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ABSTRACT The discrete Charlier moment transform, while extensively utilized in image processing,
is inherently lossy and non-integer reversible, making it unsuitable for lossless image applications. To address
this, we propose the Integer Reversible Charlier Transform (IRCT), which operates on integer values and
produces integer coefficients, enabling perfect and unique recovery of the original input data. The IRCT
maintains the orthogonality and invertibility ensuring exact similarity between original and reconstructed
images. We leverage the capabilities of the IRCT to develop a novel reversible data hiding (RDH) scheme.
This scheme embeds additional data into images by modifying the histogram in the IRCT domain.
By capitalizing on the concentrated nature of the IRCT histogram, characterized by high peaks, our method
achieves a significantly high embedding capacity while preserving image quality and robustness to statistical
attacks. Comparative performance evaluations underscore the effectiveness of the IRCT-based RDH scheme
over existing techniques across various domains, positioning it as a promising solution for secure data
transmission.

INDEX TERMS Discrete orthogonal moments, integer reversible Charlier transform, secure data
transmission, reversible data hiding, histogram modification.

I. INTRODUCTION
In recent years, digital data hiding has emerged as a practical
solution for ensuring secure transmission of digital data [1],
[2], [3]. This technique involves concealing a secret message
within a cover medium, such as digital images, in a manner
that remains imperceptible and can only be detected and
decoded by authorized individuals [4], [5].

For sensitive images, particularly those used in fields like
medicine or the military, it is crucial to fully restore the
original cover image after extracting the hidden message [6].
This requirement renders traditional data hiding algorithms
unsuitable for such images [3]. Consequently, researchers
have turned their attention to reversible data hiding (RDH)
methods, dedicating their efforts to advancing this area of
study [5], [7], [8].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .

RDH methods can be categorized into three distinct types:
spatial domain methods, compression domain methods, and
transform domain methods [9]. The first category directly
embeds the secret message into the cover image, while
the second category utilizes compression techniques for
embedding. The third category involves transforming the
cover image into the transform domain before embedding the
secret message.

Spatial and compression domain RDH methods are
relatively less robust to statistical analysis because they
directlymanipulate the pixel intensity in the cover image [10],
[11]. In contrast, transform domain RDH methods offer a
higher level of robustness by manipulating the coefficients
of the transformed cover image. Consequently, even if a
malicious individual attempts to analyze the image to uncover
hidden information, it would be more challenging for them to
detect the secret message. This has led to a growing interest
in employing transforms in RDH approaches [12], [13].
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Among the various transforms used in image processing,
moment transforms stand out as a popular class extensively
employed for characterizing image features in different infor-
mation security domains. These transforms serve as powerful
tools and find applications in image watermarking [14], [15],
image encryption [16], image zero-watermarking [17], [18],
and image steganography [2], [19].
In recent years, significant progress has been made in

reversible data hiding (RDH) techniques. One notablemethod
proposed by Ni et al. [20] is histogram modification, which
enhances image quality by modifying the histogram of
the cover image to embed a secret message. However,
spatial domain approaches [21], [22] based on Ni et al.’s
technique [20] have limited embedding capacity due to their
reliance on histogram peak points. As a result, researchers
have shifted their focus towards transform domain methods
[12], [23], [24] that leverage histogram modification to
overcome these limitations.

Despite these advancements, moment transforms have not
been extensively explored in the context of RDH. This is
primarily because moment transforms are inherently lossy
and lack integer reversibility.When applied to a digital image,
which is represented by integer values, these transforms
produce moment coefficients as floating-point real numbers.
Consequently, during the inverse moment transform, these
coefficients are rounded based on finite precision used
in computations, resulting in potential information loss.
Consequently, the reconstructed images never attain perfect
similarity to the original images.

This paper introduces the Integer Reversible Charlier
Transform (IRCT), which addresses the critical limitations
of the discrete Charlier moment transform in lossless image
applications [25]. The IRCT operates on integer-valued
signals and produces integer-valued output coefficients,
ensuring precise and unique recovery of the original input
signal. This property is particularly valuable in applications
where numerical accuracy is crucial and floating-point oper-
ations are undesirable, such as RDH application. The IRCT
is based on discrete orthogonal Charlier polynomials [26],
known for their native discreteness. Additionally, a Charlier
polynomial matrix of size N × N possesses desirable
properties, including orthogonality, invertibility, the equality
of its inverse and transpose, a determinant of 1, and all
leading principal submatrix minors being 1s. Exploiting these
properties, we factorize an N×NCharlier polynomial matrix
into a product of single-row elementary reversible matrices
(SERMs) [27], each of which is directly integer reversible.
When applied to a digital image, the IRCT achieves perfect
reconstruction, resulting in infinite PSNR (peak signal-to-
noise ratio), zero MSE (Mean Square Error), and an SSIM 1
(Structural Similarity Index) of 1, indicating exact similarity
between the original and reconstructed images.

Furthermore, this paper presents a novel image RDH
scheme for secure data transmission using the IRCT and
histogram modification. The proposed method modifies the
histogram in the IRCT domain, leveraging the concentrated

nature of the IRCT histogram, which has high peaks, thereby
achieving a very high embedding capacity while preserving
image quality and robustness to statistical attacks.

The effectiveness of the proposed IRCT-based RDH
method is extensively evaluated and compared with state-
of-the-art RDH methods across multiple domains, including
spatial, discrete cosine transform (DCT), discrete wavelet
transform (DWT), and integer transform domains. Simulation
results demonstrate that the IRCT-based RDH method offers
a high embedding capacity, superior image quality, and robust
resistance to statistical attacks.

The main contributions of this paper are as follows:
• Introduction of a novel transform, the Integer Reversible
Charlier Transform (IRCT), which overcomes the lim-
itations of the discrete Charlier moment transform in
lossless image applications.

• The IRCT achieves perfect reconstruction of digital
images, characterized by an infinite PSNR, zero MSE,
and an SSIM of 1, ensuring exact similarity between the
original and reconstructed images.

• Proposition of a novel RDH scheme based on the IRCT
for secure data transmission.

• The proposed RDH scheme leverages the highly con-
centrated nature of the IRCT histogram, characterized
by high peaks, to achieve significantly high embedding
capacity while preserving image quality and robustness
against statistical attacks.

The remainder of this work is organized as follows:
Section II provides background information on the Charlier
transform, Section III outlines the procedure for deriving the
IRCT, Section IV explains the IRCT-based RDH method,
Section V evaluates the effectiveness of the proposedmethod,
and Section VI concludes the paper by summarizing its main
contributions.

II. PRELIMINARIES
The Charlier transform, also referred to as the Charlier
moment transform, is a mathematical tool widely used
for extracting features from discrete data like signals,
images, and 3D objects. It’s crucial in many areas of
image and signal processing, like speech enhancement [28],
signal compression and encryption [29], signal and image
reconstruction [26], 3D object classification [30], as well
as texture classification, image segmentation, and denois-
ing [31]. It also finds relevance in the field of control systems
engineering [32].
The kernel function of the Charlier transform is based on

discrete Charlier polynomials, which are a set of orthogonal
polynomials defined for discrete variables. The Charlier
polynomial of order n is defined as follows [25], [26]:

Ca1
n (x) =

√
w(x)
ρ(n) 2

F0(−n, −x; −1
/
a1); n,

x = 0, 1, 2 . . . , ∞; a1 > 0. (1)
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where w(x) is the weight function (Eq. 2), ρ(n) is the norm
function (Eq. 3), and 2F0() is the hypergeometric function
(Eq. 4).

w(x) =
e−a1ax1
x!

. (2)

ρ(n) =
n!
an1

. (3)

2F0(z, y; ; x) =

n∑
k=0

(z)k (y)k (x)k

k!
. (4)

here (z)k is the Pochhammer symbol where (z)0 = 1 and
(z)k = z.(z+ 1) . . . (z+ k − 1), k > 1.
The Charlier polynomial Ca1

n (x) exhibits the orthogonal
property described as follows:

∞∑
x=0

Ca1
n (x)Ca1

m (x) = δn,m; n,m ≥ 0. (5)

Additionally, it exhibits the following recurrence rela-
tion [29]:

Ca1
n (x) = ACa1

n−1(x) + BCa1
n−2(x); n ≥ 2. (6)

where

Ca1
0 (x) =

√
a1
x

× Ca1
0 (x − 1) with Ca1

0 (0) =

√

e−a1

Ca1
1 (x) =

√
a1

(
1 −

x
a1

)
× Ca1

0 (x)

A =
a1 + n− x − 1

a1

√
a1
n

B = −

√
1 −

1
n

(7)

It should be noted that the orthogonality property of
Charlier polynomials Ca1

n (x) is maintained when the variable
x tends to infinity according to the Eq. (5). We recommend
computing Charlier polynomials using the Gram-Schmidt
process (GSP) [33] tomaintain orthogonality in a finite range.
For an N × N image g(x,y), the 2-D Charlier transform in

terms of Charlier polynomial is defined as [25]:

Mn,m =

N−1∑
x=0

N−1∑
y=0

Ca1
n (x)Ca1

m (y)g(x, y), n,

m = 0, 1, . . . ,N − 1 (8)

The inverse transform resulting from the orthogonality
property of Charlier polynomials (Eq.5) is expressed as
follows:

g(x, y) =

N−1∑
n=0

N−1∑
m=0

Mn,mCa1
n (x)Ca1

m (y) (9)

The Charlier transform and its inverse can also be
implemented in the matrix form as follows [25]:

M = C.g.CT and g = CT .M .C. (10)

where CT
= C−1 and C(n, x) = Ca1

n (x).

Despite being widely used, the Charlier transform is not
suitable for lossless image applications for two primary
reasons. Firstly, it is a lossy, whichmeans some information is
lost during the transform process. Secondly, it lacks the inte-
ger reversibility property because it produces real floating-
point (non-integer) values in the transform domain, and due
to finite precision, it is impossible to perfectly recover the
original integer values from these real floating-point values
during the inverse transform during the inverse transform.
As a result, the Charlier transform is not desirable in lossless
applications and situations where the use of floating-point
operations is not acceptable or suitable, such as in reversible
data hiding (RDH) application.

III. PROPOSED INTEGER REVERSIBLE CHARLIER
TRANSFORM
The proposed Integer Reversible Charlier Transform (IRCT)
is implemented by factorizing an N × N Charlier polynomial
matrix (the kernel function of the Charlier transform) into
a product of single-row elementary reversible matrices
(SERMs), with each SERM being directly integer reversible.
This construction ensures that the IRCT is an integer-
to-integer mapping, preserving the integer nature of the
input signal and guaranteeing lossless transformation. This
inherent property of the IRCT makes it highly desirable
in numerous applications where the exact recovery of the
original input signal from its transform domain coefficients
is paramount. The detailed development of IRCT is described
as follows.
An N × N kernel matrix of Charlier transform C has the

following properties:
• C is orthogonal, that is CT .C = C.CT

= I where I is
N × N identity matrix.

• C is invertible and its inverse is equal to its transpose:
C−1

= CT

• The determinant of C is 1: det(C) = 1.
• All the minors of the leading principal submatrices are
1s.

With these properties of the matrixC, it can be factorized into
N + 1 SERMs as follows [27]:

C = PSN . . . .S2S1S0. (11)

where P is the permutation matrix of C, and Si(i =

0, 1, 2, . . . .,N ) are the SERMs defined as

S0 = I + eN sT0
Si = I + eisTi , i = 1, 2, . . . ,N . (12)

here ei is the i-th column of identity matrix I , and si are the
vectors constituting the necessary components of the SERMs
where the i-th (i = 1, 2, . . . .,N ) element must be equal to
zero.
The previous SERMs have the following property:

S−1
0 = S0 = I + eN sT0
S−1
i = I − eisTi , i = 1, 2, . . . ,N . (13)
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The computational process in this study adopts a block
computing approach to compute the Charlier transform of the
image efficiently. This approach involves dividing the image
into non-overlapping blocks, each with a size of 8× 8 pixels.
By employing this block-based computation, the complexity
of image processing operations is significantly reduced.
Instead of processing the entire image at once, breaking it
down into smaller blocks allows for faster computation. The
8 × 8 block computing approach is widely used in image
processing due to its effectiveness in reducing computational
burden. It has been applied in various areas such as image
RDH [34],, image watermarking [33], image restoration [35],
and image compression [36].

At the bottom of the next page, a standard 8 × 8
Charlier polynomial matrix C is presented. This matrix
can reliably map integers to integers. Notably, it possesses
key properties: invertibility, with its inverse equating to its
transpose, a determinant value of 1, and all minors of leading
principal submatrices being 1s. Consequently, the matrix C
conforms to a SERM factorization C = PS8 . . . .S2S1S0,
where the permutation matrix is:

P =



0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0


and S0 = I + e8sT0 , and Si = I + eisTi (i = 1, 2, . . . , 8).
The vectors si (i = 0, 1, 2, . . . , 8) to generate SERMs are
computed and listed in the second matrix located at the
bottom of the next page.

For an integer signal f = (f0, f1, . . . , f7)T , the 1-D IRCT
can be defined as:

M = IRCT (f ) = P ⌊S8 . . . ⌊S1 ⌊S0f ⌋⌋ . . .⌋ (14)

where ⌊.⌋ is the rounding arithmetic.
The corresponding inverse IRCT (iIRCT) can be expressed

as

f = iIRCT (M) =

⌊
S−1
0 . . .

⌊
S−1
7

⌊
S−1
8 PTM

⌋⌋
. . .

⌋
. (15)

The 1-D IRCT can be extended to the 2-D IRCT.
To compute the 2-D IRCT of an 8 × 8 block g(x, y), the
IRCT is first applied to each column of the block and then
to each row of the resulting transform. Mathematically, it can
be defined as follows:

M = IRCT
(
(IRCT (g))T

)
. (16)

and the 2-D inverse IRCT is

g = iIRCT
(
(iIRCT (M))T

)
. (17)

The present test aims to evaluate the reconstruction
capabilities of both the proposed IRCT and the standard

Charlier transform. For this purpose, nine grayscale images of
size 512× 512, from CVG database [37], are used in this test.
Evaluation of the reconstructed image quality is conducted
using three metrics: PSNR (Eq. 18), MSE (Eq. 19), and
SSIM (Eq. 20). In this test, each input image is divided into
8×8 blocks of pixels. Then, each block is transformed by the
Charlier transform.Next, the image is reconstructed by apply-
ing the inverse Charlier transform on each block. Finally,
the reconstruction errors, based on PSNR, MSE, and SSIM
are calculated and presented in Table 1. Here, we used the
long format defined by the IEEE® standard on floating-point
arithmetic where floating point numbers have a finite
precision of approximately 16 significant decimal points.

From Table 1, it is evident that the proposed IRCT achieves
perfect reconstruction, with PSNR, MSE, and SSIM values
of +inf, 0, and 1, respectively. These results signify that
the reconstructed images are exactly identical to the original
images. This is expected because our IRCT is lossless
integer transform. Therefore, IRCT is very desirable for RDH
application.

On the other hand, the reconstructed images using the
standard Charlier transform is not exactly the same as the
original images. The loss of information is mainly because
the standard Charlier transform is not an integer-reversible
transform. Indeed, standard Charlier transform produces real
valued coefficients (floating point numbers) in the transform
domain, when the inverse transform is applied, these
coefficients are rounded according to the precision (finite
precision) used in the computation process, which can lead to
some loss of information. Figure 1 displays the reconstruction
error versus the number of digits rounded after the decimal
point. Here, only the PSNR is shown for better visibility.
This figure shows that even the reconstructed image quality
improves with an increase in the number of digits rounded
after the decimal point, there is always a loss of information
and, therefore, data hiding using Charlier transform will
always result in some loss of data. On the other hand, if we
use the proposed IRCT instead of the standard floating-point
Charlier transform, lossless data hiding can be achieved. This
is a significant advantage. The proposed IRCT will be used
as cover transform coefficients for the new image RDH.

IV. REVERSIBLE DATA HIDING USING PROPOSED IRCT
In this section, we propose a novel IRCT-based Reversible
Data Hiding (RDH) method designed for secure data
transmission in images. Since our IRCT is both lossless
and integer reversible, the proposed method ensures that the
original cover image can be recovered losslessly from the
stego image after extracting the hidden data.

The proposed method adopts the histogram modification
technique presented in [20], but with a crucial difference.
Instead of modifying the histogram of the cover image
directly, we modify the histogram in the IRCT domain. This
approach achieves a very high embedding capacity because
the IRCT histogram is more concentrated and has higher
peaks, as illustrated in Figure 2.
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TABLE 1. Reconstruction errors by using the proposed IRCT and classical Charlier transform.

FIGURE 1. Reconstruction error using standard floating-point Charlier
transform according to the number of digits rounded after the decimal
point.

In the secret message embedding process, the IRCT is first
applied to the cover image. Next, an embedding space is
created in the resulting IRCT matrix by modifying the IRCT
coefficients according to a threshold value T. Specifically,
the method uses an integer threshold T (where (T > 0):
coefficients lower than -T are decreased by T, and those
higher than or equal to T are increased by T. This creates
empty spaces in the histogram of the IRCT matrix. The

FIGURE 2. (a) Histogram of Fruits image, (b) Histogram of the IRCT matrix
of Fruits image.

threshold T is chosen based on the required hiding capacity,
which increases with higher T values. Subsequently, the
secret message is embedded into the IRCT coefficients.
To embed a ‘‘1’’ bit, strictly negative IRCT coefficients in
the range [−T, T) are reduced by T, and positive coefficients
in the same range are increased by T. To embed a ‘‘0’’ bit, the
IRCT coefficients within the range [−T, T) remain unaltered.
Finally, the stego image is reconstructed by applying the
inverse IRCT to the modified IRCT matrix.

For the extraction process on the receiver side, the IRCT
is applied to the stego image, allowing the secret message
to be extracted and the original cover image to be recovered

C =



0.1389 0.2779 0.3930 0.4538 0.4538 0.4059 0.3314 0.2505
0.3041 0.4460 0.4013 0.1984 −0.0665 −0.2965 −0.4356 −0.4755
0.4693 0.3969 0.0286 −0.3126 −0.3889 −0.1751 0.1948 0.5513
0.5442 0.0713 −0.3770 −0.2871 0.1518 0.4224 0.1937 −0.4850
0.4839 −0.3228 −0.3061 0.2656 0.3557 −0.1753 −0.4683 0.3477
0.3287 −0.5066 0.1777 0.3613 −0.3022 −0.2910 0.5057 −0.2037
0.1640 −0.4078 0.5125 −0.2308 −0.2781 0.5280 −0.3549 0.0934
0.0528 −0.1848 0.3920 −0.5659 0.5659 −0.3796 0.1550 −0.0293




sT0
sT1
sT2
sT3
sT4
sT5
sT6
sT7
sT8


=



0.93979 −1.13652 1.26507 −1.71547 −1.35061 −1.16296 −0.06403 0
0 −0.47989 0.23660 −1.11915 −0.50328 −0.14163 0.16263 −0.48500

−0.04883 0 −0.65721 0.57844 0.33110 0.45908 0.23801 0.52758
0.76401 0.26599 0 0.06936 −0.41883 −0.86521 −0.65145 −0.25160
0.68839 0.33029 −0.68598 0 0.56818 −0.41004 −0.95361 0.17332
0.15309 −0.11104 −0.01153 −0.44260 0 −0.24861 −0.04903 0.25460

−0.19278 −0.37290 0.30744 0.14134 −0.02874 0 −0.02109 0.30169
−0.57178 0.73076 0.40173 0.50862 0.53502 1.13361 0 −0.50573
0.74761 −1.83009 0.06685 −0.07982 −1.36432 −1.53969 1.32207 0


98484 VOLUME 12, 2024
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FIGURE 3. Flowchart of the proposed RDH method, (a) secret message embedding process, (b) secret
message extraction and cover image recovery process.

by reversing the embedding steps. The following sections
provide a detailed explanation of the proposed method.

A. SECRET MESSAGE EMBEDDING PROCESS
This section presents a detailed description of the secret
message embedding process. The visual illustration of this
process is shown in Figure 3(a).

Let g be a grayscale image of size n × m as cover image
and S a binary sequence of length L as secret message. And
let T be the threshold that controls the embedding process.
The S is embedded into g by applying the following steps:

Step 1: The cover image g is divided into non-overlapping
blocks of 8 × 8 pixels after subtracting 128 from each pixel.

This adjustment results in an IRCT histogram more
centered on zero in the next step (step 3).

Step 2: Apply the proposed IRCT on each block of the
cover image. We refer to the resulting n × m matrix of IRCT
coefficients asM.

Step 3: Generate the histogram of the IRCT matrixM.
Step 4: Set T = 1, and then calculate Leff the effective

number of bits that can be embedded which is equal to the
number of IRCT coefficients in the range [−T, T).

Step 5: If Leff is equal to or greater than L the required
number of bits to be embedded, go to the step 6, otherwise
increase the threshold T until the condition is true.

Step 6: Before embedding the secret message into the
matrix M, an empty embedding space is first created. This
space is created by modifying the IRCT coefficients of
the matrix M. The coefficients less than -T are reduced
by T, while the coefficients greater than or equal to T are
increased by T. The resulting matrix is denoted M’. This
step makes the ranges [−2T, -T) and [T, 2T) empty in the
matrixM’.
Step 7:Embed the secretmessage S= {s(k), k= 1,2,. . . ,L}

by modifying the matrix M’. The IRCT coefficients in the

TABLE 2. Embedding capacity, PSNR, and SSIM for threshold T = 1.

interval [−T, T) are modified according to the bit value of
the secret message: If s(k) the bit to embedded is a ‘‘1’’,
the selected IRCT coefficient is reduced or increased by
T if it is strictly negative or positive, respectively. If the
bit to be embedded is a ‘‘0’’, the value of the selected
IRCT coefficient remains unchanged. The resulting matrix is
denotedM’’.

Step 8: Apply the inverse IRCT on each 8× 8 block of the
matrix M’’ and then add 128 to each pixel to reconstruct the
stego image gs.
The detail description of the proposed embedding process

is given in Algorithm 1.
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Algorithm 1 Secret Message Embedding Process
Input: Cover image g of size n × m, Binary secret message S of
length L.
Output: Stego image gs
1 Generate the matrix M
2 Set T = 1;
3 Calculate Leff the number of IRCT coefficients in the range [−T,
T).
4 while (Leff < L) do
5 Set T = T + 1;
6 Calculate Leff with the new value of T.
7 end
// Generate the IRCT matrix M’
8 SetM’= M;
9 for i = 1 to n do
10 for j = 1 to m do
11 if (M(i,j) < -T) then
12 M’(i,j) = M(i,j)-T;
13 end
14 if (M(i,j) >= T) then
15 M’(i,j) = M(i,j)+T;
16 end
17 end
18 end
// Embedding process: Generate the matrix M’’.
19 SetM’’ = M’;
20 Set k = 1;
21 for i = 1 to n do
22 for j = 1 to m do
23 if (k < L) then
24 if (s(k) == 1 &&M’(i,j) >= -T &&M’(i,j) < 0) then
25 M’’(i,j) = M’(i,j)-T; k ++;
26 end
27 if (s(k) == 1 &&M’(i,j) >= 0 &&M’(i,j) < T) then
28 M’’(i,j) = M’(i,j)+T; k++;
29 end
30 if (s(k) == 0 && M’(i,j) >= -T && M’(i,j) < T)
then
31 M’’ (i,j) = M’(i,j); k++;
32 end
33 end
34 end
35 end
36 Reconstruct the stego image gs from M’’.
37 Return gS.

B. SECRET MESSAGE EXTRACTION AND COVER IMAGE
RECOVERY
Figure 3(b) highlights the key steps involved in the process
of extracting the secret message and recovering the original
cover image from the stego image gs. Here are the steps to be
carried out:

Step 1: Subtract 128 from each pixel in the stego image gs
and divide it into 8 × 8 non-overlapping blocks.
Step 2:Apply IRCT to each block, then the resulting IRCT

blocks are combined to obtain the modified matrixM’’.
Step 3: Extract the secret message S = {s(k), k =

1,2,. . . ,L} from the matrix M’’ as follows: M’’ is scanned
from top to bottom and from left to right. Then, if an
IRCT coefficient where its value in the range [−T, T) is
encountered, a bit ‘‘0’’ is extracted. If an IRCT coefficient
where its value in the range [−2T, −T) or [T, 2T) is
encountered, a bit ‘‘1’’ is extracted.

Algorithm 2 Secret Message Extraction and Original Cover
Image Recovery Process
Input: Stego image gs of size n× m.
Output: Extracted secret message S of length L, Original cover
image g.
1 Generate the modified matrix M’’.
/∗ Secret message extraction process: Extract the secret message S
= {s(k),k = 1,2,..,L} from M’’. ∗/
2 k = 1;
3 for i = 1 to n do
4 for j = 1 to m do
5 if (k <= L ) then
6 if (M’’(i,j) >= -T && M’’(i,j) < T) then
7 s(k) = 0; k ++;
8 end
9 if (M’’(i,j) >= -2T && M’’(i,j) < -T) then
10 s(k) = 1; k++;
11 end
12 if ( M’’(i,j) >= T && M’’(i,j) < 2T) then
13 s(k) = 1; k++;
14 end
15 end
16 end
17 end
// Original cover image recovery process: Recover the matrix M’
from M’’.
18 SetM’ = M’’;
19 for i = 1 to n do
20 for j = 1 to m do
21 if (M’’(i,j) < -T) then
22 M’(i,j) = M’’(i,j)+ T;
23 end
24 if (M’’(i,j) >= T) then
25 M’(i,j) = M’’(i,j)-T;
26 end
27 end
28 end
29 Recover the initial cover image g from the matrix M’.
30 Return S and g.

Step 4:After extracting the secret message, we remove the
embedding space from the matrixM’’ and recover the matrix
M’ by applying step 6 of the embedding process but in reverse
order.

Step 5: Recover the original cover image by applying the
inverse IRCT on each 8 × 8 block of the matrixM’ and then
add 128 to each pixel.

The detailed description of the process for extracting the
secret message and recovering the original cover image is
provided in Algorithm 2.

V. EXPERIMENTAL RESULTS AND COMPARISON
The simulations were performed in Matlab R2022b on
a personal computer equipped with an AMD Ryzen 5
5600U CPU, which has 6 cores running at 2.30 GHz,
and 8 GB of RAM. In this study, we use different grayscale
images from CVG database [37]. It is a very popular and
interesting database including different image categories
(texture, satellite, medical images, etc.) and often used
in the literature for tasks image RDH. A set of fifteen
commonly used 512×512 images, including Mandrill, Lake,
House, Fruits, Peppers, Athens, Barnfall, Cablecar, Boats,
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TABLE 3. Embedding capacity (C) and PSNR for thresholds from 1 to 6.

Tiffany, Yacht, Anhinga, Airplane, Elaine and France, were
selected as cover images. These images were chosen for their
widespread use in the field of image processing and RDH
research. To assess the effectiveness of our proposed RDH
method, a sequence of random bits was employed as the
secret message. This choice allows for a rigorous evaluation
of the method’s performance under controlled conditions.
By utilizing a random bit sequence, we can objectively
measure the level of embedding and extraction achieved by
our method. On each cover image, the secret message is
embedded by modifying the IRCT histogram of image using
various threshold values ranging from 1 to 10.

Our method is evaluated in terms of two key per-
formance metrics: imperceptibility (stego image quality)
and embedding capacity. To assess its effectiveness, the
proposed method is compared to existing state-of-the-art
RDH methods in multiple domains, including the spatial
domain, DCT domain, DWT domain, and integer transform
domain (including DCT and integer wavelet transforms).

The imperceptibility is assessed by employing the Peak
Signal-to-Noise Ratio (PSNR) (Eq. 18) and the Structural
Similarity Index (SSIM) (Eq. 20). These metrics offer
quantitative assessments of the distortion introduced during
the embedding process between the original cover image and
the stego image generated after embedding the secret data.
Higher PSNR and SSIM values indicate a better preservation
of image quality.

PSNR(dB) = 10 log10

(
2552

MSE

)
. (18)

MSE =
1

M × N

M−1∑
x=1

N−1∑
y=1

[g(x, y) − gs(x, y)]2. (19)

SSIM =
(2µgµgs + c1)(2σg,gs + c2)

(µ2
g + µ2

gs + c1)(σ 2
g + σ 2

gs + c2)
. (20)

where g and gs are the cover image and stego one of size
N × M , respectively. σg,gs is the covariance between the
cover image and the stego image, (µg, σ 2

g ) are mean and
variance of the cover image and (µgs , σ 2

gs ) are those of the
stego image, (c1, c2) are constants added to prevent division
by zero situations.

The embedding capacity C which represents the informa-
tion quantity embedded into the cover image is measured in
bits per pixel (bpp) and defined as follows:

C(bpp) =
Secret message size (bits)

Total number of pixels in cover image
. (21)

The embedding capacity depends on the threshold T that
controls the embedding process. It increases with the increase
of the threshold value T.

Table 2 presents the PSNR, SSIM, and embedding capacity
for fifteen stego images using our proposed method. The
average values of these metrics are shown in the last row
of the table. For this test, we set the threshold T = 1 in the
embedding procedure, embedding a number of bits of the
secret message equal to the number of IRCT coefficients in
the range [−1, +1) for each image. The results indicate that
our method achieves high PSNR and SSIM values, greater
than 45.7 dB and close to 0.99, respectively, for all images.
This demonstrates that our method produces high-quality
stego images, closely resembling their corresponding original
images. On the other hand, the proposed method provides
an average embedding capacity of 0.2024, which is high
considering the good quality of the stego images obtained.
The embedding capacity varies depending on the cover image
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FIGURE 4. (a) IRCT Histogram of Fruits image (b) IRCT Histogram of
Mandrill image.

TABLE 4. Average embedding capacity, PSNR and SSIM for thresholds
from 1 to 10.

used. For example, the Fruits and France images recorded
the highest capacity, followed by Yacht, Boats, Cablecar,
House, and Airplane images. Other images recorded slightly
lower capacities, with the Mandrill image having the lowest
embedding capacity due to its reduced number of IRCT
coefficients in the range [−1, +1). Figure 4 illustrates the
significant difference in embedding capacity between the
Fruits and Mandrill images. Overall, the average PSNR,
SSIM, and embedding capacity values indicate satisfactory
results.

TABLE 5. Difference in the histogram distribution for thresholds
from 1 to 10.

The variation in stego image quality and embedding capac-
ity is more pronounced at lower thresholds and decreases at
higher thresholds. For example, in Table 3, increasing the
threshold T from 1 to 2 for the Fruits image decreases the
PSNR by 3.6044 dB and increases the embedding capacity by
0.1903 bpp. Conversely, increasing the threshold T from 5 to
6 results in a PSNR decrease of 1.4204 dB and an embedding
capacity increase of 0.0275 bpp. Overall, lower thresholds
significantly impact embedding capacity and stego image
quality, while higher thresholds have a lesser effect. Table 3
shows the embedding capacities and PSNRs of the stego
images as the threshold T increases progressively from 1 to 6.
Table 4 presents the average values of embedding capacity,
PSNR, and SSIM for thresholds ranging from 1 to 10. These
results demonstrate that both embedding capacity and stego
image distortion increase with higher thresholds.

To evaluate the robustness of our IRCT-based RDHmethod
against statistical attacks, we compared the histograms of
cover images with those of stego images generated using
our method. Figure 5 displays the cover images, their
corresponding stego images, and their histograms with the
threshold T = 1. The histograms of the stego images
closely resemble those of the cover images, indicating the
effectiveness of our proposed RDH method in terms of
robustness against statistical attacks.

To quantify the deviation of the stego image histograms
from the cover image histograms, we calculated the distances
between the two normalized histograms using three different
metrics: Euclidean distance, Chebyshev distance, and Cor-
relation distance. Smaller values of these distances indicate
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FIGURE 5. Comparison of cover image and stego image histograms, (a) Fruits, (b) Mandrill, (c) Lake, (d) House, (e) Airplane, and (f) Cablecar.

TABLE 6. Comparison of RDH methods based on embedding capacity (C) and PSNR.

TABLE 7. Performance comparison between the standard DWT [34] and
DCT [38] transforms and the proposed IRCT.

minimal deviations between the histograms. Table 5 presents
the average distances for fifteen test images using thresholds
ranging from T = 1 to T = 10. The results show that the
distances (Euclidean, Chebyshev, Correlation) between the
histograms of the stego images and the cover images are very
small and approach zero. Specifically, the average distances
are 0.0325, 0.0186, and 0.1002 for Euclidean, Chebyshev,
and Correlation distances, respectively. These results indicate
a high similarity between the histograms, demonstrating the
robustness of our method against statistical attacks.

To evaluate the performance of our IRCT-based RDH
method in terms of embedding capacity, we generated stego
images with embedding capacities ranging from 0.1 to
0.8, in increments of 0.1. For each embedding capacity,
we adjusted the threshold T until the effective embedding
capacity matched the desired embedding capacity. We then
calculated the PSNR and SSIM for each stego image. Figure 6
presents the PSNR and SSIM values for fifteen stego images
at these different embedding capacities. The figure shows
that as the requested embedding capacity increases, the
PSNR and SSIM values of the stego images decrease. This
is expected because higher embedding capacities require
higher threshold values, which introduce more distortion
into the stego images. Nevertheless, all stego images exhibit
SSIM values greater than 0.9 and PSNR values greater than
35 dB for embedding capacities up to 0.5, demonstrating the
effectiveness of our proposed method.

Our IRCT-based RDH method is compared with two
spatial-domain image RDH methods reported in [20]
and [21], as well as with image RDH methods utilizing
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TABLE 8. Comparison of RDH methods based on embedding capacity (C) and SSIM.

FIGURE 6. Performance evaluation when embedding capacity increases.

integer transforms, including the Haar transform [12], 9/7
transform [12], 9/7-F transform [12], DCT [24], and standard
transform-based image RDHmethods such as DWT [38] and
DCT [34]. For this comparison, we selected standard images,
includingMandrill, Airplane, Boat and France, to analyze the
performance across different methods.

The results of the comparison between our IRCT-based
method and other state-of-the-art methods are presented
in Table 6 in terms of PSNR and embedding capacity.
The average results are displayed in the last column. The
results indicate that our method provides a PSNR that is
approximately 2.38 dB lower than the methods operating in
the spatial domain [20], [21], but it offers a significantly
higher embedding capacity, nearly five times greater. On the
other hand, compared to transform domain methods, our
method outperforms those based on the 9/7 transform [12],
9/7-F transform [12], and DCT [24] in both PSNR and
capacity. Only the method based on the integer Haar
transform [12] has a slightly higher PSNR but offers an
embedding capacity almost two times lower than our method.

Table 7 presents a comparison in terms of PSNR and
embedding capacity between our proposed IRCT-based
method and other methods based on standard transforms
such as DWT [38] and DCT [34]. The average results are
shown in the last row of Table 7. It is evident that our
IRCT-based method provides a significantly higher PSNR
and high embedding capacity compared to standard DWT and
DCT transforms. The limitations of methods [38], and [34]
are due to the fact that standard DWT and DCT produce
real coefficients, requiring more auxiliary data to support the
fractional part, thus reducing the quality of the stego images
and the embedding capacity.

The evaluation of our proposed method in terms of
SSIM and embedding capacity is presented in Table 8,
with average results in the last column. For compari-
son, RDH methods based on DCT [24], integer Haar
wavelet transform [12], and a genetic method [23] are
considered. Our IRCT transform offers relatively high
embedding capacity and SSIM for all test images compared
to the integer Haar and DCT transforms. Additionally, the
proposed method provides almost double the embedding
capacity of the method in [23], with only slightly lower
SSIM.

VI. CONCLUSION
This paper introduces the Integer Reversible Charlier Trans-
form (IRCT) and its innovative application in a reversible
data hiding (RDH) scheme for digital images. The IRCT
overcomes the inherent limitations of the discrete Charlier
moment transform by operating on integer values and
producing integer coefficients, allowing for precise and
unique recovery of original input values. This results in
perfect reconstruction, with exact similarity to the original
image.

The proposed IRCT-based RDH method integrates his-
togram modification in the IRCT domain, leveraging the
highly concentrated nature of the IRCT histogram to achieve
a very high embedding capacity. Performance evaluations
demonstrate that the method offers superior embedding
capacity, image quality, and robust resistance to statis-
tical attacks compared to existing techniques in various
domains, including spatial and transform domains. These
enhancements make it a promising choice for practical
implementations in other lossless applications, such as
lossless data compression, medical imaging, and secure data
transmission.

98490 VOLUME 12, 2024



M. Yamni et al.: Novel IRCT for Image Reversible Data Hiding Application

Despite the success of the proposed method, it also has
a drawback. The proposed RDH method and all RDH
methods mentioned in this paper are exclusively designed
for high-resource computing devices like personal computers
(PCs), which typically encompass CPUs, GPUs, and ample
memory capacities. This reliance on high-resource environ-
ments limits the applicability of these methods in scenarios
with resource constraints, such as embedded systems or IoT
devices, including microcontrollers. Future work could focus
on addressing these limitations by developing a lightweight
RDH system that requires low memory demand and
reduced execution time, specifically designed for extremely
resource-constrained embedded devices.
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