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ABSTRACT Antimicrobial resistance (AMR) emerges when disease-causing microorganisms develop the
ability to withstand the effects of antimicrobial therapy. This phenomenon is often fueled by the human-
to-human transmission of pathogens and the overuse of antibiotics. Over the past 50 years, increased
computational power has facilitated the application of Bayesian inference algorithms. In this comprehensive
review, the basic theory of Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC)
methods are explained. These inference algorithms are instrumental in calibrating complex statistical models
to the vast amounts of AMR-related data. Popular statistical models include hierarchical and mixture
models as well as discrete and stochastic epidemiological compartmental and agent based models. Studies
encompassed multi-drug resistance, economic implications of vaccines, and modeling AMR in vitro as well
as within specific populations.We describe how combining these topics in a coherent framework can result in
an effective antimicrobial stewardship. We also outline recent advancements in the methodology of Bayesian
inference algorithms and provide insights into their prospective applicability formodelingAMR in the future.

INDEX TERMS Antimicrobial resistance, antimicrobial stewardship, approximate Bayesian computation,
Bayesian inference, epidemiology, Markov chain Monte Carlo, sequential Monte Carlo.

I. INTRODUCTION
The routine application of Bayesian algorithms, including
Markov Chain Monte Carlo (MCMC) and Sequential Monte
Carlo (SMC)methods, in the field of health sciences has been
instrumental in combining disparate data sources to make
disease-related inferences when closed-form solutions are not
known. An advantageous feature of using Bayesian methods
is the incorporation of prior knowledge through probability
distributions associated with each data source, distinguishing
Bayesian methods from other prediction-based methods.
Calibrating models using Bayesian methods allows the
propagation of uncertainty through the model, providing
probability distributions over predictions. Despite the utility
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of Bayesian methods, a potential obstacle to widespread
usage is the required computational demand, which can be
addressed by deploying Bayesian algorithms across multiple
computers in a distributed framework. As healthcare-related
data continues to grow in both magnitude and complexity,
the computational resources required for gaining insights
into challenges like AMR also increase. A number of
review articles outlining the theory, principles, challenges
and working examples of performing Bayesian analysis in
healthcare-related disciplines can be found in [1], [2], and [3].

The World Health Organization (WHO) has recently clas-
sified AMR as a significant global threat to both health and
society at large [4]. While the discovery of new antimicrobial
agents remains crucial in combating AMR, the effective-
ness of this strategy is limited without a comprehensive
understanding and optimization of both existing agents and
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future agents yet to be licensed. Certain challenges particular
to AMR are especially suited to modelling using Bayesian
techniques. For example, imperfect diagnostic criteria and
laboratory tests can lead to uncertainty in the underlying
patient disease and colonisation state. Furthermore, the
impact of interventions extends beyond the duration of most
clinical studies, since the generation of AMR in a population
can take years to manifest.

Antimicrobial Stewardship (AMS) constitutes a compre-
hensive initiative aimed at fostering the judicious utilization
of antimicrobials based on data obtained from the delivery
of routine clinical care [5]. The primary goals of AMS
include reducing AMR and curbing the dissemination of
infections stemming from multidrug-resistant organisms,
all while taking into account the individual’s infection
risk [6]. Effective AMS relies on a combination of measures,
including infection control, precise detection of AMR in
diagnostic laboratory settings and population-level surveil-
lance. Quantifying these measures in isolation is challenging
for several reasons, including insufficient quantities of data,
unmonitored resistance rates, the complexity of required
models, and the dynamics of co-infection with sensitive and
resistant strains [7]. The Bayesian analyses conducted in the
reviewed articles have the potential to bridge the gap between
Artificial Intelligence (AI) and AMR, as outlined in [8].

The contribution of this paper is to provide a comprehen-
sive and up-to-date overview of the current state of knowledge
in the combined topics of AMR and Bayesian modelling.
Some of the key points are summarised below:

• Integration of Bayesian modelling in AMR research:
This review aims to bridge the gap between AMR and
Bayesian modeling by exploring and reviewing studies
and applications where Bayesian methods have been
employed to analyse and model AMR data. Several
review articles have detailed the applications ofMachine
Learning (ML) and AI in tackling antimicrobial resis-
tance (AMR) [9], [10], [11], [12]. However, this review
article is the first to exclusively focus on Bayesian
methods.

• Uncertainty Quantification: This paper highlights the
importance of Bayesian modelling in quantifying uncer-
tainty. Bayesian methods allow for the incorporation
of prior knowledge, which is especially crucial when
dealing with incomplete or heterogeneous data sources.

• Prediction and Forecasting: This paper outlines how
Bayesianmodelling is an effectivemethod for predicting
and forecasting trends in AMR. Selected studies have
shown how the evolution of resistance patterns within
certain populations are affected by interventions over
time.

• Methodological Overview: A detailed methodologi-
cal overview of the development and progression of
Bayesian inference algorithms is provided, with a
specific emphasis on efficiently deploying such models
on distributed computing platforms. A description of
commonly used models, such as hierarchical models,

TABLE 1. A list of pathogens and corresponding studies that were
included in this review. The process of selecting studies is outlined in
Section I-A.

and their application in understanding the dynamics of
AMR is provided.

• Identifying Gaps and Challenges: Finally, this paper
identifies gaps in the current literature and the challenges
associated with the application of Bayesian modelling in
AMR research.

The structure of this review is organised as follows:
Section IV defines Bayes’ theorem, while Sections IV-A
and IV-E outline MCMC and SMC methods, respectively.
Section V covers statistical methods for evaluating Bayesian
algorithms. In SectionsVI, a comprehensive list of techniques
to model AMR is provided. Finally, Section VIII dis-
cusses potential directions for future work, including recent
advancements in both modeling and sampling algorithms.

A. SEARCH CRITERIA
This review encompasses studies examining a diverse array
of causative pathogens, as identified in internationally-
recognised lists which highlight their critical importance in
AMR. These lists include the WHO Priority Pathogens List
and the ESKAPE pathogens [55], [56]. The search criteria
for this review did not identify Bayesian modelling studies
of AMR in Helicobacter pylori, Campylobacter spp and
Enterobacter spp, which are pathogens identified in the prior
lists. As outlined in Table 1, the most commonly studied
pathogens are Mycobacterium tuberculosis and methicillin-
resistant Staphylococcus aureus (MRSA), highlighting their
significant impact on health outcomes. For instance, M.
tuberculosis can develop resistance to treatment and, due to
its mode of transmission, can lead to community outbreaks
of multidrug-resistant M. tuberculosis. Similarly, MRSA
can have severe consequences within healthcare settings.
Since both of these pathogens are communicable, Bayesian
calibration is a widely used approach for epidemiological
transmission models.

The search engines considered for the advanced search of
this review included Web of Science, PubMed-MEDLINE
and Scopus. The search was not restricted by date and
after publications with no full text available, review articles
with no novelty and duplicates were eliminated, a total of
567 articles were considered. To be considered, an article had
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to include Bayesian modelling of bacterial AMR in humans
(veterinary and environmental studies were excluded). Viral
and vector-borne diseases such as HIV and malaria were
not considered. Population pharmacokinetic (popPK) models
and phylogenetic tree analyses were considered out of scope
and excluded. However, a brief introduction to popPK and
phylogenetic trees are provided in Section VIII-D. In terms
of Bayesian modelling, studies had to use Approximate
Bayesian Computation (ABC), MCMC or SMC methods.
Therefore studies that employed, for example nïve Bayes
ML classifiers and Bayesian information criterion, were not
included. This resulted in 43 studies. Additionally, references
of selected papers and Google Scholar were manually
searched and this identified 22 research articles that were not
captured by the advanced search queries.

II. CONTEXTUAL EXAMPLE
Let’s consider the scenario where we aim to estimate the
prevalence of AMR, characterized by parameters of the
model that has D dimensions, θ = {θ1, θ2, . . . , θD}, within a
population using observed laboratory test outcomes denoted
by y = {y1, y2, . . . , yN }. Each element in y signifies whether
the bacterium in the sample exhibits resistance (y = 1) or
susceptibility (y = 0) to the antibiotic being studied.

III. BAYES’ THEOREM
Bayes’ theorem, outlined in (1), is a mathematical formula
used to determine the probability of θ conditional on y:

p(θ |y) =
p(y|θ)p(θ )

p(y)
, (1)

where p(y|θ) is the probability of y given θ and p(θ ) and
p(y) are the independent probabilities of θ and y, respectively.
Equation (1) provides a method for revising predictions after
considering newly obtained evidence.

IV. BAYESIAN INFERENCE
Bayesian inference uses Bayes’ theorem to update ones
personal belief after observing the data. The parameters
of a statistical model are often unknown and difficult to
measure directly and need to be inferred from the data.
Prior information can be attributed to θ in the form of a
probability distribution, p(θ ). This prior distribution may
encapsulate our initial beliefs about the prevalence of AMR
within the population, representing uncertainty regarding θ

before encountering any data. The likelihood is given by
the conditional probability of y given the prevalence of
resistance, p(y|θ ). The likelihood describes the probability
that the data was produced from the statistical model whose
parameters, θ , are fixed to a particular value. If the prior
and likelihood can be defined, the parameter posterior
distribution, p(θ |y), can be calculated using Bayes’ theorem:

p(θ |y) =
p(y|θ)p(θ )

p(y)
=

p(y|θ)p(θ )∫
θ p(y|θ )p(θ )dθ

∝ p(y|θ)p(θ ). (2)

Bayes’ theorem expresses a probability distribution over θ

which is conditional on y and allows us to update our belief

about the prevalence of resistance based on the observed test
results.

If the likelihood and prior can be easily defined, the
calculations are often algebraic or can be performed using
statistical software. This explicitness allows for easy com-
putation of the posterior distribution. When a closed-form
solution for the integral in equation (2) cannot be found,
approximating it can pose challenges, particularly in high
dimensions where it may become exceedingly difficult
or even impossible. In more complex scenarios, where
analytical solutions are not feasible, numerical methods like
MCMCmay be employed to draw samples from the posterior.
The posterior is typically estimated up to a normalisation
constant, given by the integral which marginalises out θ .

Table 2 outlines a number of Bayesian inference algorithms
as well as corresponding research studies in which they
have been applied when modelling AMR. The algorithms
include MCMC, ABC and SMC based algorithms which are
described in Sections IV-A, IV-C and IV-E, respectively.

A. MARKOV CHAIN MONTE CARLO
MCMC methods provide a mechanism for sampling from an
arbitrary probability distribution π (θ ) that, in the context of
Bayesian inference, is set proportional to the posterior:

π (θ ) ∝ p(y|θ)p(θ ). (3)

MCMC methods generate a Markov chain that forms a
sequence of correlated samples from π (θ ). A Markov chain
is Markovian in that the current sample only depends on
the previous. The transition operator T (θ , θ ′) describes the
probability of going from the current sample θ to the proposed
sample θ ′. For aMarkov chain to generate samples fromπ (θ ),
it must meet specific criteria. These criteria encompass the
chain being ergodic and possessing a stationary distribution.
The stationary distribution is the distribution that the Markov
chain converges to after running for a sufficiently long time.
It represents the desired distribution from which we want to
sample.

Detailed balance is a condition that the transition prob-
abilities of the Markov chain must satisfy to ensure that
the stationary distribution is indeed the desired target
distribution. Mathematically, detailed balance is expressed
as:

π (θ )T (θ , θ ′) = π (θ ′)T (θ ′, θ ). (4)

The time until the Markov chain has converged and reached
its stationary distribution is dependent on its initial starting
point in the parameter space and choice of transition operator
T (θ , θ ′). Popular MCMC methods are described in the
subsequent sections.

1) METROPOLIS-HASTINGS RANDOM WALK
As seen in Table 2, the Metropolis-Hastings Random Walk
(MHRW) is the most commonly used MCMC algorithm
when modelling AMR. It splits T (θ , θ ′) into two distinct
steps: the proposal step and accept/reject step.
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TABLE 2. A list of Bayesian algorithms and corresponding studies that were selected in the review article. The process of selecting studies is outlined in
Section I-A.

The proposal step draws a vector of states θ ′ from a
proposal distribution q(θ ′

|θ ). A simple example of a MHRW
proposal is the Normal distribution:

q(θ ′|θ ) = N (θ ′
; θ , 6), (5)

where 6 ∈ RD×D is the covariance, which is selected by the
user.

The accept/reject step ensures that the Markov chain
explores the state space efficiently by probabilistically
accepting proposed moves, while detailed balance ensures
that the stationary distribution of the Markov chain is
the desired target distribution. Together, these components
ensure the correctness and convergence of the Metropolis-
Hastings algorithm. The acceptance probability, α(θ , θ ′),
is given by

α(θ , θ ′) = min
{
1,

π (θ ′)q(θ |θ ′)
π(θ )q(θ ′

|θ )

}
. (6)

If the proposal is symmetric q(θ |θ ′) = q(θ ′
|θ ), as is with the

MHRW, the acceptance probability simplifies to

α(θ , θ ′) = min
{
1,

π (θ ′)
π (θ )

}
. (7)

The acceptance rate is a measure of the proportion of
proposed moves that are accepted during the sampling
process. Proposing steps that are too small can result in slow
exploration which can lead to θ ′ being proposed too close
to θ , causing high autocorrelation within the Markov chain.
Taking steps that are too large can result in low acceptance
rates and inefficient sampling as θ ′ may fall outside high
probability regions of π (θ ).
Figure 1 illustrates the importance of selecting an appro-

priate σ . It is evident that using a smaller value of σ

in Figure 1(a) takes longer to reach the probability mass
when compared to using a larger value in Figure 1(c). The
acceptance rate for Figures 1(a), (b) and (c) are 0.906,
0.602 and 0.084, respectively. To implement the acceptance
step in (6) algorithmically, a random variable u is drawn from
a Uniform distribution on [0, 1]. If u < α(θ , θ ′) then θ ′

is accepted as the next state of the Markov chain. If u >

α(θ , θ ′), θ ′ is rejected and the Markov chain’s state remains
equal to θ . This process is repeated forM MCMC iterations.

The steps performed by the MHRW algorithm are outlined
below:

1) Assign and draw initial values for θ from respective
prior distributions.

2) Following (3), calculate the parameter posterior distri-
bution by multiplying the prior and the likelihood.

3) Propose a new vector of θ ′ via the proposal distribution
in (5).

4) Accept θ ′ using the acceptance step in (6).
5) Repeat steps 2-4 for M iterations to produce a Markov

chain consisting ofM samples.
6) Perform diagnostic checks (see Section V) on the

resulting Markov chain to determine if the sampling
process is producing samples that are representative of
π (θ ).

The MHRW sampler may encounter the ‘‘curse of dimen-
sionality’’; as the dimensionality of θ increases, efficiently
sampling from π (θ ) becomes increasingly challenging.

2) GIBBS
Similarly to the MHRW sampler, Gibbs sampling randomly
walks through the parameter space. Constructing a Markov
chain using Gibbs sampling [60] can occur iteratively on
each dimension of θ , (or a partition of dimensions (see
Section IV-A3)), conditional on the most recent values of
the other dimensions. Denoted by the superscript, at the
mth iteration of the MCMC simulation, random samples are
proposed from all conditional distributions:

p(θ (m)1 |θ
(m−1)
2 , . . . , θ

(m−1)
D , y), (8a)

p(θ (m)2 |θ
(m)
1 , . . . , θ

(m−1)
D , y), (8b)

. . . , (8c)

p(θ (m)D |θ
(m)
1 , θ

(m)
2 , . . . , y). (8d)

If the conditional distributions are known, a high-dimensional
problem can be broken down into a sequence of smaller,
low-dimensional conditional simulations. If, however, the
conditional distributions are not known, other methods such
as the MHRW will need to be used. The Gibbs sampler is a
special case of MHRW where θ ′ is always accepted due to
the acceptance probability ratio in (6) being one.

Two advantages of Gibbs sampling over MHRW are
not having to define a proposal distribution and proposals
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FIGURE 1. Two Markov chains with different initial starting points when sampling from a N (0, 1) when using (a) σ = 0.15, (b) σ = 1.5 and
σ = 15 in the proposal distribution. The horizontal dashed red line is the true value. The average acceptance rate for both chains in subplots
(a), (b) and (c) are 0.906, 0.602 and 0.084, respectively.

FIGURE 2. Sampling a 2-dimensional Gaussian distribution with Gibbs
with 0 means for θ1 and θ2 for 50 MCMC iterations. The solid black lines
show the trajectory between two successive accepted samples
represented by the red dots.

always being accepted. However, to employ Gibbs sampling,
the conditional distributions need to be derived which
can be problematic. The efficiency of Gibbs sampling
can also be a concern if the dimensions of θ are highly
correlated. Figure 2 shows an example where the Gibbs
sampler struggles to sample efficiently from a 2-dimensional
Gaussian distribution.

Gibbs sampling is particularly suitable for calibrating
complex hierarchical Bayesian models, as discussed in
Section VI-B. These models can be broken down into smaller
sub-models, and Gibbs sampling facilitates the iterative
sampling of these sub-models. If conjugacy exists for a
subset of parameters within the model, Gibbs sampling can
be employed for those conjugate parameters. An example
illustrating this can be found in [24], where the transmission
parameter for Staphylococcus aureus has a Gamma prior,
which is conjugate to the Binomial likelihood.

3) METROPOLIS WITHIN GIBBS
As explained in Section IV-A2, the Gibbs sampler is suitable
when the conditional distributions of the posterior are

known. However, when dealing with challenging conditional
distributions, a practical approach is to employ a MH step to
sample a subset of parameters for which the conditionals are
not known, resulting in block updates. This method is known
as the Metropolis Within Gibbs sampler [61] and proves to
be an attractive option when modeling AMR [26], [28], [33],
[38], [50], [53].

4) DELAYED REJECTION ADAPTIVE METROPOLIS
The need to fine-tune the proposal e.g. 6 in Equation (5)
can be time-consuming, given its problem-specific nature.
Adaptive MCMC [62] and the Delayed Rejection Adaptive
Metropolis (DRAM) algorithm [63], [64] address this
challenge by enabling automatic adjustments of exploration
strategies. This adaptability, grounded in the characteristics
of the data and model complexity, significantly improves the
efficiency and effectiveness of parameter estimation. This is
particularly valuable in scenarios like AMR, where disease
dynamics are influenced by various factors and exhibit
nonlinear behavior [18], [19], [57].

5) HAMILTONIAN MONTE CARLO
As discussed in previous sections,MHRW,Gibbs andDRAM
samplers explore π(θ ) by randomly proposing a new state
θ ′ from the current state θ using some proposal distribution.
In high-dimensional problems, this random exploration can
be inefficient. Hamiltonian Monte Carlo (HMC) addresses
this issue by generating new proposal samples based on gradi-
ent information about π (θ ), encouraging greater exploration
of the parameter space. HMC was first developed in the late
1980s [65] and has gained popularity in the last decade as an
effective approach for implementing MCMC [66], [67].
HMC simulates a trajectory from θ to θ ′ by employing

Hamilton’s equations. Conceptually, Hamilton’s equations
represent a frictionless puck moving on a surface, such that
the potential energy is defined as the negative logarithm
of π (θ ), U (θ ) = − log(π (θ )). Figure 3 outlines this
phenomenon. The surface is analogous to π(θ ) which can
have hills and valleys. The height of the surface corresponds
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FIGURE 3. HMC analogy: The starting position of the left most puck (red)
in a frictionless bowl (black solid line) will have potential energy but no
kinetic energy. As the puck follows the trajectory of the arrows, potential
energy is changed to kinetic energy.

to the potential energy function of the system. The higher
the point on the surface, the higher the potential energy.
The puck’s kinetic energy, K (r), corresponds to the energy
associated with the momentum of the ‘‘puck’’ which is
denoted r. The faster the puck is moving, the higher its
kinetic energy. The total energy of the system is the sum of
its potential and kinetic energies H (θ , r) = K (r) + U (θ ).
In Hamiltonian dynamics, the total energy remains constant
over time, as long as there are no external forces acting on
the system (i.e., in our frictionless scenario). Hamiltonian
dynamics describe how the puck’s position and momentum
change over time. These changes are governed by Hamilton’s
equations, which depend on the gradient of the potential
energy (surface) ∇U (θ ) and the momentum of the system.
Hamilton’s equations are defined as:

dθ

dt
=

∂H (θ , r)
∂r

,
dr
dt

= −
∂H (θ , r)

∂θ
. (9)

The joint density over θ and r is:

p(θ , r) ∝ exp(−H (θ , r)) (10)

= exp(−K (r)) · exp(−U (θ )) (11)

= p(θ )p(r). (12)

As θ and r are independent in (12), r can be sampled from
any distribution. For simplicity, this is often chosen to be
Gaussian with zero mean.

A numerical integrator is necessary to discretize the differ-
ential equations in (9). The leapfrog numerical integrator is
widely used as it is reversible and thereforemaintains detailed
balance. The leapfrog step alternates between updating the
position of the puck based on its momentum and updating
its momentum based on the gradient of the potential energy.
Simulating a leapfrog trajectory with some momentum r
causes θ to transition to θ ′. When starting at θ ′, if the same
momentum is negated to −r, θ ′ follows the same trajectory
back to θ . A single iteration of HMC consists of L leapfrog
steps:

r′
= r + 0.5 · ϵ · ∇U (θ ), (13)

θ ′
= θ + ϵ · r′, (14)

r′
= r′

+ 0.5 · ϵ · ∇U (θ ′), (15)

FIGURE 4. Sampling a 2-dimensional Gaussian distribution with HMC
when (a) changing ϵ and L = 5 and (b) changing parameter L with
ϵ = 0.1 for 10 MCMC iterations.

where ϵ is the step size. The acceptance criterion for HMC is
defined as the following special case of (6):

α(θ , θ ′) = min

1,
exp

{
U (θ ′) −

1
2r

′
· r′

}
exp

{
U (θ) −

1
2r · r

}
 . (16)

Simulating the dynamics of the system using Hamiltonian
dynamics and leapfrog integration and employing the accep-
tance step in (16), we can sample from π (θ ). The sampled
positions of the puck correspond to samples from π (θ ). The
samples generated are governed by a predefined number of
steps L of size ϵ, determined by the user. The choice of
L and ϵ is problem specific as HMC is sensitive to the
choice of these parameters. If L is too large, computation
time can be wasted, as the trajectory might end up close
to where it started. On the other hand, if L is too small,
the proposal may exhibit random-walk behavior. Figure 4
illustrates an example when sampling from a 2-dimensional
Gaussian distribution. Figure 4(a) and (b) depict how the
choice of step-size and parameter L, respectively, can impact
the efficiency of the sampler.

6) METROPOLIS HASTINGS LANGEVIN ALGORITHM
The Metropolis Adjusted Langevin Algorithm (MALA) [68]
can be regarded as a specific instance of HMC when L = 1.
In MALA, the gradient of the posterior ∇π (θ ) is integrated
into the Metropolis proposal, serving as a drift term that
proposes θ ′ in regions of higher probability within π (θ ).
An illustration of this approach can be found in [38], where
parameters are estimated using both a Metropolis Within
Gibbs step and a standalone Metropolis step through the
modified Langevin-Hastings algorithm when modeling MIC
distributions of E. coli tested against ampicillin. The proposal
is defined to be

θ ′
= N

(
θ ′

; θ +
1
2
0∇π(θ ), 0

)
, (17)

where 0 = γ 2Id , for step size γ . Selecting an appropriate
step size for MALA involves a trade-off between exploration
and exploitation, and it often requires experimentation and
fine-tuning based on the characteristics of π (θ ) and the
problem at hand.
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7) NO-U-TURN SAMPLER
The No-U-Turn Sampler (NUTS) [69] is an extension
of HMC which adaptively estimates L. NUTS underpins
the probabilistic programming languages (ppls) Stan [70],
PyMC3 [71] and Pyro [72] and has been used in a variety
of AMR studies [37], [41], [44], [45], [51].

8) REVERSIBLE JUMP - MARKOV CHAIN MONTE CARLO
Sampling with MHRW, Gibbs, HMC and NUTS assumes
that the probability distribution π (θ ) has a fixed number
of dimensions. In some scenarios, there might be multiple
competing models that could be applicable within the defined
framework. These models could differ in aspects such as
dimensions or interpretations of the likelihood function. For
instance, consider count data like the number of vancomycin-
resistant enterococci in a hospital ward [73]; such data
could be modeled using a Negative Binomial or Poisson
likelihood, depending on the over-dispersion of the count
data. Employing MHRW would require conducting inde-
pendent MCMC runs for each candidate model. Reversible
JumpMCMC (RJ-MCMC) [74] is a MHRW-based algorithm
designed to sample from π (D, θD|y) by jumping between
competing models as part of the sampling process. The
jump is crafted to maintain detailed balance, ensuring the
algorithm’s validity. An application of RJ-MCMC can be
found in the analysis of nosocomial infection data [53]. In this
model, the unobservable times at which patients acquire a
drug-resistant organism and the total number of acquisitions
are both unknown. Since the dimensionality of the model
can change, RJ-MCMC proves to be a suitable method
for sampling from the joint distribution of all the model
unknowns.

B. REJECTION AND IMPORTANCE SAMPLING
The MCMC methods discussed in Section IV-A are Monte
Carlo techniques that build a Markov chain by drawing
samples from π (θ ). Characteristics of π(θ ), such as its mean
and variance, can be approximated using the Markov chain.
However, when sampling directly from π(θ ) is challenging,
other Monte Carlo methods like importance sampling and
rejection sampling can be employed. Both importance and
rejection sampling involve transforming samples drawn from
a proposal distribution q(θ ) into samples from π (θ ). The
choice of q(θ ) can be a practical challenge, especially in
high-dimensional spaces, but it can be any distribution that
is evaluable at different points.

1) REJECTION SAMPLING
In rejection sampling, a constant c and proposal distribution
q(θ ) needs to be chosen such that:

cq(θ ) > π(θ ), ∀θ . (18)

The idea is that a sample from q(θ) can be used when
accepting a sample from π (θ ) with probability π (θ )

cq(θ) . Samples
are generated from q(θ ) until θ is accepted. This should

lead to more samples around θ being accepted when π (θ )
is relatively large and q(θ ) is relatively small. In contrast,
a relatively small π (θ ) and large q(θ ) will result in more
samples of θ being rejected. The accept/reject step is
similar to that as described in the MHRW algorithm (see
Section IV-A1). A random variable u is drawn from a
Uniform distribution on [0, 1] such that if u is smaller than
the acceptance probability, u <

π (θ )
cq(θ) , θ will be rejected.

It can, however, be problematic finding a suitable c and
q(θ ) such that a high percentage of samples are accepted and
cq(θ ) > π(θ ), ∀θ .

2) IMPORTANCE SAMPLING
Importance sampling overcomes this by weighting samples
and providing an estimator for the expectation of π (θ ) by

E[π(θ )] ≈
1
N

N∑
i=1

π (θ i)
q(θ i)

. (19)

The weights in IS represent a scaled version of the rejection
probabilities and serve to quantify the likelihood that sampled
values from q(θ ) originate from π (θ ).

Although these two methods are not used to calibrate
models to data in the studies identified in this review, they
form the basis of the calibration methods described in the
subsequent sections.

C. APPROXIMATE BAYESIAN CALIBRATION
The definition of the likelihood in Bayes’ theorem (2)
is crucial as it encapsulates the probability of the data
originating from the model. In certain scenarios, defining the
likelihood may be challenging or computationally intensive,
especially when calibrating stochastic compartmental models
(CMs) or ABMs [13], [20], [21], [30], [48]. Approximate
Bayesian Computation (ABC) involves simulating data from
the model with a set of parameters θ . A summary statistic,
such as the root mean square error (RMSE) or Kullback-
Leibler (KL) divergence, quantifies the closeness between the
simulated and observed data. Numerous sets of parameters θ

are simulated from the prior distribution and assessed against
the true observations. The summary statistic acts as a pseudo-
likelihood, helping distinguish between different parameter
sets. ABC-rejection sampling [13], [20], [30], [48] follows
a similar procedure as rejection sampling in Section IV-B.
A user-defined tolerance or threshold determines whether a
particular θ is accepted or rejected.
An example of ABC applied to a simple AMR related

problem can be seen in Figure 5. The example considers
estimating the relationship between antibiotic concentration
and bacterial growth inhibition, which is a linear relationship.
Firstly, data is generated from the simple linear model
with slope and intercept parameters fixed at 0.5 and 1.5,
with Uniform [0, 1] and [0, 2] priors, respectively. The
ABC algorithm samples from the parameter space by
simulating data using sampled parameters form the prior and
calculates the summary statistic, which is the Mean Absolute
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FIGURE 5. Toy example of using approximate Bayesian computation to
estimate the parameters governing the linear relationship between
antibiotic concentration and bacterial growth inhibition. (a) The blue and
red points are the accepted and rejected values, respectively. (b) Is the
contour plot of the accepted values with the true set of values indicated
by the red dot.

Error (MAE), between the distance between simulated and
observed data. Parameters are then accepted if the distance
is below a certain tolerance level. Figure 5 (a) depicts the
parameter sets that are within the tolerance threshold (blue)
and the rejected parameter sets (red). A contour plot of the
accepted values can then be seen in Figure 5 (b).

Examples of threshold determination in the context of
AMR include simulated M. tuberculosis incidence falling
within the 95% confidence interval of the true observa-
tions [21] or a value resulting in the closest 2.5 or 5% of
simulations to the targets not being rejected [48]. Parameters
leading to pseudo-likelihoods smaller than a given tolerance
constitute the posterior distribution, while those exceeding it
are rejected. ABC-rejection samplingmay be inefficient if the
prior does not closely resemble the posterior (e.g., due to a
very uninformative prior) or if the model is high-dimensional,
requiring numerous simulations for a high acceptance rate.
Intelligent methods for selecting θ , such as Latin Hypercube
Sampling [21], exist to address this issue.

D. STATE-SPACE MODELS
State-space models (SSMs) or Hidden Markov Mod-
els (HMMs) (often used interchangeably) are commonly
employed in time-series problems to represent the proba-
bilistic dependence at time-step t between the hidden (or
unobservable) states of a model, denoted as Xt , and observed
variables, denoted as Yt . SSMs model how the state Xt−1 is
transitioned to Xt through the linear or nonlinear function
ft (). An observation function, gt (), illustrates the relation-
ship between the dynamical model and the observations.
A stochastic formulation is presented as follows:

Xt ∼ ft (Xt−1,Vt ), (20)

Yt ∼ gt (Xt ,Wt ), (21)

where the initial state at time 0 is defined to be x0 and is drawn
from the distribution µ(), and Vt and Wt are independent
and identically distributed process noise. A deterministic
representation of an SSM is equivalent to (20) and (21)
without the process noise.

FIGURE 6. Two simulations of the discrete time approximation of the
ODEs in (22) and (23) when β = 0.4, γ = 0.15 (dashed/dot lines) and
β = 0.3, γ = 0.2 (solid lines).

1) EXAMPLE OF A DETERMINISTIC SSM
An example of an SSM, which is related to AMR epidemi-
ology, is the Susceptible, Infected, Susceptible (SIS) disease
model, a variant of the more widely known Susceptible,
Infected, Recovered (SIR) model [75]. The key distinction
lies in the assumption that individuals do not gain immunity
after recovering from infection in the SIS model. This makes
the SIS model particularly relevant when modeling scenarios
related to AMR, where individuals can become repeatedly
infected with the same pathogen or variant. Some examples
include: P. aeruginosa [50]; beta-lactamase producing E.
coli and K. pneumoniae [36]; A. baumannii [46] and N.
gonorrhoea [41]. A common approach to representing SSMs
are Ordinary differential equation (ODE) [16], [18], [35].
A discrete time approximation of ODEs for the SIS model
are defined as

St+1 = St −
βItSt
Pop

− γ It1t, (22)

It+1 = It +
βItSt
Pop

+ γ It1t, (23)

where β and γ are the effective transmission rate of the
disease and the mean recovery rate, respectively, 1t is the
interval between timesteps and Pop is the total population.
In the context of AMR, a population could signify individuals
in a homogeneous population that originate in a susceptible
compartment and become colonised then infected by a
drug resistant pathogen [16], or genetic plasmids encoding
enzymes that confer resistance to antibiotics [35]. The
parameters β and γ govern how much of the population get
infected at each increment of time. This is summarised by
the reproductive number, R, which is calculated by R =

β/γ . Figure 6 exemplifies how the R number can effect the
total number of individuals in the susceptible and infected
compartments when R = 2.66 (dashed/dot lines) and R = 1.5
(solid lines). Equations (22) and (23) are analogous to (20)
such that Xt = {St , It }. In the context of AMR modelling,
examples of the observation equation in (21), often referred to
as the likelihood, are the Binomial distribution [46], Bernoulli
distribution [36] or beta-binomial and dirichlet-multinomial
distributions [41].
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E. SEQUENTIAL MONTE CARLO METHODS
1) PARTICLE FILTER
To formulate the problem, consider an SSM that is simulated
for t timesteps, where data is acquired at each increment of
time. For brevity, the sequence of states and observations
up to time t can be defined as x0:t = {x0, x1, . . . , xt }
and y0:t = {y0, y1, . . . , yt }, respectively. In filtering
problems, the posterior distribution p(x0:t |y1:t , θ ) can be
estimated recursively by prediction-update steps. Assuming
Markovianity, the posterior can be defined as p(xt |y1:t , θ ).
The posterior from the previous timestep, p(xt−1|y1:t−1, θ ),
and the state equation in (20) can be used to predict xt . This
is done by evaluating p(xt |y1:t−1, θ ) by using the Chapman-
Kolmogorov equation such that

p(xt |y1:t−1, θ)

=

∫
p(xt |xt−1, y1:t−1, θ )p(xt−1|y1:t−1, θ )dxt−1 (24)

=

∫
p(xt |xt−1, θ )p(xt−1|y1:t−1, θ )dxt−1, (25)

where p(xt |xt−1, θ ) is equal to p(xt |xt−1, y1:t−1, θ ) because
(20) is a Markov process of order one. As data at timestep t
becomes available, the prediction step can be updated using
Bayes’ theorem in (1) such that the posterior is defined to be

p(xt |y1:t , θ ) =
p(yt |xt , θ )p(xt |y1:t−1, θ )

p(yt |y1:t−1, θ )
(26)

=
p(yt |xt , θ)p(xt |y1:t−1, θ)∫
p(yt |xt , θ )p(xt |y1:t−1, θ )dxt

. (27)

If the integrals in (25) and (26) are high dimensional, they
can be hard to solve analytically. Section IV-A outlines how
MCMC can sample from complex distributions that are static.
However, as the posterior distribution is dynamic and needs
to be estimated recursively, MCMC methods are unsuitable.
One method to overcome this issue is to approximate (25)
and (26) recursively using a particle filter.
Particle filters are an SMC method which uses the IS

principles outlined in Section IV-B in a recursive process
to infer the time-dependent hidden states in SSMs that
are nonlinear and non-Gaussian [76]. At every timestep
t , the particle filter draws N samples (particles) from a
proposal distribution, q (x1:t |y1:t), which is parameterised
by the sequence of states and observations. The samples
are statistically independent and each represents a different
hypothesis of the sequence of states of the system. The ith
sample has an associated weight, wi

t , which indicates the
relative importance of each of the corresponding samples.
A set of N particles can then be represented as

{
xi1:t ,w

i
t
}N
i=1.

By following (19), the weights of the particles can be
calculated by

wi
1:t =

p(xi0:t , y1:t )

q
(
xi0:t |y1:t

) . (28)

As is with the case for (26), the state at timestep t is required
(not the full state sequence), such that (28) can be rewritten

as

wi
1:t = wi

1:t−1

p
(
yt |xit , θ

)
p

(
xit |x

i
t−1, θ

)
q

(
xit |x

i
t−1, yt ,

) , (29)

where wi
1:t−1 is the weight from the previous timestep. For

t = 1,

wi
1 =

p
(
y1|xi1, θ

)
p

(
xi1|θ

)
q

(
xi1|y1

) . (30)

The normalised weights can be computed by

w̃i
1:t =

wi
1:t∑N

i=1w
i
1:t

, (31)

which can be used to calculate an estimate of the true state xt
via a weighted sum:

E(xt ) =

∑Nx

i=1
xit w̃

i
1:t (32)

The algorithm described up to now is termed Sequential
Importance Sampling (SIS). As time evolves, the normalised
weights in (31) can suffer from the phenomenon particle
degeneracy. This occurs when one weight becomes close to
onewhile the remainder tend to 0. To overcome this, a process
reminiscent to the survival of the fittest can be employed.
Calculating the number of effective samples:

Neff =
1∑N

i=1
(
w̃i
1:t

)2 , (33)

at each iteration can help diagnose when particle degeneracy
is occuring. Once Neff drops below a certain threshold,
resampling can be used to replicate particles with higher
weights and kill off particles with lower weights.Multinomial
resampling is commonly used which draws a new set of N
particles based on the current set and proportionally to their
normalised weights

w̃i
1:t for i = 1, . . . ,N . (34)

After resampling, the normalised weights and unnormalised
weights are set to 1

N and 1
N

∑N
i=1w

i
1:t , respectively.

Stochastic elements within a model can result in particles
that have slightly different representations of the model. This
makes the PF a suitable candidate when modelling stochastic
SSMs. Table 2 outlines the limited number of published
studies that use a PF to model stochastic SSMs relating to
AMR [36], [39], [59]. A potential reason for this low number
is that the PF can be computationally expensive to run if
there are lots of particles. An estimate of the log-likelihood
from the particle filter can be used within the inference
algorithms p-MCMC [39], [59] and SMC2 [36]. The log-
likelihood calculation is outlined in Section IV-E2.
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2) PARTICLE - MARKOV-CHAIN MONTE CARLO
P-MCMC obtains numerical estimates related to π (θ ) by
combining two Monte Carlo methods. In the original
contribution of [77], an outerMCMC layer is used to estimate
the parameters of an SSM while an inner PF layer estimates
the states of the dynamical system. The outer MCMC
layer runs in a similar fashion to the MHRW algorithm in
Section IV-A1, but the log-likelihood is estimated by the PF
in Section IV-E1. For t = 1, ..,T an unbiased estimate of the
log-likelihood can be estimated recursively by summing the
log-weights:

p (y1:T |θ) ≈
1
N

N∑
i=1

wi
1:t . (35)

This is a byproduct of running the PF and so no additional cal-
culations are required. The resulting log-likelihood estimate
can be used within the acceptance probability in (6) such that

α(θ ′, θ ) = min
{
1,

π (θ ′)q(θ |θ ′)
π(θ )q(θ ′|θ )

}
, (36)

where π (θ ) is the product of the prior density p(θ ) and
the approximate likelihood p(y1:T |θ ). As with the MHRW
algorithm, when a symmetric proposal for θ is used, (36)
cancels to

α(θ ′, θ ) = min
{
1,

π (θ ′)
π (θ )

}
. (37)

Reference [77] proves that the Markov chain converges to
π (θ ) when using a fixed number of particles within the PF.
Two examples of utilizing P-MCMC to infer the param-

eters of models related to antibiotic resistance in N.
gonorrhoea can be found in [39] and [59]. A disadvantage of
P-MCMC is that it can be impractical to run if one iteration
of the Particle Filter (PF) is computationally expensive.
Due to the sequential nature of P-MCMC and MCMC
algorithms, parallelization over the M MCMC iterations is
not readily available. SMC samplers and SMC2, described in
Sections IV-E3 and IV-E4, respectively, are two alternatives
to MCMC and P-MCMC, which can easily exploit high-
performance computing architectures. Although IS sampling
in the PF can be readily parallelised, we note that the
computational bottleneck occurs when estimating the log-
likelihood from a PF. Therefore, parallelising the instances
of the PFs is more desirable.

3) SEQUENTIAL MONTE CARLO SAMPLERS
Sequential Monte Carlo (SMC) samplers [78], [79] leverage
the principles of both MCMC and IS to sequentially
sample from π(θ ). At each iteration k , SMC samplers
provide approximations for intermediate target distributions
of interest, π1(θ1), . . . , πK (θK ), ultimately converging to the
terminal distribution πK (θK ), which accurately represents
π (θ ). The joint distribution encompassing all intermediate

target distributions is formulated as follows:

πK (θ1:K ) = πK (θK )
K∏
k=2

L(θk−1|θk ), (38)

where L(θk−1|θk ) denotes the L-kernel. The L-kernel is a
probability distribution defined by the user and plays a crucial
role in determining the efficiency of the sampler [80].
The initialization step of the Sequential Monte Carlo

(SMC) sampler involves using importance sampling. At k =

1, N statistically independent samples are drawn from a prior
distribution q1(·) according to:

θ i1 ∼ q1(·), ∀i. (39)

Following (19), each sample is assigned an importance
weight using the following formula:

wi
1 =

π (θ i1)

q1(θ i1)
, ∀i. (40)

where π1(θ i1) is the prior distribution, and q1(θ i1) is the
proposal distribution at time step k = 1.

As time evolves, samples are proposed based on the
previous iteration. Equation (5) represents a commonly
chosen proposal distribution for SMC samplers:

θ ik ∼ q(θ ik |θ
i
k−1). (41)

After new samples are proposed, they are assigned weights
according to:

wi
k = wi

k−1
π (θ ik )

π (θ ik−1)

L(θ ik−1|θ
i
k )

q(θ ik |θ
i
k−1)

, ∀i. (42)

Similar to the PF, following the importance sampling step,
the weights are normalized according to (31), and resampling
is performed if the number of effective samples Neff in (33)
falls below a certain threshold. This process is repeated for
K iterations, and in contrast to PFs, it is assumed with SMC
samplers that all data is known before each run. In a similar
fashion to (32), estimates of the expectations of functions are
obtained by

E(f (θ ik )) =

∑N

i=1
w̃i
kθ

i
1:k . (43)

In contrast to using samples from the previous iteration only,
as is with (43), a process termed recycling [80], [81] can be
employed which provides estimates using all samples from
all iterations. Let

ck =
lk∑K
k=1 lk

, ∀k, (44)

where

lk =

(∑N
i=1w

i
k

)2
∑N

i=1
(
wi
k

)2 . ∀k. (45)

The expectation of functions can then be realised by

E(f (θ ik )) =

∑K

k=1
ckE(f (θ ik )), (46)

where
∑K

k=1 ck = 1.
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In situations where evaluating the likelihood in a SMC
sampler is challenging or computationally expensive, it may
be appropriate to utilize methods outlined in Section IV-C for
simulating a pseudo-likelihood. This pseudo-likelihood can
be employed in place of the actual likelihood. An illustration
of this approach can be found in [43] when simulating the
emergence of drug-resistant N. gonorrhoea.

4) SEQUENTIAL MONTE CARLO2

Sequential Monte Carlo2 (SMC2) integrates the Particle
Filter (PF) and Sequential Monte Carlo (SMC) samplers,
as outlined in Sections IV-E1 and IV-E3, respectively,
to estimate π (θ ). Similar to p-MCMC, the PF yields an
unbiased estimate of the likelihood (35), which can be
incorporated into the target calculation of the SMC sampler.
In (40), the target π (θ ik ) is the product of the prior p(θ

i
k ) and

the likelihood p(y1:T |θ ik ) (provided by the PF).
An example of SMC2 is presented in [36]. In this

example, the likelihood and states of the model, which
outline individuals colonized by drug-resistant bacteria, are
estimated using the PF, while the SMC sampler estimates the
model parameters.

V. EVALUATING BAYESIAN ALGORITHMS
When performing Bayesian analysis, it is essential to
understand how well the proposed sampler is performing
in terms of correctness, accuracy and efficiency. Critically
evaluating outputs from different sampling techniques can
help determine which sampler to use. This section outlines
some of the methods provided in [82] on how to do this.

A. RECOVERING THE CORRECT DISTRIBUTIONS FROM
THE MODEL
Simulating data from a model with predefined parameters
and subsequently testing the ability of the sampler to recover
the correct parameters (posterior distribution) used in the
data-generating process is a validated method to assess the
accuracy of the sampling process [26], [28], [36], [50], [53].
Simulating data from the model and assessing their con-

sistency with true observations through posterior predictive
checks is a valuable method to determine if the model
accurately represents reality [16], [19], [25], [27], [28], [30],
[39], [46], [47], [49], [53], [59]. With MCMC methods, the
posterior predictive distributions (PPD) manifest as a set of
samples. To validate the credibility of the PPD, the true
observations are expected to fall within the 95% confidence
intervals of the samples, and the mean sample should follow
the trend of the true observations. A goodness-of-fit test,
such as the chi-squared test, can be employed for a visual
inspection of the accuracy between the mean sample and
true observations. An illustrative example is provided in [53],
where the chi-squared test is used to compare the mean
predicted numbers of positive swabs of vancomycin-resistant
enterococci with the true observed swabs.

The practice of utilizing data to estimate the model
and then comparing the results with the same data, often

referred to as using the data twice, should be approached
with caution to avoid potential biases. To address this
concern, generating forecasts of true observations into the
future, using data the model has not encountered, can be
employed. An example of this approach is illustrated in
Figure 2 of [39], where the model is fitted to annual N.
gonorrhoea cases from 2008 to 2017, and forecasts are made
for the period between 2018 and 2030. Simple scoring rules,
such as those proposed by [83], can effectively summarize
the statistical consistency between the PPD and the true
observations. Notably, refinement and improvement of pre-
dictive performance for MCMC algorithms in forecasting
COVID-19-related deaths are explored in [84] and [85].

Scoring rules are applicable when evaluating observable
variables, such as positive swabs or colonized patients.
However, for assessing latent quantities like the growth rate
and reproductive number Rt , simulation-based calibration
(SBC) provides a valuable alternative [86]. In SBC, data is
simulated from a model using parameters drawn from the
prior distribution, and the posterior calibration over indepen-
dent simulated datasets is then tested against the inference
algorithm. An example of this approach is demonstrated
in [59], where the total number of N. gonorrhoea cases and
the number of cefixime-resistant infections are compared
with simulated datasets generated using parameters sampled
from their posterior distributions. This enables the assessment
of the model’s goodness of fit to the data, with one simulation
performed for each of the one thousand sampled parameter
sets.

B. EVALUATING MARKOV CHAINS
TheMCMC sampling methods outlined in Section IV-A gen-
erate a Markov chain. It is essential to assess how effectively
and efficiently a sampler is performing to ensure that the
samples are correctly drawn from the posterior distribution.
Evaluating Markov chains facilitates comparisons between
different samplers and aids in deciding when to terminate the
sampling process.

Using PPLs like Stan offers the advantage of automatic
provision of summary statistics once the sampling process
concludes. However, there are also standalone software
packages that can be employed post-sampling. Two examples
in the R programming language are CODA [87] and Bayesian
Output Analysis (BOA) [88]. CODA has been utilized
to evaluate chains sampled using MCMC for multidrug-
resistant A. baumannii [47] and N. gonorrhoea [40], as well
as p-MCMC for N. gonorrhoea [59]. Similarly, BOA has
been applied in the analysis of enterococci [53]. These
tools provide summary statistics such as effective sample
size (ESS), autocorrelations, Gelman-Rubin statistics, among
others. A number of commonly used statistics are described
in the subsequent sections.

1) EFFECTIVE SAMPLE SIZE
The effective sample size (ESS) serves as an explicit approx-
imation of the number of independent samples necessary
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for the Markov chain to possess the same estimation
power as the set of auto-correlated samples. Higher ESS
values are desirable, indicating a more efficient sampler.
Comparing ESS values per second of computation time can
provide insights into the efficiency of different samplers.
For example, MHRW runs may take less computation time
than HMC and NUTS because MH does not involve gradient
evaluations. The efficiency of a sampler can be assessed by
calculating the ESS per second based on the time taken for
the sampler to complete its run.

2) INTEGRATED AUTO-CORRELATED TIME
The Integrated Auto-Correlated Time (IACT) provides an
estimate of the number of samples, on average, required
to draw an independent sample from a continuous Markov
chain. This measure is associated with the concept of
‘‘mixing’’ and lower IACT values are more desirable as they
indicate faster mixing and better exploration of the parameter
space.

3) GELMAN-RUBIN DIAGNOSTIC
The Gelman-Rubin diagnostic [89] is a numerical method
that determines if multiple chains have converged by
comparing the variances between chains. This diagnostic
is commonly used in ppls (where it is referred to as R̂)
to ascertain if the sampler has correctly sampled from the
posterior. Stan’s documentation states that an R̂ value below
1.05 passes their internal diagnostic check.

C. SOFTWARE PACKAGES
Table 3 outlines software packages that implement Bayesian
inference algorithms that have been used when modelling
AMR. Software packages for performing Bayesian analysis
using MCMC methods with random walk proposals include
WinBUGS [90], BayesianTools [91], BEAST [92] and
DRAM [63]. As explained in Section IV-A1, random
walk proposals can suffer from the problem of curse of
dimensionality.

HMC and NUTS, outlined in Sections IV-A5 and IV-A7,
respectively, overcome this problem by using gradient
information to generate efficient proposals. Stan [70] is a ppl
that performs Bayesian inference on user defined statistical
models with NUTS. Stan has been extensively developed
since its creation and has variants written in the programming
languages C++, Python and R. Undertaking calibration using
Stan requires statistical models to be deterministic [37], [41],
[45], [51].

The particle filter outlined in Section IV-E1 can be
described in the software package BayesianTools and the R
package: pomp [93] which has the functionality of perform-
ing Bayesian inference with p-MCMC in Section IV-E2.
When the likelihood evaluation is intractable the ABC

methods outlined in Section IV-C can be used. The EasyABC
software package, created in R, implements an SMC sampler
that uses ABC to estimate the likelihood.

VI. POPULAR METHODS FOR MODELING AMR
The purpose of this section is to present well-known
approaches for incorporating Bayesian principles in mod-
eling AMR. These approaches encompass mixture models,
hierarchical Bayesian models, as well as deterministic
and stochastic epidemiological models. Examples of AMR
applications are specified, where available. In Section VIII,
we explore potential advancements and developments for
these models in the future.

A. MIXTURE MODELS
Is it often the case that complex data has visible underlying
sub-populations or clusters which cannot be adequately
described by a one-dimensional Gaussian distribution.
A Gaussian Mixture Model (GMM) is a probabilistic model
that assigns and defines the probability of each datum coming
from a specific cluster. A GMM can be defined as:

p(θ ) =

K∑
i=1

wi ·N (θ; µi, 6i), (47)

where p(θ) is the probability density function of the GMM
at θ , K is the number of Gaussian components and wi are
the mixture weights, which are probabilities that sum to 1.
GMMs in a Bayesian framework require prior distributions
to be placed over θ . The mixture weights and parameters will
therefore be random variables and in this context, (47) can be
defined as

p(θ |y) =

K∑
i=1

ŵi ·N (µ̂i, 6̂i), (48)

where y is the data and ŵ, µ̂ and 6̂ are estimated using
expectation-maximization (EM). Mixture models have been
successfully applied to in vitro studies [38], [51], [52]
(see Section VII-C for more information) and phylogenetic
trees [14], [15] (see Section VII-D for more information)
when modelling AMR.

B. HIERARCHICAL BAYESIAN MODEL
Hierarchical or multi-level Bayesian modeling is a powerful
approach that involves breaking down complex statistical
models into a series of interconnected sub-models arranged
in a hierarchical structure. This framework allows for
the combination of information from various sub-models,
introducing additional uncertainty that can be beneficial in
the inference process. The interdependence of priors among
parameters contributes to this added uncertainty. Multiple
examples of hierarchical models and AMR can be found in
[50], [53], and [57].

In (2), the likelihood function, p(y|θ), is a function of θ .
However, in hierarchical Bayesian models the likelihood is a
function of θ and hyper-parameters, φ, such that it is defined
to be

p(y|θ , φ), (49)
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TABLE 3. Software packages that have been used to perform Bayesian inference on models relating to AMR.

with

p(θ , φ), (50)

as its prior. Using the definition of conditional probability,
(50) can be defined to be

p(θ , φ) = p(θ |φ)p(φ). (51)

Using Bayes theorem, the posterior distribution can then be
defined to be

p(θ , φ|y) ∝ p(y|θ , φ)p(θ , φ), (52)

∝ p(y|θ , φ)p(θ |φ)p(φ). (53)

As the dependence of parameters are modelled conditionally,
the Gibbs sampler, outlined in section IV-A2, is a suitable
MCMC algorithm to perform inference.

Hierarchical models may account for variability at dif-
ferent levels, such as variations between different patient
populations, geographic regions, or strains of microorgan-
isms. Data from hospital wards or separate ICUs within
hospitals are often highly interdependent. Therefore, complex
mathematical transmission models can be split into sub-
models. For example, the colonisation status of infected
patients in one ward can affect patients in another [50], [53],
[57]. Each hospital ward or ICU has different parameters
which are intrinsically linked.

C. EPIDEMIOLOGICAL ANTIMICROBIAL RESISTANCE
Two common approaches for representing and simulating
AMR are Compartmental Models (CM) and population-
based Agent-Based Models (ABMs).

CMs divide the population into distinct compartments,
each representing a different health state. The transitions
between these compartments are governed by a set of
differential equations (see Section IV-D1).
Incorporating stochasticity within the SIS model (see

Section IV-D1) can better reflect real life scenarios [21],
[23], [28], [30], [36], [39], [45], [47], [48], [59]. Stochastic
fluctuations to the disease dynamics can be added to the
discrete ODEs in (22) by adding a noise term, ϵx , for
each time-varying parameter. The noise mimics random
interactions between individuals within the population. The

stochastic SIS model is then defined as

St+1 = St −
βItSt
Pop

− γ It − ϵβ + ϵγ 1t, (54)

It+1 = It +
βItSt
Pop

+ γ It + ϵβ − ϵγ 1t, , (55)

where ϵβ ∼ N (0,
√

β/Pop) and ϵγ ∼ N (0,
√

γ /Pop).
References [21], [24], and [47] stress the importance of

stochastic models when working with data from small pop-
ulations as stochastic effects can become highly important.
Reference [47] collects samples of multidrug-resistant A.
baumannii from 15 patients in a hospital ward and report a
Stochastic Differential Equation (SDE) is necessary, over an
ODE, to obtain reliable estimates. They do this by adding a
continuous-time Markov process to the ODE which results in
an SDE. In a study of cefixime resistance in N. gonorrhoea
[59], it was shown that another advantage of using a stochastic
model over the deterministic equivalent is that the small
number of cases in the early and late stages of the outbreak
would not be captured by their deterministic model.

Individual ABMs are another method for simulating
interactions with individuals within a population based on a
set of rules [30], [36], [45]. ABMs are useful for modeling
individual-level behaviors, such as antibiotic usage and
transmission dynamics. They can capture heterogeneity in the
population and simulate the emergence and spread of AMR
at the individual level. ABMs relax the homogeneity assump-
tion, which underpins traditional CMs. Although CMs do
simulate interactions with individuals in a population, they
don’t represent them explicitly like ABMs. This has been
argued as a major advantage when making inferences about
nosocomial transmission of MRSA [30]. ABMs can easily
express the heterogeneity of patient and health care worker
contacts within different wards of a hospital. The flexibility
of individual ABMs is also an advantage when compared
to ODE or SDE based models. For example, it is shown
in [36] that the colonisation rate of extended spectrum beta-
lactamase producing E. coli and K. pneumoniae is affected
by factors including time-of year, coinhabitant information
and individual related information such as gender, income
and age, which can easily be modelled using ABMs.

1) METHODS TO PREVENT AND CONTROL AMR
In epidemiological studies, identifying and implementing
effective measures to prevent and control AMR within
specific populations is a critical area of focus. Healthcare
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FIGURE 7. Simulation of the discrete time approximation of the ODEs
in (22) and (23). Hand hygiene by health-care workers is introduced at
t = 80 (black dashed vertical line) with β = 0.3 and β = 0.1 pre and post
hand hygiene intervention, respectively.

settings, in particular, have garnered significant attention
due to the heightened risk of patients acquiring infections
caused by drug-resistant bacteria [23], [24], [25], [29],
[30], [54], [57]. Assessing whether a patient is colonised
with resistant bacteria upon arrival at a healthcare facility
is crucial to prevent the potential spread to other inpa-
tients. Methicillin resistant S. aureus, in particular, is a
focus of concern given the severity of infections it can
cause [23], [24], [25], [29], [30]. The use of antimicrobials
to manage MRSA rates may lead to unintended collateral
AMR, with manifestations occurring over months or years,
extending beyond the typical follow-up period of clinical
studies. Simulation studies, particularly those employing
Bayesian calibration, can effectively model long-term AMR
outcomes. For instance, a simulation study revealed that the
long-term consequence of a ‘‘universal’’ mupirocin usage
policy was the development of mupirocin resistance [23].
Interventions, such as incorporating improved hand hygiene
by health-care workers [24], [29], [57], decolonisation
measures e.g., enhanced cleaning of medical equipment
and the environment [29], [54], [57] and limiting patient
exposures and contact precautions via isolation rooms for
colonised patients [25], [54], [57] could be beneficial.
Figure 7 shows the impact of implementing improved
hand-hygiene measures when simulating the discrete time
approximation of the ODEs in (22) and (23). The change of
the transmissibility parameter β from 0.3 to 0.1, when the
measures are introduced at t = 80, has an effect on the
number of individuals in the infected compartment. However,
employing blanket package interventions of isolation, testing
and decolonisation treatments to all patients can consume
valuable resources [25]. Therefore, an approach targeted to
high risk patients could be more desirable [30]. Employing
individual, patient-level compartmental transmission models
that depict Intensive Care Units (ICUs) or hospital wards
allows for the monitoring of each patient’s status while
intervention and control strategies are enacted [23], [24],
[25], [30]. The implementation of control strategies in real-
world scenarios during data collection [23], [25], [29],
[54], [57] or through sensitivity analysis [24], [30], such

as adjusting parameters to explore various scenarios (e.g.,
modifying a hand hygiene parameter to assess the impact
of healthcare workers’ adherence to handwashing), enables
the identification of changes in bacteria transmission dynam-
ics [24].
Enhancing adherence to hand hygiene is identified as

the most effective measure in preventing the transmission
of MRSA, as evidenced by Bayesian estimates of the
transmission count per uncolonized patient, referred to as
the attack rate in [24]. An MCMC algorithm found that
including isolation and decolonisation measures reduced the
transmission dynamics of MRSA by 64% in [25].

VII. ANTIMICROBIAL RESISTANCE
This section describes how studies have examined AMR.
As explained in Section I, an effective AMS is multi-
faceted and aims to integrate various initiatives. Among these
initiatives are programs addressing multi-drug resistance,
economic implications, and modeling AMR in vitro as well
as within specific populations. The subsequent paragraphs
provide an overview of these programs.

A. DRUG/MULTI-DRUG RESISTANCE
The global trend of multi-drug resistance is a cause for
concern. In 2019, an estimated 1.27million deaths worldwide
were attributed to drug and multi-drug resistance, with AMR-
resistant infections contributing to 4.95 million deaths [96].
A significant contributor to these fatalities, numbering
approximately 50,000 to 100,000, is multi-drug-resistant M.
tuberculosis, a form of M. tuberculosis resistant to isoniazid
and rifampin, the two most potent antiM. tuberculosis medi-
cations. Bayesian modeling and the estimation of anticipated
cases, incidence, and mortality related to multi-drug-resistant
M. tuberculosis constitute an active and ongoing area of
research [13], [14], [16], [17], [20]. Bayesian analysis of other
pathogens resistant to multiple drugs include: Salmonella
spp [51], [52]; E. coli [34], [35]; N. gonorrhoea [41] and A.
baumannii [47].

B. ECONOMIC COST
As stated in [97], the rise of AMR is associated with an
annual increase of nine billion euros and 20 billion dollars in
healthcare costs in Europe and the United States, respectively.
With diminishing effectiveness of antimicrobials against dis-
eases, these costs are expected to increase. Two noteworthy
studies, focusing on the epidemiological and public health
impact, as well as the cost-effectiveness of implementing
vaccine programs forN. gonorrhoea [40] andM. tuberculosis
[20], exist. Both studies employ integrated transmission-
dynamic compartmental health-economic models to project
cost savings based on vaccine rollout. According to [20],
M. tuberculosis vaccination is poised to significantly reduce
future case burdens, while [40] advocates for a targeted
vaccination approach for better economic outcomes. Utiliz-
ing Bayesian methods for calibration is well-suited for this
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analysis, given the inherent uncertainty in model parameters
and cost inputs, as highlighted in [20].

C. MODELLING OF IN VITRO PHENOMENA
Bayesian calibration of in vitro studies has been an active area
of research [18], [31], [35], [38], [41], [51], [52], [58], [98].
The Minimal Inhibitory Concentration (MIC) establishes
the susceptibility or resistance of antibiotics when tested
against antimicrobials in vitro. It signifies the minimum
antibiotic concentration at which detectable bacterial growth
is observed. A lower MIC value suggests that a smaller drug
concentration is needed to inhibit bacterial growth, making it
more desirable. MIC serves as a benchmark for comparing
antimicrobial agents across various studies. For example,
N. gonorrhoea was tested against ciprofloxacin, cefixime
and azithromycin in [41] and ciprofloxacin, penicillin, and
tetracycline in [58]. The same classes of antibiotics can also
be applied to different bacteria for example, tetracycline
tested against E. coli [35] and N. gonorrhoea [58] and
amoxicillin tested against E. coli [35] and Salmonella
spp [51].

MIC experiments can be resource-intensive and expensive
due to the necessary equipment. The potential for human error
in recording MIC readings is also a problem. Recent work,
namedAIgarMIC [99], has attempted useML to automate the
readings of MIC experiments. The observation of bacterial
growth frequently leads to censored data, where observations
fall within fixed time intervals between dilution experiments.
This limitation arises because the exact time of growth occurs
within the interval from the last dilution inhibiting growth
to the first dilution where no growth is visible. Approaches
to address censored data within a Bayesian framework are
discussed in [31], [38], [51], [52], and [58].

Among the in vitro studies discussed previously, two preva-
lent methods for modeling MIC are noteworthy. Examples
include ODE based models, such as those describing how
single or multiple drug resistance mutations influence MIC
distribution [41]. These models also explore noninherited
resistance levels in bacteria when exposed to antibiotics [35],
as well as the emergence of antibiotic-resistant subpopula-
tions in M. tuberculosis cells treated with isoniazid [18].
The second method involves hierarchical mixture models,
exemplified by their ability to represent subpopulations
of antibiotic resistance within an overall population of
isolates [38], [51], [52].

D. SPECIALISED AREAS OF AMR
This review revealed two specialized areas of research related
to AMR, briefly discussed here. Firstly, several studies
incorporated the analysis of molecular sequences associated
with drug resistance using phylogenetic trees [14], [15], [22],
[32], [33], [42], [44], [94]. As seen in Table 3, the software
Bayesian Evolutionary Analysis Sampling Trees (BEAST)
[92] is widely used for conducting Bayesian analysis on
the evolution of drug-resistant genomes. Additionally, the

software package Tracer [100] is commonly employed to
visualize the MCMC traceplots generated by the BEAST
software. The second specialized area of research pertains
to popPK models. These models aim to depict relationships
between patient characteristics and drug exposure, with a
focus on inferring the susceptibility of the drug to the
microorganism and the exposure to the drug [101], [102].

VIII. RECENT ADVANCEMENTS AND SCOPE FOR FUTURE
WORK
This section outlines potential avenues for future work with
regards the applicability of the latest advancements and
applications in Bayesian modeling of AMR. As is with
healthcare in general, AMR is a field that is dynamic and
continuously evolving.

A. A COMBINATION APPROACH TO AMR
This review has outlined studies that have attempted to
address the measures outlined in Section I which constitute
an effective AMS. According to [8], the challenges arise
when combining these measures in a coherent framework
which is interpretable by clinicians and healthcare workers
and adheres to the legal requirements needed to utilise in the
healthcare system. Examples of how future research could
integrate multiple areas discussed in this review include:

• Extend the use of hierarchical Bayesian models to
integrate data from multiple scales e.g. combining
MIC laboratory testing of antimicrobials with broader
surveillance of AMR in target populations to better
understand the transmission dynamics of AMR.

• Integrating epidemiological and genomic data to iden-
tify genetic markers associated with resistance and
track the evolution of resistance genes could follow
a similar approach to that described by [103] for
HIV. In their study, they calibrate time series preva-
lence data and dated phylogeny reconstructed from
sequences to infer the reproduction number using p-
MCMC. Given the potential computational expense of
this approach, especially with long time-series data,
employing SMC2 could be advantageous.

• Economic and policy models could be combined using
Bayesian methods to quantify the economic impact of
AMR and evaluate the cost-effectiveness of different
intervention strategies.

B. SAMPLING ALGORITHMS
The progression from the MHRW proposal in MCMC to
gradient-based methods is clearly outlined in this review. It is
evident from Table 2 that the majority of studies identified
in the search criteria are random walk based algorithms.
In the following paragraphs, we intend to describe recent
advancements in p-MCMC, SMC2, and SMC samplers.
As detailed in Section IV-E2, the standard proposal utilized

in p-MCMC and SMC samplers is MHRW, which can
face challenges associated with the curse of dimensionality.
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Recent advancements have explored the use of MALA,
HMC, and NUTS as proposals within p-MCMC [104],
[105]. Similarly, recent advancements with gradient-based
proposals within SMC samplers can be found in [106]
and [107]. One notable challenge in p-MCMC and MCMC
methods lies in their inherent sequential nature, limiting
efficient parallelization. Multichain MCMC is one method
that can efficiently explore π(θ ) with [108] presenting a
framework for running onGPUs. To overcome this constraint,
a potential solution involves replacing MCMC with an SMC
sampler and p-MCMC with SMC2. Recent studies have
shown how to implemented these algorithms on high-end
computing facilities [36], [109]. A specific example can be
found in [36] where they implement SMC2 on GPU nodes
when calibrating transmission models pertinent to the spread
of E. coli.

C. DIFFERENTIABLE AGENT BASED MODELS
ABMs and equation-based CMs represent two frameworks
employed for modeling the spread of communicable diseases
within populations. ABMs diverge from the homogeneity
assumption inherent in traditional CMs by simulating het-
erogeneous agents with predefined behaviors. The challenges
of scalability when simulating millions of individuals and
the non-differentiable nature of ABMs have been perceived
as hindrances to widespread use. Recent efforts, such as
those highlighted in [110], have focused on developing
differentiable ABMs. A notable example is GradABM [111],
which introduces a scalable, differentiable ABM capable of
simulating populations in the millions within a few seconds
and accommodating heterogeneous data sources related to
COVID-19. A promising avenue for future research would
involve calibration of differentiable ABMs to AMR data
using gradient-based MCMC and SMC samplers.

D. SPECIALISED AREAS OF AMR
In Section VII-D, two specialized areas of AMR are dis-
cussed: phylogenetic trees and popPK models. The software
package BEAST is a prominent choice for Bayesian analysis
of molecular sequences using MCMC. A recent review has
outlined practical guidelines for Bayesian phylogenetic infer-
ence using MCMC [112]. As the size and complexity of data
and models increase, so does the runtime required to obtain
meaningful results. Recent advancements, as discussed
in [113], introduce an SMC sampler specifically designed
for decision trees, and this implementation is compatible
with shared memory architectures. The study demonstrates
that SMC samplers are as accurate as MCMC but faster,
offering potential benefits in this context. Concerning popPK
models, the use of gradient basedMCMC algorithms, such as
HMC, could be a beneficial alternative to likelihood statistical
methods, as outlined in the review article [114]. A software
package named Torsten [115] utilizes functions derived
from the ppl Stan to tackle popPK related problems. While
both areas necessitate further exploration, they represent
intriguing directions for future research.

IX. CONCLUSION
This review article explores the application of Bayesian
methods in understanding AMR. It examines various studies
that employ Bayesian statistical techniques to model and
predict the dynamics of AMR. The paper outlines the
evolution of sampling algorithms, detailing the shift from
traditional random walk methods to more advanced gradient-
based approaches. These advancements have improved the
accuracy and efficiency of AMR modeling, offering deeper
insights into the spread and control of resistance.

It is evident from this review that a combination approach
to antimicrobial AMR stewardship should be employed to
optimize the use of antimicrobial agents, reduce the spread of
resistance, and improve patient outcomes. As computational
resources increases, the ability to analyseAMR related data in
real time will become hugely important. One such example is
phylogenetic analysis and the ability to detect mutations that
are resistant to antibiotics.

As AMR continues to pose a global health threat,
the application of Bayesian techniques will be crucial in
developing effective strategies for monitoring and mitigating
resistance. Future research should focus on further refining
these methods and exploring their integration with other
computational tools to enhance our understanding and
management of AMR.
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