1) is measured by AUC. Refer-
ences [38] and [39] used AUC to evaluate retinal lesion
detection. Gulshan et al. [35] used the F measure as an
evaluation metric with Accuracy, Precision, and Recall.
Kande et al. [30] and Grinsven et al. [33] used Sensitivity
and Specificity to assess proposed DR detection and grading
methods.

IV. OPEN PROBLEMS AND DISCUSSION
In this section, we have conducted an in-depth analysis of
current methodologies, identifying their limitations and dis-
cussing the unresolved challenges in existing approaches to
diabetic retinopathy detection. The two central classification
schemes employed in the most recent studies on identifying
diabetic retinopathy are binary andmulti-level classifications.
Binary classification refers to classifying a retinal image as
either DR Present or DRAbsent, but multi-level classification
may contain several labellings, such as mild, severe, and
others. Another well-known classification method is lesion-
based classification, which identifies Diabetic Retinopathy
lesions (MA, HM, HE, or SE). Machine learning and deep
learning methods are effective in multiple applications [95],
[96], [97].

A. EXISTING METHODS
1) BINARY CLASSIFICATION
Fundus images of the retina were classified into DR or No
DR using CNN by K. Xu et al. The study employed about
1000 photographs, which were rescaled before being used as
input to the CNN. A CNN model with 8 convolutional layers
and 4 maximum pooling layers was used. The final layer for
classification was a softmax layer. A 94.5% accuracy rate was
attained [97]. Another [98] classified photographs as usual or
DR using the ResNet 34. The image quality was enhanced
using methods such as the Gaussian filter, weighted addition,
and image normalization, and their dimensions were set at
512*512. The accuracy rate was 85%. Two CNN models
were utilized by Zago et al., one of which was built from
scratch and the other of which was trained using VGG16.
These models distinguished between non-red and red lesions
in photos. AUC was evaluated with a result of 0.912 [99].

2) MULTI-LEVEL CLASSIFICATION
SVM for Multi-Level Diabetic Retinopathy Classification
was proposed by Kandhasamy et al. utilizing local binary
patterns; image features are retrieved and sent as input to the
SVM. The average accuracy was 99.3% bib79. A softmax
layer was suggested [100] as the classifier in a CNN-based
technique. To feed the CNN, images were downsized to
512*512. Several regularization techniques were applied to
decrease overfitting in the CNN. A 75% accuracy rate was
attained. Wang et al. employed only 166 images to perform
multi-level DR classification utilizing three available CNN
models: Inception Net V3, Alexnet, and VGG16. Accuracy
levels of 63.23%, 37.43%, and 50.03%, respectively, were
reached [101]. For the multi-label stage-wise categorization
of retinal pictures, a different method based on a bag of
words was presented [102]. Themulti-level classification was
then done using three different classifiers: SVM, Random
Forest, and Multinomial Logistic Regression. A 72%, 73%,
and 68% accuracy rate was attained, respectively. Instead
of categorizing retinal images according to the severity
of the disease, Sadek et al. categorized retinal images
according to lesions (normal, exudates, and drusen). BoVW,
VGG, VGG-VD, GoogLeNet, and ResNet were applied for
classification. The achieved accuracy was 77.76%, 91.83%,
90.76%, 92.00%, and 91.23% [103]. Harangi et al. pre-
trained AlexNet with several new features for multilevel
DR classification. A 90.07% accuracy was attained [104].
Another study in [105] produced a data set of 13,767 pictures
for DR categorization. On a scale of 1 to 4, each image was
categorized. The photographswere cropped and scaled before
being provided to the models. Four CNNs were used, and
further FC layers were placed on top.

B. LIMITATIONS
Detection and classification methods of DR can help identify
and treat the severity level of DR, but there are also limitations
to these methods. Here are some of the main limitations:
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TABLE 6. Limitations from the literature review. TABLE 6. (Continued.) Limitations from the literature review.
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TABLE 6. (Continued.) Limitations from the literature review.

1) FOV: Most datasets comprise one- or three-field
colored images. Therefore, The lesions outside these
fields are not seen [106].

2) Grading:Numerous studies concentrated on the binary
grading of DR. However, this is not helpful because
it cannot provide information related to the severity
level of diabetic retinopathy. It is needed to allow an
ophthalmologist to intervene in cases of high severity
of DR.

3) Dataset:Since the datasets were so small, the recom-
mended approacheswould not performwell in practical
applications.

4) Manual Annotation: Manual annotations of features
in handcrafted-based image classification methods
produce false results.

5) Availability of trained professionals: The accuracy
of detection and classification of diabetic retinopathy
relies on the expertise of medical professionals trained

to identify the condition. In areas with a shortage of
trained professionals, accurate diagnosis and treatment
may be limited.

6) Reliance on imaging: Imaging methods like fundus
photography andOCT are frequently used to detect dia-
betic retinopathy. However, elements including patient
compliance, eye movements, and other eye problems
might impact the quality of these photographs.

7) False positives and false negatives: Detecting and
classifying DR can sometimes result in false positives,
where a patient is incorrectly diagnosed with the
condition, or false negatives, where a patient with the
condition is not identified.

8) Cost: Some imaging techniques used to detect and
classify diabetic retinopathy can be costly, which can
limit access to diagnosis and treatment for patients who
cannot afford them.

9) Invasive procedures: In some cases, more invasive
procedures, such as retinal fluorescein angiography
may be required for accurate diagnosis, which can be
uncomfortable and carry some risks.

In Table 6, the limitations have been identified by using a
literature review that is mentioned with cited references.

C. ADDRESSING ETHICAL CONSIDERATIONS
Ethical considerations entail the actions and decisions
prioritizing fairness, transparency, and respect for individuals
and communities. To uphold ethical standards, practices are
typically reviewed and reassessed regularly. This includes
seeking informed consent, maintaining confidentiality, and
implementing clear guidelines. In this section, we address
crucial ethical considerations related to the use of publicly
available diabetic retinopathy datasets. Ensuring patient
privacy is paramount; datasets are typically anonymized to
protect individuals’ identities. Consent is another corner-
stone, often obtained before data collection, ensuring patients
are informed about the research purposes. Acknowledging
potential dataset biases related to age, ethnicity, or dis-
ease stage is essential, as they could affect the model’s
performance and generalizability. Researchers should strive
for diverse data representation and be transparent about
limitations, fostering trust and ethical integrity in medical AI
research.

D. FUTURE TRENDS
1) Expanding the collection of high-resolution retinal

images will significantly aid in training more accurate
and sophisticated machine learning models. Higher-
resolution images provide more detailed information
about the retina, allowing for better feature extraction
and improved diagnosis accuracy.

2) Enhancing classification performance by integrating
dynamic features (like temporal changes in the retina)
with traditional hand-engineered features and modern
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deep learning-based non-hand-engineered features will
provide a more comprehensive analysis, improving
diagnostic precision [107].

3) Given the rapid impact of DME on vision, future
research should prioritize its early detection. Advanced
imaging techniques and predictive analytics can be
crucial in identifying patients at risk of DME and
facilitating timely intervention and treatment.

4) Incorporating clinical diagnostic measures such as
STARD (Standard for the Reporting of Diagnostic
Accuracy Studies) and DRRI (Diabetic Retinopathy
Risk Index) in the evaluation of DR classification mod-
els can provide clinicians with numerical assessments
that reflect a range of disease detection thresholds,
thereby enhancing clinical decision-making [107].

5) Developing new color space and appearance models
will improve the characterization of complex visual
patterns in retinal images, aiding in detecting subtle
signs of diabetic retinopathy and enhancing the overall
diagnostic process.

6) An entirely automated, real-time, standardized method
that can be used with retinal fundus image databases
of any size is required to identify DR in the eye with
a higher level of precision and a reduced false positive
rate [108].

7) Advancements in image processing techniques that can
effectively handle low-resolution and blurry images
will make it possible to utilize a broader range of
retinal images for DR detection, including those not
of optimal quality, thus extending the reach of DR
screening programs [109].

E. DISCUSSION
Detecting and classifying retinopathy requires timely inter-
vention and treatment, as this condition can cause blindness
if not treated on time. Different methods for detecting
and classifying DR have been proposed, including fundus
photography, optical coherence tomography (OCT), and
fluorescein angiography. These techniques are non-invasive
and relatively quick to perform, making them suitable for
screening large populations. We have discussed different
DR pipelines used in ML and DL approaches in systematic
literature reviews for detecting and grading DR. In the current
review, 60 publications were reviewed. Machine learning and
deep learning approaches were used in all of the research
discussed in the current paper to manipulate the detection
of diabetic retinopathy. Due to the rise in diabetic patients,
the necessity for trustworthy diabetic retinopathy screening
technologies has recently become a significant concern. The
issue of choosing reliable features for ML is solved by
using DL in DR detection and classification, but it requires
a large amount of training data. Most research used data
augmentation to enhance the quantity of photos and avoid
overfitting during the training phase. This study discussed in
this work utilized public datasets for 72% of the cases, private

FIGURE 15. The percentage of studies that used public and private
datasets.

FIGURE 16. The percentage of studies based on classification methods.

FIGURE 17. Number of images in public datasets.

datasets for 23%, and a combination of private and public
datasets for the remaining 5% (Fig 15).

The DR classification is broadly classified into binary,
multilevel, and lesion-based classifications. We split the
selected studies as per their classification criteria, as depicted
in Fig 16.

Further, the public datasets used in these approaches
consist of a different number of images (refer to Fig 17)
The different techniques of ML and DL for DR detection,

such as SVM, KNN, CNN, etc., have been discussed.
Various features of DR have been extracted, including
Microaneurysms, Haemorrhages, Exudates, Optic disc, etc.
Different metrics have been used to evaluate methods
like Accuracy, Specificity, Sensitivity, F-Score, and AUC
(Fig 18).
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FIGURE 18. Percentage of used metrics in studies.

35% of the studies used accuracy, 21% used specificity and
sensitivity, 21% used AUC -Score, and 2% used F-score for
the evaluation of their methods while 10% of them used a
combination of these metrics. The remaining 11% used other
metrics like Dice-coefficient, Kappa, and AUPR. Advances
in artificial intelligence (AI) and machine learning have
shown promise in improving the detection and classification
of diabetic retinopathy. AI algorithms can be trained on
large datasets of retinal images to automatically detect and
classify signs of diabetic retinopathy, reducing the reliance
on human interpretation and potentially improving accuracy
and reliability. However, further research and validation are
needed before these AI techniques can be widely adopted in
clinical practice.

The transition from traditional ML techniques to advanced
DLmodels marks a significant advancement in DR detection,
offering automated feature learning from retinal images.
Integrating these technologies into clinical practice remains
challenging, necessitating further research to ensure their
efficacy and reliability in real-world settings. Future work
should enhance AI interpretability, explore multimodal data
integration, and validate these tools through extensive clinical
trials to establish their utility in ophthalmology. In generic,
addressing the limitations of existing studies and exploring
these future trends, research in diabetic retinopathy detection
and grading can move towards more effective, efficient, and
patient-centred solutions.

V. CONCLUSION
A significant complication of diabetes mellitus, diabetic
retinopathy causes progressive retinal deterioration and has
the potential to cause blindness. Early detection and treatment
are essential to prevent it from deteriorating and causing
retinal damage. Automated systems significantly shorten the
time needed tomake diagnoses, saving ophthalmologists time
and money and enabling prompt patient treatment. The stages
of DR are determined by the kind of lesions that develop
on the retina. Computer-aided diagnosis methods based
on machine learning and deep learning have been created
over the past few years to identify and categorize diabetic
retinopathy. We systematically reviewed these algorithms.
We have described the publicly accessible common fundus
DR datasets. The pipelines used, including pre-processing
and data augmentation steps, feature extraction methods,
detection and grading algorithms for DR, and performance

metrics, are discussed in detail. The main benefit of this
SLR is that it helps the scientific community build a strong,
completely automated framework for the early identification
of DR disease by highlighting the advantages and disadvan-
tages of various machine learning and deep learning-based
existing techniques. We have discussed some limitations to
these approaches, including inter-observer and intra-observer
variability, reliance on imaging, costly techniques, and
invasive procedures. These limitations can affect the accuracy
and reliability of the diagnosis and classification of diabetic
retinopathy and may lead to missed early intervention
and treatment opportunities. Finally, we conclude with
the future trends of DR. In conclusion, it’s essential to
emphasize the transformative potential of ML and DL in
DR detection, which not only streamlines the diagnostic
process but also opens avenues for more personalized patient
care. Future endeavours should pivot towards integrating
these systems within clinical workflows, enhancing their
accessibility and utility. The anticipated advancements in
AI could significantly democratize eye care, making early
DR detection more ubiquitous and impactful across diverse
healthcare settings.
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