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ABSTRACT To develop access control mechanisms, particularly in terms of maintaining effective and
secure access control within Internet of Things (IoT) networks. Whereas the sufficient use must be made of
blockchain-based access control technology. This is because of the sheer volume of connected devices and the
subsequent increase in transactions. This can negatively impact the performance and responsiveness of the
networks. Thus, this article proposes a comprehensive approach that evaluates the requester’s reputation with
respect to regulating access requests for IoT resources. The proposed approach combines fuzzy reputation
with a decay algorithm. It then calculates the quantitative reputation value for each IoT user. This considers
multiple variables, such as the Access Request Rate, frequency of requests, etc. This new reputation value
serves as the basis for access-control decisions. Extensive simulations and experiments are conducted to
evaluate the effectiveness of the proposed framework. For the simulation, we used a single-board Raspberry
Pi.We also used a hybrid blockchain network environment comprisingGeth andHyperledger Fabric.We then
analyzed and compared the performance of the proposed framework with that of the existing approaches.
The results demonstrated that compared to the mathematical mechanism, the framework provides improved
access control in IoT networks. The fuzzy-based reputation framework captures the dynamic nature of IoT
environments, and effectively identifies trustworthy and malicious devices, whereas the decay algorithm
reflects the most recent user behavior.

INDEX TERMS Access control, blockchain, decay, fuzzy logic, hyperledger FireFly, Internet of Things,
smart contract.

I. INTRODUCTION
Recently, the number of interconnected devices in wireless
networks has significantly increased. This has led to the
formation of the Internet of Things (IoT), which generates
and exchanges large amounts of data. However, the rapid
growth of IoT devices has introduced multiple security
and trust challenges [1]. Thus, to regulate access and data
exchange within an IoT environment, establishing robust
access control mechanisms and monitoring the behavior of
entities are critical for ensuring the security and reliability
of entity interactions. Blockchain technology has emerged
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as a promising solution to enhance access control. However,
it offers decentralized and tamper-resistant access control
mechanisms in IoT environments [2]. It improves security
and trust among IoT devices, users, and service providers
by leveraging the transparency and immutability of the
blockchain. Furthermore, recent blockchain-based access
control has heightened the need to monitor the behavior of
access requests, in order to proactively block access requests
from misbehaving IoT users and devices. Previous research
indicates that various access behavior indicators significantly
impact the performance and security of IoT [3]. Notably,
blockchain-based access control is strengthened by different
evaluation techniques that regulate access by evaluating
the reputations of entities. This evaluation can assess the
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trustworthiness and reliability of entities in IoT ecosystems,
which is crucial in the decision-making processes and
facilitates secure interactions within the IoT environment.
This ensures that trustworthy entities are granted appropriate
access privileges. Previous research has investigated various
evaluation methods, the further discussion of which is
presented in the literature section of this article. Prior studies
have proposed several methods based on mathematical
calculations for evaluating reputation values. Zhang et al. [4]
proposed a mathematical evaluation method. The proposed
framework provides static and dynamic access validation
through an access control smart contract, and the static
process validates access requests with policy lists. This
dynamic process checks for concurrent access requests.
A comprehensive reputation evaluation that considers the
inactive state was proposed by Tu et al. [5]. The proposed
model designs a Dynamic Evaluation Mechanism (DEM)
that dynamically detects malicious behaviors. The DEM
consists of two dynamic reputation evaluation algorithms:
the Dynamic EvaluationWindow Algorithm (DEWA), which
adjusts the evaluation window dynamically, and the Rep-
utation Hierarchical Decay Algorithm (RHDA), in which
the reputation value is updated when IoT devices or users
are inactive. In contrast, several studies have integrated
a Fuzzy Inference System into reputation evaluation [6].
This serves to handle uncertainties and imprecise the data
in an IoT environment. Fuzzy logic offers a flexible and
intuitive framework for modeling and reasoning with vague
or uncertain information. This bridges the gap between
human-like reasoning and machine-based decision-making.

This is motivated by the recognition that blockchain-based
access control mechanisms often struggle to capture the
nuanced and dynamic nature of user reputation in IoT
environments. The system proposed in this article is built
on the framework provided in [4], which aims to improve
the behavior validation process by employing the proposed
Fuzzy Inference System (FIS). However, the design and
implementation of fuzzy systems is complex. This is
particularly true when the aim is to provide comprehensive
reputation evaluation. The decay algorithms proposed in [5]
were adopted to enhance the accuracy and responsiveness
of reputation evaluations by considering the recency and
relevance of user actions. Both articles are based on
mathematical calculations; the former framework aims to
detect and block concurrent access requests, whereas the
latter provides a comprehensive evaluation framework with
two decay algorithms, DEWA and RHDA.

This article contributes to the IoT field by developing
a blockchain-based access control framework that can
comprehensively evaluate reputation. Two periods were
considered, active and inactive. Integrating decay algorithms
into the process of evaluating reputation acknowledges the
time related aspects of user behavior and reputation evolution.
By considering the recentness and relevance of user actions,
decay algorithms ensure that reputation values accurately

reflect current and trustworthy information. This dynamic
adjustment enhances the precision and responsiveness of
reputation assessments, and provides better decision making
regarding access control. In conjunction with this, the novelty
of this paper lies in the integration of fuzzy logic and decay
algorithms in blockchain-based access control, which can
effectively handle the complexity and uncertainty associated
with IoT environments. Subsequently, the proposed approach
is implemented using a hybrid blockchain environment for
the distributed implementation of the IoT network. The
results of the evaluation analysis and comparative study
reveal that the proposed framework can respond to access
requests correctly and efficiently, eliminating the uncertainty
contained in the mathematical calculations given by [5], and
reducing the cost of the access requests deployed to the
blockchain compared with that described in [4]. The main
contributions of this article are as follows:

1) To address the recency and relevance of user actions by
adopting the decay algorithms DEWA and RHDA [5].

2) To improve the behavior validation process [4], a Fuzzy
Inference System (FIS) was integrated for use in
reputation evaluation. Access requests are evaluated
based on the user reputation in place of TimeOfUn-
Block [4]. The FIS uses crisp inputs, such as the
decay reputation that results from the employed decay
algorithms, DEWA and RHDA.

3) To extend the capabilities of the previous framework,
a hybrid blockchain environment was presented, where
the framework in [4] was deployed to Ethereum
and the reputation evaluation framework was deployed
to the Hyperledger Fabric using Hyperledger FireFly.

By integrating blockchain-based access control, reputation
evaluation, and fuzzy logic in IoT environments, this article
advances existing knowledge on secure and trustworthy
IoT systems. The structure of the article is as follows: In
Section II, we provide an overview of the background to the
study; Section III presents a literature review; and Section IV
explores the proposed approaches to reputation evaluation
for blockchain-based access control in IoT environments.
Section V presents the framework settings needed before the
evaluation. Section VI presents assessments and analyses of
the results obtained during the evaluation of the proposed
system. Section VII discusses some potential limitations to
further refine and expand the capabilities of the proposed
system. Finally, Section VIII presents the conclusions of the
article.

II. BACKGROUND OVERVIEW
This section provides an overview of the background to
the fields explored in this article, namely, trust, reputation,
behavior, blockchain technology, blockchain-based access
control, fuzzy theory, and last the decay algorithms. Under-
standing these concepts and their applications is crucial for
the development of novel approaches to address the security,
privacy, and efficiency challenges in computer science.
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A. TRUST, REPUTATION, AND BEHAVIOR IN COMPUTER
SCIENCE
A consensus on the definitions used in this field is required
because of the divergence of the proposed evaluation
methods [3], which are calculated using different measures.
The concept of trust in computer science is derived from
real life environments. It is not specific but depends on
the context and purpose of its use. In general, trust is
recognized as an entity that does not harm other entities based
on previous experiences. Reputation refers to the overall
history of an entity’s behavior, where behavior refers to
an entity’s actions towards a resource. Such behavior can
be classified as normal or abnormal, based on predefined
conditions. Moreover, monitoring user interactions with IoT
devices can help overcome the security threats caused by trust
issues. The behavior monitoring process depends on several
parameters that can be inferred experimentally or derived
from previous research. The evaluation of user behavior
in detecting malicious attacks involves various techniques.
However, the proposed framework adopts the algorithms
proposed by the authors [5] in another framework [4].
Therefore, it is crucial to identify and redefine the three terms
based on the two frameworks and the proposed framework
processes, as follows:

Trust: The model presented in [5] expresses trust as the
interval used for reputation evaluation, where a long interval
means that the user has a good reputation and is trusted;
otherwise, the user is not trusted. The authors of [4] stated
that whenever a user satisfies the policies and there is no
successive access request, they are considered trustworthy.
The proposed framework combines the concepts of the two
systems [4], [5], and trust is expressed when policies are
satisfied. The interval used for reputation evaluation prevents
successive access requests.

Reputation: In the model presented in [5], reputation is
used to express trust. Direct and indirect reputation evalu-
ations are considered to achieve comprehensive reputation
evaluation. For a direct reputation, the behavior of IoT
users/devices and two mathematical functions are used.
The first mathematical function is used only when all user
behaviors are normal, because it cannot resist discrimination
attacks. However, the second function, which is an improved
version of the first mathematical function, can resist such
attacks and is used once the abnormal behavior has been
evaluated. Indirect reputation assessment considers the access
gateway’s reputation and the users’ access through the
gateway. In [4], reputation was not expressed by any means.
Because the algorithms presented in [5] are adopted in the
proposed framework, a different reputation concept results in
a reputation being inferred after applying fuzzy logic.

Behavior: The model presented in [5], which combines
positive, negative, and penalties, was calculated using a
mathematical function. If the result is below the normal
threshold, misbehavior is present. As described in [4], when
concurrent access requests do not exceed the minimum

allowable time, misbehavior is present. Moreover, behavior
evaluation consists of two steps, the combination of which
infers behavior status. A variable called the Time to Last
Request (ToLR) is compared to the minimum allowable time
interval parameter. If the period between two successive
requests is less than or equal to the minimum allowable time,
the second request is considered a frequent request. In the
second step, if the variable Number of Frequent Requests
(NoFR) exceeds the threshold parameter, a misbehavior is
detected. The proposed framework adopts the same concept
as [4], where behavior denotes the calculation of both positive
and negative access behaviors.

B. BLOCKCHAIN-BASED ACCESS CONTROL
The integration of blockchain and access control provides
an innovative approach to the management and security of
access to digital resources and systems. Blockchain-based
access control aims to provide a decentralized and transparent
solution. It leverages the characteristics of blockchain
technology. These include immutability, transparency, and
distributed consensus. In additional, it overcomes the issue
of controlling IoT access requests and adapts to the het-
erogeneous and dynamic nature of the IoT environment by
providing a lightweight, scalable, and trustworthy access
control system. The exploitation of blockchain properties
provides decentralized policy management for the storage of
access control policies and access decision processes.

Furthermore, in a blockchain-based access control system,
the access permissions and identity information are stored in
a tamper-resistant decentralized ledger. Each user or entity
is assigned a unique cryptographic identity, usually as a
digital wallet or a public-private key pair. Several attempts
have been made to incorporate blockchain technology into
access control systems. One proposed system is fabric-IoT,
developed by Liu et al. [7], which uses a smart contract to
deploy the Attribute-based Access control (ABAC) model
and store policies on the Hyperledger Fabric blockchain,
thus ensuring the integrity of the process. This system
eliminates the need for trusted third parties and centralized
processing, thus providing scalable, fine-grained access
control management. Blockchain was also used in [8] and [9]
to store and validate access-control policies. However, the
computational capabilities of blockchains have only recently
been considered for processing evaluations of access request
behaviors.

C. FUZZY THEORY
Fuzzy logic addresses the uncertainty and imprecision in
data [3], [10]. A fuzzy logic system consists of three
main components: fuzzification, Rule-Based Inference, and
defuzzification. Fuzzification maps crisp numerical values
to linguistic terms such as ‘‘high’’, ‘‘low’’, and ‘‘medium’’.
The rule-based inference is then expressed in an ‘‘if–then’’
format, which combines the input fuzzy sets according to
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the rules to generate fuzzy output sets. In the final step,
defuzzification converts the fuzzy output sets back to crisp
values. The leveraging of fuzzy sets and linguistic rules
provides a flexible and interpretable approach for modeling
complex systems.

D. DECAY ALGORITHMS
The algorithms employed, DEWA and RHDA, were obtained
from [5]. The algorithms state that the DEWA updates
the window value whenever there is a list of behaviors.
Otherwise, RHDA is called to update the reputation value
during the user’s inactive state. Therefore, Algorithm 1
preserves the influence of these two algorithms. DEWA [5]
aims to update the window value based on the reputation.
If reputation is within the normal threshold of 0.5, it will
increase throughout the three stages. The first stage is the
slow start stage, where reputation increases exponentially.
The second stage is a fast increase, in which reputation grows
linearly. The third stage is the keep steady stage, in which
reputation is set to a window threshold value. However,
if the reputation is below the normal threshold, the window
value moves to the rapid reduction stage. The last stage
showed at slow decrease. When the reputation is below the
normal threshold and the user is inactive, reputation gradually
decreases. The RHDA algorithm [5] was introduced for
inactive scenarios by calculating the time difference between
the current time and LastActiveTime. If the user is inactive
for a short period of time, then the reputation value remains
unchanged. If the user exceeds a short period but not a long
period, the reputation will decrease linearly and will not
decay too quickly. Finally, the reputation value decreases
exponentially if the user exceeds a long period of inactivity.

III. LITERATURE REVIEW
This section reviews the literature on the use of blockchain-
based access control mechanisms for reputation evaluation
in IoT environments. Liu et al. [11] proposed a trust
management system taxonomy and classified evaluation
methods based on whether trust values must be computed.
This classification was divided into three categories. The first
category is trust-value-based, which uses specific trust values
calculated using a trust model. The second category is trust-
value-free and does not rely on numerical trust values to
evaluate trust relationships between entities. The last category
is a hybrid of the first two. Liu et al. [11] focused on the first
and second subcategories of the trust-value-based category,
namely inference models and weighted average models. The
following subsections discuss different approaches proposed
for each category.

A. INFERENCE MODELS (IMS)
The models described in this section use a significant amount
of trustworthy evidence to quantitatively describe trust
through inferences. For instance, probability-based IMs use
discrete trust evidence to calculate trust values and facilitate

trust reasoning. This is achieved by introducing probability
distributions or density functions, alongwith the likelihood of
events occurring. Building upon the utilization of fuzzy logic,
Zulkifl et al. [12] introduced a novel framework called Fuzzy
and Blockchain-Based Adaptive Security for Healthcare IoTs
(FBASHI), which is based on the use of fuzzy logic and
blockchain to provide authentication, authorization, and audit
log functions of IoT network security. It comprises of three
FISs: authentication, trust evaluation, and access control. The
proposed framework successfully achieves distributed trust
based on fuzziness, and removes single points of failure from
the IoT network.

Other studies combined fuzzy logic with various meth-
ods to enhance the performance of fuzzy systems. For
instance, Esposito et al. [13] proposed a decentralized
trust-management mechanism derived from game theory for
dynamic access control based on the ABAC model. The aim
was to achieve robust, decentralized trust management that
could tolerate the transmission of false values by malicious
nodes. The authors modeled the interaction of the IoT and
edge nodes according to a Bayesian Signaling Game (BSG)
and developed mechanisms to exclude nodes suspected of
being malicious. In addition, trust calculation employs fuzzy
theory, which uses linguistic terms and fuzzy sets to handle
the uncertainty in reputation scores. These scores are then
aggregated using the Dempster–Shafer (DS) theory and
pignistic probability transformation. In [14], the authors
proposed an adaptive and dynamic risk-based access control
model that utilizes real-time and contextual information to
determine access decisions. The proposed model combines
the Fuzzy Inference System with expert judgment to provide
consistent and realistic risk values for various access control
operations. Furthermore, smart contracts are employed to
track and monitor user activities during access sessions in
order to detect and prevent potential security violations.

A secure framework was proposed by Gardas et al. [15]
to integrating edge and blockchain technologies into IoT
networks to ensure data protection and energy efficiency.
This provides a platform for node selection in various
IoT–edge frameworks. Themodel design involves developing
a novel node selection approach for blockchain-enabled edge
IoT, which utilizes a fuzzy-based technique and the Fuzzy
Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) approach to rank IoT node alternatives.
Wang et al. [16] designed Trust Management Models (TMs)
to implement a lightweight ABAC framework for blockchain-
enabled IoT. All historical access requests and authorization
results are recorded using a PoA-based blockchain. The
system then used these records to construct a graph. Next,
a Markov random walk is performed on the model to
compute its trustworthiness, which measures the probability
of trustworthiness existing in the target device. Alternatively,
the ambiguity of trust arises because it is not a binary
judgment, but rather a fuzzy state between trust and distrust
that is difficult to quantify precisely. To address this issue,
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a model based on fuzzy theory, specifically fuzzy logic,
can deal with imprecision and uncertainty and allow for a
quantitative analysis of trust ambiguity.

Yuan et al. [17], proposed a novel system called Street
Engine, whichwas introduced as a new low-power computing
chip powered by a customized rule fuzzy system referred
to as Street Language. To demonstrate the feasibility of
this approach, the authors simulated the homing behavior
of honeybees, demonstrating how a street agent-based
system can achieve simple cognitive behavior by integrating
multiple hard-wired natural reactions, similar to insect neural
networks. For autonomous vehicles, Lian et al. [18] proposed
a novel fuzzy-based system to address the problem of
nonlinear networked autonomous vehicle systems under
multiple cyber-attacks. The authors mitigated the network
burden imposed by the control network by proposing an
asynchronous resilient event-triggered scheme (ETS), and
developed a dynamic output-feedback control method to
handle the lateral control problem for networked autonomous
vehicles. Yazdinejad et al. [19] designed a novel, secure,
and intelligent fuzzy blockchain framework for network
attack detection driven by uncertainty issues associated with
deep learning techniques. The framework incorporates a
fuzzy deep-learning model, fuzzy control systems, and fuzzy
matching modules for network attack detection. The authors
compared the results with those of the fuzzy classifiers. The
framework uses metaheuristic algorithms for optimization
and conducts fuzzy matching to detect fraud. The evaluation
results demonstrated the efficiency and effectiveness of the
framework in detecting threats and making decisions in IoT
networks based on blockchain technology.

B. WEIGHTED AVERAGE MODELS
Several attempts have been made to express trust through
a continuous score, automate reputation aggregation and
revelation, and ensure robustness against blockchain attacks
and trust evaluations. Various studies have investigated
the application of blockchain technology in managing IoT
workflows, to ensure their integrity, trust, and reliability.
Zhang et al. [4] proposed a smart-contract-based access
control framework to overcome security threats related to
centralization. Three smart contracts are deployed in the
blockchain for various purposes: Access Control Contracts
(ACCs), Judge Contract (JC), and Register Contract (RC).
This provides distributed and trustworthy access control in
the IoT. The proposed framework provides static and dynamic
access validation through ACC, where the static validation
process searches for policy lists. The dynamic validation
process checks for any misbehaving access activity and then
informs the JC,which then judges and returns the penalty. The
experimental results prove the efficiency of the framework in
detecting and preventing malicious acts.

Inspired by the previous model [4], Lone and Naaz [20]
proposed a Reputation driven dynamic Access Control (Rep-
ACM) framework that integrates a permissioned blockchain

and smart contract capabilities with a reputation service to
build the reputation of the subject. This framework integrates
smart contracts for policy enforcement and reputation ser-
vices to penalize subjects based on their behavior with object
resources. The results indicate that the proposed Rep-ACM
framework reduces the number of smart contracts to be
deployed compared to the number required in the scheme pro-
posed by Zhang et al. [4]. They also identified and addressed
a potential Denial-of-Service (DoS) attack vulnerability that
arose in Zhang et al.’s study [4]. Additionally, the proposed
framework achieved a higher number of Transactions Per
Second (TPS) than Zhang et al. [4].

In the Industrial IoT (IIoT), Wu and Ansari [21] designed
a new voting mechanism that includes a trust evaluation
for access control in blockchain-based IIoT Groups (IIoT-G)
that prevents malicious devices from spreading misleading
information. The voting results were determined based on
trust values and feedback using an equal-weight voting
mechanism. In this system, blockchain is not directly
employed for trust management; it is deployed in IIoT
Devices (IIoT-Ds) to ensure access control. Based on trust
evaluation, different devices are assigned varying weights
during authorization voting, thereby ensuring that the data
can be trusted. Song et al. [22] proposed a distributed IoT
security system architecture based on blockchain intended
to proactively detect various network threats and quickly
respond to any malicious behavior. The proposed system
technologies consist of three main modules. The access
control module adopts the ABACmodel for authorization and
decision-making processes. The separation mapping module
intercepts any unauthorized incoming packets that reach the
destination nodes through the core network. Finally, the
security feedback module monitors the access requests and
informs other modules to initiate a quick response to block
malicious users. It identifies abnormal traffic by monitoring
and analyzing traffic behavior using a detectionmethod based
on statistics [23], locating the identity and behavior record of
an abnormal user, and then evaluating the detected user traffic
to avoid false alarms.

A comprehensive reputation evaluation that considers the
inactive state was proposed by Tu et al. [5]. They developed
the Blockchain-based Trust and Reputation Model (BTRM),
which combines blockchain with Trust and Reputation Man-
agement (TRM). The developed model overcomes emerging
issues, such as the use of fixed intervals in the evaluation
process, which makes it challenging to detect attackers with
intelligence. Designing a DEM that dynamically detects
malicious behavior. The DEM consists of two dynamic
reputation evaluation algorithms: the DEWA, where the
BTRMmodel can adjust the evaluation window dynamically,
and the RHDA, where the reputation value is updated by the
BTRMmodel when IoT devices or users are inactive. Another
issue that this model aims to address is the assessment of
a single behavior causing an inaccurate reputation value,
the proposed model provides a comprehensive user behavior
assessment from three perspectives: link behavior, access
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behavior, and communication behavior. An adaptive trust
evaluation model for IoT called AITTE was proposed by
Jiang et al. [24]. The model includes a multi-level smart
contract system that determines the authority level based
on device attributes and trust degrees, allowing for dynamic
authority allocation. The model also employs several trust
evaluation algorithms, including the Historical Trust Cal-
culation Algorithm, the Recommended Trust Calculation
Algorithm, and the Comprehensive Trust Value Calculation
Algorithm. Adaptive fusion weights were introduced to
reduce the influence of malicious recommendation behavior
and effectively improve the evaluation accuracy of trustwor-
thiness. Yang et al. [25] proposed a blockchain-empowered
Token-Based Access Control (TBAC) system that includes
user reputation evaluation to enhance data security and
privacy protection. The access control process is divided
into three stages: policy upload, token request, and resource
request. The system uses smart contracts in a blockchain to
store and process user and reputation information, access
control policy information, and token information. It also
incorporates a user reputation evaluation module to provide
feedback on the access control. The system addresses issues
such as coarse-grained access control, poor manageability,
and security threats in the existing access control systems.
For rural management, Arsyad et al. [26], proposed a
farm transaction model using the Encapsulating Block
Mesh (EBM) platform, integrating blockchain technology
for secure farm operations and employing NFC tags for
information transfer and data storage. The method involved
a unique blockchain design and the ‘‘bucket principle’’ for
farm transactions, ensuring data integrity and traceability.
Trust evaluation was conducted by analyzing the secure
documentation of farm transaction records using the EBM
platform. The method tested user trust by validating the
chain of events in the blockchain system, encapsulating and
linking farm transaction blocks to ensure data integrity and
traceability. The authors used the case of cocoa production,
and the results demonstrated the feasibility and effectiveness
of the approach.

Sun [27], integrated blockchain technology into rural
financial management to enhance security and transparency,
with the use of embedded systems for data acquisition and
processing. The system uses a secures interface that regulates
access, allowing only authenticated users to access and
transmit data to the blockchain platform. To evaluate the
system’s performance, this study employed a combination of
quantitative and qualitative techniques, such as a question-
naire survey, in-depth user interviews, and an online feedback
portal, enabling continuous monitoring and collection of user
opinions and attitudes. The paper also proposed mathemat-
ical formulas to evaluate operational efficiency, consensus
mechanism probability, and data security incidents within the
rural financial management cloud platform. An innovative
solution facilitates the design of a trust evaluation framework
using TRM, and some related work has investigated the

implementation of TRM. Malik et al. [28] proposed a trust
management framework to address the trust problem in
blockchain-based supply chain applications. This framework
uses a consortium blockchain to track interactions and assigns
trust and reputation scores using TRM. The blockchain trust
and credibility module assesses the consistency of goods
and trust among participating organizations by observing
the data layer. This is achieved through an automated
procedure that uses intelligent contracts and blockchain
for each transaction. An Access Control List (ACL) is
used in the blockchain layer to ensure that the rule is
fulfilled during the read-and-write data operation on the
blockchain. In [29], the authors proposed a TRM model
with the advantages of recursion and bidirectional interaction
calculations between two nodes. The aim of the model was
to solve IoT device limitations affecting authorization by
deploying the ABAC model with TRM in the blockchain.
The calculations in the TRM contract consist of two methods.
First, the trust score calculations of provider nodes towards
requesting nodes are based on their history of interactions;
if no history exists, zero is given as the initial value. The
results of the trust score calculations were either positive
or negative. Second, reputation calculations were performed
using the Gompertz function by aggregating the trust score
values of the requesting node across different providers.
In addition, a feedback mechanism is proposed, in which
the requester’s trust score and reputation are updated during
the authorization process and data access. Putra et al. [30]
developed a blockchain-based TRM for IoT access control
using the ABAC model, which progressively evaluates and
calculates trust and reputation scores of each participating
node to achieve a self-adaptive and trustworthy access control
system. The authors adopted the Gompertz function for trust
value calculation and formulated a reputation score for global
trust computation. Progressive trust and reputation evaluation
may help effectively detect and eliminate malicious or
compromised nodes in the network.

Overall, the reviewed literature strives to contribute to the
existing body of knowledge, bridging gaps in understanding
and offering valuable insights into the research topic. The
literature review highlights several benefits of the fuzzy
reputation evaluation. First, it enhances the accuracy of
access control by evaluating the trustworthiness of entities
considering diverse contextual factors and dynamic changes
in the IoT environment. Second, fuzzy reputation evaluation
improves overall security by enabling more fine-grained
access control decisions based on reputation value. This
helps to mitigate the risks associated with unauthorized
access, malicious activities, and the presence of compromised
devices or users in IoT systems. For instance, Zulkifl et al.
[12] proposed an evaluation method based on fuzzy theory.

Despite these positive findings, it is essential to acknowl-
edge the limitations and challenges identified in the literature.
Some studies have highlighted the complexity of designing
and implementing fuzzy reputation evaluation systems,
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including the need for appropriate membership functions,
fuzzy inference mechanisms, and aggregation methods.
Furthermore, scalability, privacy protection, and potential for
reputation manipulation have been discussed as potential
challenges. Several studies have driven further development
and combined fuzzy logic with other techniques such as
Expert Judgment [14], TOPSIS [15], game theory [13],
Markov random walk [16], ETS [18], probabilistic reason-
ing [17] and deep learning [19]. In contrast, other researchers
have employed different evaluation methods based on
mathematical calculations and probabilities [20] and [30].
To implement a comprehensive evaluation framework that
considers the users’ inactive state, prior research proposed
a decay algorithm [5], [24], [28], and [30], to influence
the reputation value during users’ inactive state where all
of these methods are based on mathematical evaluation
approaches. To implement fuzzy-based reputation evaluation,
a substantial number of primary studies (Zulkifl et al. [12],
Gardas et al. [15], Esposito et al. [13]) have used the
Hyperledger Fabric platform. In contrast (Atlam et al. [14])
used the Bitcoin platform to implement fuzzy logic methods
for blockchain-driven access control mechanisms in IoT.

In conclusion, the findings from this literature review
demonstrate that fuzzy reputation evaluation can signifi-
cantly enhance access control accuracy, improve overall
security, and foster trust in blockchain-based access control
systems within the IoT domain. However, little attention
has been devoted to providing secure and comprehensive
trust management in the IoT. In this paper, we improved
the process of access control decision [4] by integrating
fuzzy logic and employing decay algorithms [5], utilizing
the Hyperledger Fabric platform to implement a fuzzy-based
reputation evaluation. Addressing these research gaps will
further leverage the potential of fuzzy reputation evaluation
to enhance access control and security in the evolving IoT of
landscape.

IV. METHODOLOGY
This section presents the system design, in which a mixed
methods approach is adopted to achieve the required
objective. The proposed access control method combines
and integrates a Fuzzy Inference System for reputation
values and two algorithms, RHDA and DEWA [5], into
the proposed access control method drawn from [4]. The
reputation evaluation process based on the blockchain is
presented in the following subsections. First, the architectural
design of the system was explained. Second, a Hybrid
blockchain environment is presented. Third, we describe the
parameters and factors employed in the proposed framework.
Fourth, we presented the proposed algorithms for reputation
evaluation. Finally, we describe the design of Fuzzy Inference
Systems.

A. ARCHITECTURE OF THE SYSTEM
The overall structure of the system consisted of a Geth
network with four devices. Table 1 and Fig. 1 present the

TABLE 1. System device specifications.

FIGURE 1. System devices consist of two laptops and two raspberry Pis.
One laptop presents the FireFly stack whereas the other presents the
mining process for the Geth network.

devices used to build the Geth network, which was created
in the same way as the system presented in [4] by employing
the same abilities as Raspberry Pi, but with the capabilities
of different computers. Further, a Bootnode Geth node PC1
acts as a miner and hosts the HyperLedger Fabric chaincode
deployed to FireFly. This node also serves as an entry
point for other nodes; it plays a crucial role in facilitating
network connectivity and peer discovery, ensuring that the
decentralized nature of the blockchain network is preserved
and promotes a robust and distributed network infrastructure.
PC2 is also a miner, and connects to bootnode. The other two
Raspberry Pi nodes were connected to PC1 as light nodes.
Raspberry Pi acts as an access gateway, where one of the
devices acts as an object that connects to the remix with the
aim of deploying Solidity smart contracts, adding policies,
registering to the lookup table, and monitoring incoming
access requests. The other Raspberry Pis acts as a subject that
requests access and connects to the FireFly network to create
an account using the public Geth key.

B. BLOCKCHAIN PLATFORMS
The proposed framework consists of a hybrid blockchain
environment, in which an access control system is deployed
to Ethereum [4], and the proposed reputation evaluation
framework, which is implemented as Hyperledger Fab-
ric chaincode, is deployed in the Hyperledger FireFly.
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FIGURE 2. Illustration of the access control, the network consists of two blockchain platforms, the user requesting an access to resource and the Main.js
responsible for processing the request and communicating with regarding blockchain platform.

The main reason for deploying Hyperledger Fabric is the
limited capabilities of Solidity, as the use of fixed-point
numbers has been proposed as a critical issue for calculating
the reputation value. The system [4] calculates the penalty
and variable TimeOfUnBlock, but Solidity discards the
points, that are critical for the reputation value. Another
reason is the support for fuzzy logic, as a substantial number
of studies reviewed in the previous section (Zulkifl et al.
[12], Gardas et al. [15], Esposito et al. [13]) used the
Hyperledger Fabric platform. In contrast, Atlam et al. [14])
used the Bitcoin platform to implement fuzzy logic methods
for blockchain-driven access control mechanisms in IoT. The
researchers exploited customized blockchain platforms with
different consensus algorithms, such as Reliable, Replicated,
Redundant, And Fault-Tolerant (RAFT), Practical Byzantine
Fault Tolerance (PBFT), and Proof of authority (PoA).

Furthermore, to initiate the connection and exchange of
data between the two platforms, Hyperledger FireFly is used
to deploy fabric chaincode [31]. FireFly aims to simplify the
process for developers, and can be used to build and deploy
DApps. It provides a scalable and interoperable solution for
the management and integration of DLTs across different
blockchain networks, but does not allow interoperability
between blockchains, rather than fostering interoperability
for the application tier. One of the key strengths of FireFly is
its ability to connect multiple DLT platforms, thus enabling
enterprises to leverage the benefits of various blockchain
technologies simultaneously. It supports popular DLTs such
as Ethereum, Hyperledger Fabric, and others, allowing
developers and organizations to integrate existing blockchain
networks or create new ones, as needed. However, a crucial
configuration is required before starting the FireFly stack:
updating the version of the fabric peer to the 2.4 version, the
same as that used by the nodeJS by overwriting the FireFly
docker file. After FireFly has successfully started and the
chaincode has been packaged [31], the latter can be deployed
in FireFly.

C. PARAMETERS AND FACTORS
The construction of the proposed framework is based on
the system presented in [4] and algorithms presented in [5].
Hence, it is crucial to identify parameters and factors
other than the new parameters and factors employed in the
proposed framework. Table 2 presents the descriptions of the
overall system parameters. These include the new parameters
and factors utilized in the proposed system, such as fuzzy rep-
utation, decay reputation, time-period variables (IdleTime,
FirstTimeRequest, LastActiveTime, and StartSessionTime),
PolicyResult, Geth ID, and ReputationList.

D. PROPOSED REPUTATION EVALUATION ALGORITHMS
The algorithms proposed for this system are presented
in this section. Algorithm 1 demonstrates the process of
reputation-based access control assessments. Algorithm 3
discusses the updates made to the original AccessControl
ABI [4]. Algorithm 2 presents the fuzzy evaluation process
used to determine the access request rate. An illustration of
the proposed access control is presented in Fig. 2, to facilitate
understanding and communication of the proposed system.
The Main.js module is responsible for processing requests
when a user sends an access request. First, it checks user
registration in the system using a Hyperledger Fabric via the
FifrFly.js module. Then, it updates the users’ reputation val-
ues using decay algorithms. After updating the reputation for
the user’s inactive state, it retrieves the NoFR from Ethereum
via Web3. It then sends the NoFR to the Hyperledger Fabric
using the FifrFly.js module, to evaluate the user’s reputation
using a fuzzy function. Next, Main.js sends the access request
to Ethereum along with the resulting fuzzy reputation. After
evaluating the access request, Main.js updates the access
request rate by using another fuzzy function. Finally, the
user receives the results from their access requests. The
following subsections introduce and explain the proposed
algorithm.
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TABLE 2. Main parameters employed in the proposed system.

1) REPUTATION-BASED ACCESS CONTROL ALGORITHM
Algorithm 1 is implemented in a JavaScript file and combines
different functionalities implemented from both Fabric and
Solidity perspectives to comprehensively evaluate access
requests based on reputation. The algorithm requires the
following variables: Resource, Action, RepFuzzy, Current
Time, and UserId. The first step is to check whether UserId

already exists in the Fabric ledger state. If it does not,
an error is prompted and the session ends. When UserId is
registered in Fabric, the second step is to call the Fabric
function to prompt time variables to start the session and
then update the RepDecay during the inactive state of the
user by calling the RHDA function. Three different time
variables are initialized as discussed earlier for ARR-FIS
the StartSessionTime, FirstTimeRequest, and IdleTime, and
are used for the time period calculations in the Access
Request Rate (ARR) algorithm. StartSessionTime is initiated
at the current time, and FirstTimeRequest is assigned to
the current time only if this is the first request, which
can be achieved by checking the list of access request
results. If it is empty, this is the first request made by the
user. Finally, IdleTime calculates inactive time by checking
LastActiveTime. IdleTime is calculated if it is not initialized
to zero. Otherwise, IdleTime is initiated at zero because this is
the user’s first session. Following this, Line 5 in the algorithm
obtains the user’s information and updates the variables.

In Line 6, the entire loop prompts the user to request
access and read its choice. In the first case, when the user
requests access from lines 7 to 20, a Solidity function is
called by web3 to obtain NoFR, following which a Fabric
function is called to update the RepFuzzy. In Line 12, an access
request is sent by a Solidity function, and the access result
is obtained. ARR is updated after every access request using
Algorithm 2. In Line 16, the variables LastActiveTime,
NoFR, and Window are updated by calling the DEWA
algorithm. Before permitting the user to make another access
request, Line 18 provides a proactive step by detecting the
resulting RepFuzzy value; if it is below the normal threshold of
0.5, the session ends and the system exits the loop with a bad
reputation error. Conversely, in the second case, the session
ends and the system exits the loop when the user no longer
sends an access request. The end of the session is a Fabric
function, that empties the list of reputation values and sets
StartSessionTime to zero and LastActiveTime to the current
time.

2) ACCESSCONTROL ABI ALGORITHM
Notably, there have been changes to the AccessControl
ABI Algorithm [4]—the updated ABI is presented in
Algorithm 3. However, the former AccessControl process
flow is not affected, as only a reputation check replaces the
TimeOfUnBlock in the latter. Hence, the TimeOfUnBlock
check is used only to initialize the NoFR after penalty
detection. In the AccessControl ABI Algorithm [4] process
flow, the system first checks whether the user is in the block
state by comparing its TimeOfUnBlock with the current time;
if it is lower, the following variables are set to zero: NoFR,
ToLR, and TimeOfUnBlock. Otherwise, access request is
denied. The access request passes through both static and
dynamic steps when the user is not blocked. The static
step checks the policy, whereas the dynamic step checks
the NoFR to detect the concurrent requests. The dynamic
step sets NoFR to zero when the time between concurrent
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Algorithm 1 Proposed Access Control Algorithm
Inputs: Resource, Action, RepFuzzy, Current Time, UserId.
Outputs: Reputation, Time, NoFR, Access Results, Gas Used.
1: if userId is not registered in Fabric, then
2: return Error user is not registered.
3: end if
4: Fabric Function: startSession(userId);
5: Fabric Function: FetchUserInfo(userId);
6: while true do
7: if user is requesting access, then
8: Solidity Function:
9: NoFR ← GetNoFR(MethodName,ResourceName,

Action);
10: Fabric Function: RepFuzzy ← fuzzy(NoFR, userId)
11: Fabric Function: RepFuzzy ← FetchUserInfo(accstr)
12: Solidity Function:
13: AccessResult ← AccessControl(MethodName,

Resource,
14: CurrentTime,Action,RepFuzzy)

{Recalculate the ARR and update other parameters.}
15: Fabric Function:
16: EvaluteAccessRate(AccessResult,userId).
17: Fabric Function: Updater(userId,LAT,NoFR).
18: if RepFuzzy < 0.5 then

{End Session due to user’s bad reputation.}
19: Fabric Function: CloseSession(userId);
20: Exit Loop
21: end if
22: else
23: Fabric Function: CloseSession(userId);
24: Exit Loop
25: end if
26: end while

requests exceeds the minimum interval. The updated ABI in
the Algorithm 3 access process flow first checks whether the
user’s reputation is within the normal threshold of 0.5. If this
is true, the access request passes through the same static and
dynamic steps. Conversely, if the user’s reputation is below
the normal threshold, access request is denied. Furthermore,
if the TimeOfUnBlock value was less than the current time,
the following variables were set to zero: NoFR, ToLR, and
TimeOfUnBlock.

3) ACCESS REQUEST RATE (ARR) ALGORITHM
The ARR in Algorithm 2 takes two inputs—the access result
and the UserID—and outputs the fuzzy value, ARRfuzzy. The
algorithm first checks whether the UserID exists in the ledger
state and exits if it does not. Otherwise, the user is obtained
from the chain ledger state and its attributes, StartSession,
LastActiveTime, FirstReqTime, IdleTime, and CurrentTime,
are obtained. The list is updated by adding a new access
result using the loop count for permitted and denied requests.
Following this, the time period is calculated, and the fuzzy
function is called to update the ARRfuzzy.

E. PROPOSED FUZZY INFERENCE SYSTEMS (FIS)
This section presents the design of the FIS for Reputation and
ARR, the aim of which is to enhance the decision-making

Algorithm 2 Fuzzy Access Request Rate (Fuzzy-ARR)
Inputs: Access Result, UserID
Outputs: ARRfuzzy.
Require: StartSession, LastActiveTime, FirstReqTime, IdleTime,

CurrentTime, PermittedRequest ← 0, DeniedRequest ← 0.
1: if UserID does not exist in the chaincode state then
2: UserID does not exist.
3: else
4: user ← ObtainUserInfoFromChaincodestate
5: user .policyResult ← addAccessResult
6: ResultList ← user .policyResult
7: for index ← 0 to ResultList.length do
8: if ResultList[index] is Permitted then
9: PermittedRequest ++;
10: else
11: DeniedRequest ++;
12: end if
13: ActiveTime = (CurrentTime− StartSessionTime)
14: OldTime← FirstReqTime+ LastActiveTime
15: TimePeriod = (ActiveTime+ (OldTime)− IdleTime)
16: ARRfuzzy ← Fuzzy(TimePeriod,Permitted,Denied)
17: end for
18: end if

capabilities and trustworthiness of the blockchain-based
access control system [4].

1) ACCESS REQUEST RATE FIS (ARR-FIS)
ARR represents the frequency or intensity at which users or
entities attempt to access a specific resource, such as a file,
database, or network. It can be calculated mathematically
or using the FIS through the ARR mathematical equation
presented in Equation (1). This does not accommodate all
access requests. Thus, using the FIS to calculate the ARR
handles the uncertainty and imprecision of data. Specifically,
it captures and models the nonlinear relationships between
the input and output variables for the ARR. Fig. 3 depicts
the Membership Functions (MFs) linguistic variables for the
ARR; the proposed system uses a Mamdani fuzzy method
with a triangular membership function for all linguistic
variables. The FIS uses three crisp inputs, permitted access
requests (threeMFs), denied access requests (threeMFs), and
the time period (three MFs), and gives the crisp output ARR
(two MFs). To calculate the time period of committed access
requests accurately, Table 2, presents the variables used in the
time period equation, and Equation (2) displays the equation
used for the time period. The calculation of the time period
excludes the idle time when users do not request access;
Equation (2), for different access requests. In the first case,
when it was initially requested, the LAT and idle parameters
were set to zero. This was followed by two requests, where
the idle time was calculated using Equation (5) appeared.
The old time is calculated using (3) and the active period is
calculated using (4) to eliminate the idle period time by (5).
An example of fuzzy logic rules is presented in Table 3. The
overall ARR-FIS was designed using theMATLAB software.

ARR =
Total Access Requests

Time Period
(1)
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Algorithm 3 Proposed Access Control ABI
Inputs: Resource, Action, Reputation, Time.
Outputs: Results, Penalty, NoFR.
Require: policycheck ← false, behaviorCheck ←

true,RepCheck ← true, penalty ← 0, JC instancejudge,

1: policy list policies, TimeOfUnBlock of resource
2: if this request is from the subject, then
3: p← policies[resource][action]
4: RepBool ← ReputationCheck(Reputation)
5: if Reputation is true then

{Reputation Check}
6: if p.policy = ‘allow’ then

{static Check}
7: policyCheck ← true
8: else
9: policyCheck ← false

10: end if{Concurrent access Check}
11: if Time−p.ToLR ≤ p.minInterval then
12: p.NoFR← p.NoFR+ 1
13: if p.NoFR ≤ p.threshold then
14: Detect a misbehavior msb.
15: behaviorCheck ← false.
16: penalty← judge.misbehaviorJudge(subject,msb)
17: TimeOfUnBlock ← time+ penalty.
18: Push msb into the misbehavior list of resource.
19: end if
20: else
21: p.NoFR← 0
22: end if
23: end if
24: if TimeOfUnBlock ≤ Time then

{To initialize the NoFR}
25: if TimeOfUnBlock > 0 then
26: p.NoFR← 0, p.ToLR← 0,TimeOfUnBlock ← 0
27: end if
28: end if
29: p.ToLR← time
30: end if
31: result ← policyCheckandRepCheck.
32: TriggereventreturnResult(result,NoFR, penalty,Reputation).

Time Period = ActiveTime + OldTime − IdleTime

(2)

OldTime = LAT + FTR (3)

ActiveTime = CT− SST (4)

IdleTime = (SST− LAT)+ OldIdle (5)

2) REPUTATION FIS (REPUTATION-FIS)
The main advantage of using fuzzy logic to infer reputation
value is that it handles the subjectivity and uncertainty
of reputation, which is influenced by various factors and
subjective judgments. Fuzzy logic provides a framework to
capture and model subjectivity and uncertainty by assigning
membership values to reputation-related linguistic variables.
This allows for the representation and processing of imprecise
and subjective data, enabling a more nuanced assessment
of reputation. Fig. 3b shows the reputation MFs. The
proposed system uses the Mamdani fuzzy method with a

TABLE 3. Samples of the arr fuzzy logic rule.

TABLE 4. Samples of the reputation fuzzy logic rule.

triangular membership function for all linguistic variables.
The FIS takes four crisp inputs: the old reputation value
(five MFs), the ARR (two MFs), NoFR (two MFs), decay
reputation (two MFs), and crisp output’s new reputation
(five MFs). Regarding the difference between the two crisp
input reputation values, the old reputation results from the
previous fuzzy logic evaluation, whereas the decay results
after applying the RHDA algorithm to the old reputation.
Hence, these results provide insight into how long the user
has been inactive. NoFR is inferred from [4] and is used as
a feedback variable for fuzzy logic. There are two variables
related to NoFR: TimeOfUnBlock and penalty. Depending
on the NoFR value, the penalty is calculated, based on
the time of unblocking. NoFR was chosen as a crisp input
for the FIS and the exclusion of the other two variables,
TimeOfUnBlock and penalty, because NoFR has a specified
range of [0,2], where zero means that no concurrent access
has been detected, one means that the first concurrent access
has been detected, and two means that concurrent accesses
have been detected. It is difficult to determine the penalty
and TimeOfUnBlock ranges, because the values increase
exponentially and linearly. However, for the value updates
of these variables, the penalty value increases only in cases
where it is not set to zero. For TimeOfUnBlock and NoFR,
the values are updated and set to zero when the user behaves
normally. Hence, it was chosen as the NoFR crisp input
due to its advantages, of specified range, value update, and
initialization. A sample of the fuzzy logic rules is presented
in Table 4. The overall ARR-FIS was designed using the
MATLAB software.

V. EVALUATION SETTINGS
This section describes the settings required before the frame-
work evaluation. Furthermore, the reputation evaluation used
in the proposed framework considers the access behaviors
of users that are to be evaluated for each access request.
The system parameters and factors used for the evaluation
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FIGURE 3. Fig. (a) presents the Membership Functions (MFs) of ARR. It includes two MFs within the range [0,1], low, and high.
Fig. (b) presents the MFs of reputation. It includes five MFs within the range [0,1], very bad, bad suspicious, good, and very good.

were inferred from [4] and [5]. To allow a comparative
evaluation, they were set to the same values as those used
in [4] and [5], as presented in Table 5. The parameters
used for the proposed system are related to the user and
are utilized to process the access request behavior using
HyperLedger Fabric. The ledger state was then used to
save updates of these parameters. To evaluate the prototype
system, a firefly stack was created to deploy the HyperLedger
Fabric blockchain with three nodes (three organizations)
and interact with the Fabric through FireFly SDK. A Geth
network was established with four nodes, two miner PCs, two
light nodes, and a Raspberry Pi. For the Fabric blockchain,
chaincode is deployed to evaluate the reputation and access
request rate using fuzzy functions. Alongside this, several
smart contracts are used to evaluate access requests in the
Ethereum blockchain. However, the proposed framework
uses different libraries, the two most important of which
are Firefly SDK [32] and Web3 [33]. Although they are
written in different languages—JavaScript and TypeScript—
to exchange data between the two sides, the common module
of JavaScript is used, where the TypeScript compiler initiates
a JavaScript copy of the TypeScript file such that the
firefly function is called inside the JavaScript. Additionally,
to implement the FIS, a JavaScript library, FuzzyIS [34],
was used to implement the fuzzification and defuzzification
of the linguistic variables. The following sections present
the evaluation analysis of the proposed system, including
the analyzes of the reputation and ARR, a comparative
evaluation, and analyzes of the system’s performance and
security.

VI. EVALUATION ANALYSIS
This section assesses and analyzes the results obtained from
the evaluation of the proposed system. It strives to objectively
evaluate the performance, effectiveness, and efficiency of a
solution in achieving its intended goals and objectives. The

TABLE 5. Initialization of the parameters.

evaluation results are analyzed and discussed in the following
subsections. First, the reputation analysis subsection presents
the analysis results of the proposed reputation system.
Second, theAccess Request Rate analysis subsection presents
an analysis of fuzzy logic utilization to infer the Access
Request Rate. Third, we present a comparative analysis of
the proposed system [4], [5]. Finally, we present a security
analysis of the proposed framework.

A. REPUTATION ANALYSIS
This subsection presents the analysis of the proposed
reputation system. We evaluated the behaviors of two user
types: a benign user (Fig. 4a presents a requester terminal
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and Fig. 4b presents a monitor terminal) and a malicious user
(Fig. 4c presents a requester terminal and Fig. 4d presents
a monitor terminal). The evaluation includes the terminal
output of the experiment from both the requester and monitor
terminals. For benign users, access requests are authorized
as long as they do not cause a concurrent request that may
have a negative influence on their reputation value. Further,
access requests originating from amalicious user are detected
and prevented successfully. At 13:57, the user was in an
inactive state with a low reputation, and their request for
access was denied due to their bad reputation. Meanwhile,
Rep-FIS updated the reputation value from 0.1 to 0.5. Hence,
in the next access request at 13:57:28, the user was granted
authorized access. However, this access request was detected
as the first concurrent request. As a result, upcoming access
requests from this user would be denied, and their reputation
would be further degraded.

A comprehensive evaluation of both behaviors is shown
in Fig. 5. In both cases, reputation starts at 0.5, the normal
threshold, and then increases to 0.8. The evaluation shown in
Fig. 5 depicts the reputation values after a several iterations.
The evaluation began after the inactive states of the two
scenarios. It can be seen that the benign user’s reputation
started at 0.8, whereas the malicious user’s reputation started
at 0.5. Furthermore, in the evaluation of a benign user
(presented in Fig. 5), reputation remained steady, close to
0.8, based on their good history. The first arrow marks the
beginning of the user’s inactive state, during which time
the RHDA updates the decay reputation variable. When
the user becomes active, the fuzzy function processes two
reputation values, a decay of zero and an old fuzzy reputation
of 0.8, resulting in an output of 0.8. If the user mistakenly
sends frequent access requests, the system accepts one
instance of misbehavior. Thus, when a benign user causes
the first concurrent access, the reputation value drops to
a suspicious range as a countermeasure. However, it then
recovers to the ideal range based on its good history after
suspicious behavior. Conversely, the evaluation of malicious
user (Fig. 5). We demonstrate that a user with a history of
misbehaving access requests causes the reputation value to
drop steeply to 0.5 in the suspicious area. The reputation
value then continues to drop based on NoFR, in contrast
to the decay reputation, which continues to drop based on
the window value. Further, if there is a first instance of
concurrent access, the value of the NoFR will be one, and
the reputation will drop to the bad range of 0.3. If a second
concurrent access request occurs, the value of the NoFR
will be two, and the reputation will drop to a very bad
range. The calculated penalty determines the recovery time,
which is used to calculate the TimeOfUnBlock. For recovery,
reputation will only increase to the suspicious range and will
not increase based on past misbehavior.

Decay algorithms are designed to consider the recency
and relevance of user actions, ensuring that the reputation
values accurately reflect the most current and trustworthy
information. As shown in the evaluation, window value was

found to be positively related to reputation value. The time
frame required for the RHDA to influence the reputation
value depends on the window value, a larger window value
implies that a longer time frame is needed to have an
influence. During the experiment, for both use cases, as long
as the user’s reputation was greater than or equal to 0.5
(the reputation threshold), the initial window value would
start at 1 and slowly increase. Once the window value
would enter a ‘‘fast increase’’ stage at 18, it will continue
increasing until it reached 30 (the window threshold). Then,
the window value remained steady at 30, as long as the
user’s reputation remained at 0.5 or above. Whenever the
user becomes inactive, the RHDAwould negatively influence
the reputation based on the window value. There are two
stages of RHDA: the lower bound and the upper bound, where
the window value has a multiplication relationship with the
two stages. Further, the DEWA would also start to slowly
decrease the window value until it reaches its threshold.
If the period of inactivity falls within the range of the lower
bound, the RepDecay value remains unchanged, indicating that
the user may become active again within a short period.
However, if the time period falls between the two stages, the
RepDecay value starts to decrease linearly, as RHDA takes
longer to negatively influence reputation. If the time period
of inactivity exceeds the upper bound, RepDecay will decrease
exponentially. On the other hand, if the user’s reputation falls
below the normal threshold, the window value rapidly drops
to 1, causing RHDA to rapidly decrease the reputation value.

Moreover, Rep-FIS effectively evaluated the reputation
value considering two use cases: benign and malicious users
under different scenarios. Two scenarios were demonstrated
in the evaluation. The first scenario is the penalization
process. Rep-FIS successfully demonstrated this process by
downgrading the reputation value due to suspicious and
malicious activities. For the benign user, a first suspicious
activity caused Rep-FIS to downgrade its reputation from
0.8 to 0.5. For malicious users, the first suspicious activity
caused Rep-FIS to downgrade its reputation value from
0.5 to 0.3. If the user continued to misbehave, the reputation
would decrease further to 0.1. The second scenario was
the recovery process. Rep-FIS successfully demonstrated
this process, whereas the reputation value recovered after
inactivity, suspicious, and malicious activities by using only
fuzzy logic rules. In the benign use case, Rep-FIS recovered
the reputation after user inactivity from zero to 0.8, and from
the suspicious activity from 0.5 to 0.8. For the malicious user,
Rep-FIS recovered the reputation value after the inactive state
from 0 to 0.5, and from a misbehavior from 0.1 to 0.5.

In terms of the root-mean-square error (RMSE), after
applying system validation for the fuzzy logic system [34],
using a dataset of 100 random values yielded a good RMSE
value. However, RMSE quantifies the average discrepancy
between the membership values predicted by the fuzzy
logic system and the corresponding target values. Thus,
the RMSE value reflects the accuracy of the fuzzy logic
system’s predictions, where a lower RMSE indicates that its
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FIGURE 4. Terminal outputs during the experiment of two scenarios benign and malicious users. For benign user
case: The two terminals Fig. 4a and Fig. 4b present the reputation increasing and decreasing during different time
periods. The requester terminal runs from the subject side which runs from a raspberry pi. The ARR value 0.3 infers
the user good history of access request behavior. The monitor terminal presents the access request information
from the object side which also runs from a Raspberry Pi. Whereas malicious user case: Fig. 4c The first presents
the requester terminal; Fig. 4d The second presents the monitor terminal. Both Terminals present the effect of
access misbehavior on reputation value whereas the incoming requests are proactively denied based on the
Reputation.

predicted membership values are closer to the target values
on average. This suggests that the system performed well in
producing accurate predictions. Conversely, a higher RMSE
implies that the fuzzy logic system’s predicted membership
values deviate more from the target values on average. This
indicates a lower level of accuracy in system’s predictions.
The resulting RMSE of 0.437 for a fuzzy system with three
range inputs, [0,30], [0,1], [0,3], [0,1], and an output range

of [0,1] indicated that, on average, the predictions of the
fuzzy systemwere inaccurate by approximately 0.437 units in
the context of the output range. This value seems reasonable
and suggests that the fuzzy system performs relatively well
in predicting the output within specified ranges. Further,
given the narrowness of the output range ([0,1]), an RMSE
of 0.437 indicated that the predictions were generally close
to the actual outputs. This suggests that the fuzzy system
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FIGURE 5. Malicious and benign chart. The chart depicts that RHDA
Algorithm influenced the reputation values of both behaviors as shown in
the green arrows. For misbehavior as shown in red arrows, a benign user
reputation will remain in the range of very good even after one misbehavior
where the framework accepts one mistake only when the user has a
good access behavior history. Conversely, the malicious user reputation
remains in the suspicious range. If they have a history of misbehavior. The
reputation will continue to decline based on NoFR.

FIGURE 6. ARR analysis chart. The chart shows the gradual increase
in the ARR formula. In contrast, the ARR-FIS remains stable within two
specified ranges: 0.3 (Req/min) for the normal behavior access rate and
0.7 (Req/min) otherwise, as indicated by the First arrow. The second arrow
highlights that the formula yields infinity regardless of the access request
history within the time period. The ARR-FIS aims to address uncertainty and
improve results by accounting for nonlinear relationships between input
and output variables.

effectively captures the relationships between the inputs and
outputs and that the predictions are relatively accurate within
the specified ranges.

Overall, it is evident that benign user access behavior
enhances reputation through consistent growth and progres-
sion, even after a period of inactivity. In contrast, malicious
user access behavior reduces reputation and maintains the
value in the suspicious range after a second malicious act.
The evaluation of decay algorithms and their impact on user
reputation has revealed a sophisticated and dynamic system
that effectively captures the recency and relevance of user
actions. The positive relationship between the window and
reputation values, along with the intricate interplay between
the RHDA and DEWA algorithms, demonstrates the system’s
ability to adapt to various user activity patterns. The findings
of the experiment highlight the delicate balance between
user inactivity and RepDecay, where the window value plays
a crucial role in determining the time frame required for

the RHDA to influence RepDecay. The system’s ability to
respond differently to user inactivity based on the lower and
upper bounds, ensures that the RepDecay values accurately
reflect the current trustworthiness of the user. Furthermore,
the rapid reduction in the window value when a user’s
reputation falls below the normal threshold, triggering a swift
decline in reputation, underscores the system’s sensitivity
to maintaining high standards of trustworthiness within
the platform. Additionally, Rep-FIS has demonstrated its
effectiveness in evaluating the reputation of benign and
malicious users under different scenarios. The penalization
process effectively downgraded the reputation of users
based on suspicious and malicious activities, whereas the
recovery process was able to restore reputation values after
periods of inactivity or reduced misbehavior. By utilizing
fuzzy logic rules, Rep-FIS was able to provide a nuanced
and dynamic representation of user reputation, adjusting it
accordingly based on the user’s actions and access patterns.
This comprehensive reputation management system shows
promise in enhancing access control and security in IoT
environments, where maintaining trust and accountability is
crucial. The successful demonstration of these key scenarios
highlights the potential of Rep-FIS as a valuable tool for
managing and securing IoT environments. However, the
RMSE for Rep-FIS of 0.437 with the specified input and
output ranges is generally considered low, indicating that
the fuzzy system performs well in predicting the output
within the given ranges. In conclusion, the comprehen-
sive analysis presented in this evaluation demonstrates the
sophistication and effectiveness of the Rep-FIS system
in preserving the integrity of user reputation, making it
a valuable tool for fostering a reliable and trustworthy
environment.

B. ACCESS REQUEST RATE (ARR) ANALYSIS
This subsection examines the methods used for Access
Request Rates. However, as discussed in the methodology
(in Section IV), the proposed system uses fuzzy logic
instead of the mathematical equation. Fig. 6 presents the
ARR chart. This includes a chart that displays a gradual
increase in the ARR formula. Concomitantly, the ARR-FIS
remained stable within two specified ranges, 0.3 Requests
per minute (Req/min) for the normal behavior access rate
and 0.7 (Req/min) otherwise, as indicated by the first arrow.
Additionally, the second arrow indicates that the formula
yields infinity, regardless of the access request history during
the time period. Thus, the ARR-FIS resolves the problem
of uncertainty and delivers significantly better results than
the equation because it handles the nonlinear relationships
between the input and output variables. The stable value of
the ARR has a dynamic effect on the reputation value, and
the combination of the ARR andNoFR is inversely associated
with the reputation value. One drawback of the ARR formula
is its undetermined range, which makes it difficult to quantify
the range to be used as an input for the reputation fuzzy
function.
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FIGURE 7. Comparative evaluation chart of the proposed framework and other evaluation methods Tu et al. [5] and
Putra et al. [29]. The chart presents both behaviors normal and abnormal, considering the inactivity status in the proposed
framework and Tu et al. [5].

FIGURE 8. This chart compares the GasUsed of both proposed framework
and [4], during smart contracts deployment and adding policies illustrated
in first and second arrows. Moreover, the proposed framework saves more
gas after the first abnormal behavior achieving the proactive approach,
as shown in the third and fourth arrows.

C. COMPARATIVE EVALUATION
This subsection compares the proposed system with those
presented in [4], [5], and [29]. The experiment simulated
two users with different behaviors (presented in Fig. 7).
For benign users (as shown in Fig. 7a, normal behavior.),
the reputation values start at 0.5 for the proposed system
and [5], while Putra et al. [29] the reputation value start
at zero. Further, all trust models converged to a similar
upper boundary, but with different convergence rates. Putra
et al. [29] reached 0.8 at approximately 50 minutes. The
proposed system and [5] converged to the upper bound of
reputation value in less than 20 min, whereas the fuzzy-based
reputation modeling in the proposed system contributed to
this faster convergence for benign users, allowing them to
quickly establish trust and gain access to the network. The
reputation values remain unchanged as interactions continue
consistently, demonstrating the convergence of reputation
values for honest interactions. During inactive state, the
reputation values for both the proposed system and [5],
decreed gradually reflecting the recency of the reputation.
Putra et al. [29] did not observe this feature. Putra et al. [29]
found that reputation values were not influenced during an
inactive state.

However, there is a limitation associated with the boot-
strapping of new users with zero reputation values who
may face challenges initially participating in the network
initially [29]. Besides, both the proposed system and [5] have
a faster convergence rate, which is generally less preferred,
as it can make the model more vulnerable to newcomer
attacks. For malicious interactions, the reputation values
demonstrate a significant abrupt decline for malicious users,
dropping to a lower bound within a specific number of
time epochs. The reputation values dropped to zero for
Putra et al. [29], and 0.1 for both the proposed system
and [5], the reputation values dropped to zero. The results
for all models show how reputation values rapidly decline
for malicious users, indicating the effectiveness of the trust
models in penalizing malicious behavior and protecting the
network from malicious actors. The fuzzy-based reputation
modeling in the proposed systemmay enable a more granular
and responsive penalization of malicious behavior, quickly
identifying and severely punishing such actions to protect the
network.

The findings presented for the proposed system (as shown
in Fig. 7a and Fig. 7b) confirm its consistency with the
main features of the decay algorithm. The proposed system
accurately evaluates long-term inactive users, such as those
who misbehave after a long period of inactivity. The system
classifies these users as suspicious based on their reputations,
which drops them to the bad or very bad range following
fuzzy processes. Even if the user behaves normally, their
reputation remains in the suspicious range. Therefore, the
proposed system was shown to be stable based on user input.
In Fig. 8, presents the performance evaluation of the proposed
system with that presented in [4]. A comparative evaluation
is used to present the gas results used by specific transactions
such as AccessControl ABI, MethodRegister ABI, and
PolicyAddABI. The proposed system succeeded in providing
a proactive approach by detecting the reputation value. If this
is value is below the normal threshold, the access request is
denied. Compared to the formal framework [4], where the
user access request is checked based on TimeOfUnBlock, the
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user is given access if the value is decreased or set to zero.
As demonstrated in Fig. 8, the first and second arrows depict
where the two systems spiked for deploying smart contracts
and the policies were added; the third arrow shows the first
instance of abnormal behavior where both systems spike,
whereas in [4], only the last arrow spikes while the proposed
system remains constant. Thus, the former delivers better
results by proactively checking the reputation value before
sending an access request. However, a similar pattern of
results was obtained for both systems in most AccessControl
ABI evaluations.

Overall, the proposed system achieved better outcomes,
whereas the use of fuzzy logic solved the problem of uncer-
tainty. The reputation value is assigned to the fuzzy set after
the fuzzy logic conditions are met. In combination with the
decay output, the proposed system provides a comprehensive
evaluation of IoT users’ reputations, which remains relatively
constant over time within the specified range of the fuzzy set.
This enables the network to maintain trusting relationships
with users over a long period and improve its security
against attacks. This suggests a tradeoff between quickly
building trust for honest nodes and quickly detecting and
penalizing malicious behaviors. The fuzzy-based approach
enables more nuanced and adaptive handling of reputation
decay, ensuring that the trust assessment remains accurate.
Hence, the recency-based reputation decay feature of the
proposed system [5] during inactive periods is an additional
benefit compared to Putra et al. [29]. The analysis suggests
that the proposed system and [5] have advantages in terms
of faster convergence for benign users and recency-based
reputation, while also effectively identifying and penalizing
malicious behavior, although a faster convergence rate could
be a potential drawback.

D. SECURITY ANALYSIS
This section analyzes the security of the proposed framework
against various attacks. Furthermore, the framework adopts
the same features as DEM-BTRM [4] and [5] because it
employs two algorithms, RHDA and DEWA, for the access
control model. Therefore, the proposed system can resist the
following attacks:
• On–off attacks: Reducing the reputation evaluation
interval and increasing the frequency of reputation
evaluation prevents continuous malicious attacks.

• DoS attacks: The reputation value of malicious users
who initiate attacks decreases rapidly when using a
fuzzy logic system.

• Re-entry attacks: The proposed system stores the users’
Geth IDs and reputation values on the blockchain by
using RHDA. This avoids the problem of long-term
inactive users, and the reputation converges to the initial
reputation value, preventing users from attacking the
network again after being inactive for a long time.

• Sybil attacks: The system stores evaluations of access
request results in the blockchain along with user ID
mapping, which makes it difficult for malicious users

to initiate Sybil attacks to generate real and normal
behaviors.

VII. DISCUSSION AND FUTURE WORK
The solutions presented in this article demonstrate promising
results for evaluating user reputation. However, there are
some potential limitations for future research. First, fuzzy
logic can provide more nuanced and interpretable reputation
assessments than crisp numerical values, and the complexity
of the fuzzy system may make it more difficult for users
to understand the reasoning behind the reputation values,
resulting in a trade-off between the precise evaluation of
IoT users’ reputations and higher computational resources.
The key limitations and computational overhead of the
fuzzy algorithms used in the proposed system include the
need to refine the fuzzy inference engine, particularly when
aiming for comprehensive reputation evaluation, and the
challenge of rapidly adapting to changing user behaviors
and trust relationships within dynamic environments. Further,
implementing and designing fuzzy systems can be complex,
and the fuzzy rule base and membership functions may
require frequent manual adjustments to maintain accurate
trust evaluations. The complexity of the fuzzy inference
engine scales with the number of fuzzy rules and membership
functions employed, which can be computationally intensive,
especially for large-scale systems with many users and
interactions. Additionally, the use of decay algorithms to
enhance accuracy and responsiveness by considering the
recency and relevance of user actions may result in increased
computational overhead due to the complexity of the fuzzy
logic system and the decay algorithms.

Moreover, in a hybrid blockchain environment, the com-
putational overhead of the fuzzy algorithms may impact
the overall performance of the blockchain network, partic-
ularly in terms of transaction processing times, consensus
mechanisms, and consume significant memory resources,
which potentially limits the scalability of the system.
To address these limitations, developing an adaptive learning
mechanism to dynamically update the fuzzy rule base and
membership functions, and combine fuzzy logic with other
techniques. Several studies have driven further development
by combining fuzzy logic with other techniques to overcome
its limitations and improve the evaluation performance,
such as Expert Judgment [14], game theory [13], and deep
learning [19]. Second, the hybrid blockchain environment,
in which the connection between two blockchain platforms
poses potential security threats that must be mitigated.
In particular, the exchanged data were not encrypted.
To address this issue, investigating a cryptographic method
to provide secure interactions within the IoT environment.
Overcoming these limitations has the potential to further
refine and expand the capabilities of the proposed system,
ultimately leading to a more robust and efficient evaluation
of user reputation. Finally, there are serious limitations
associated with HyperLedger FireFly, particularly in terms
of its high throughput. The ‘MVCC_READ_CONFLICT’
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error indicates that multiple transactions are submitted
concurrently to the Fabric network. These transactions may
read or modify the same set of data or overlapping data
items when multiple transactions access the same data
simultaneously. Due to this potential limitation, the proposed
system evaluates consecutive access requests individually,
to temporarily avoid errors, and resolves the high throughput
problem [31], providing the necessary flow capability to
allowmultiple parties to build sophisticated transaction flows
collaboratively.

VIII. CONCLUSION
This article investigated the reputation evaluation of
blockchain-based access control for the IoT. In this system,
reputation is processed using fuzzy logic, and two algorithms
are employed: DEWA and RHDA. Incorporating fuzzy logic
handles the inherent vagueness and imprecision of reputation
values and calculations of the access request rate. This leads
to better and more consistent results compared to purely
mathematical methods. On the other hand, the employment
of decay algorithms ensures that values are up-to-date, thus
providing a more reliable and robust reputation assessment.
The proposed system was eventually deployed on two
blockchain platforms—Hyperledger Fabric and Ethereum—
which introduced a hybrid environment, leveraging the
capabilities of both blockchain features with a more robust
and versatile infrastructure, and overcoming the limitations
of the original framework that relied solely on Ethereum.

A case study was presented to demonstrate the advantages
of the proposed system. The proposed Rep-FIS has an RMSE
of 0.437, indicating a high degree of accuracy. Furthermore,
the proposed solutions maintain the integrity of the overall
system, by dynamically detecting malicious attacks and
proactively preventing future access requests from malicious
users. For ARR-FIS, it was observed that the use of fuzzy
logic in the ARR process yielded better results than the purely
mathematical approach. The hybrid blockchain architecture
provided lower gas costs than the previous Ethereum-only
implementation, enhancing the overall efficiency of the
system.

In conclusion, based on the empirical findings, the
proposed system provides significant advancement by
improving accuracy, enhancing security, and increasing
cost-effectiveness compared to previous frameworks. How-
ever, there are some limitations of the current model including
its reliance on preset fuzzy logic rules, which may not capture
the full complexity of real-world scenarios. Additionally,
the security of the hybrid blockchain environment requires
further investigation to fully mitigate potential threats.
In future work, the focus will be on improving the FIS process
for both reputation and access request rates. Additionally,
in the hybrid system environment, the connection of two
blockchain platforms poses security threats that must be
mitigated, by utilizing a cryptographic method to secure the
transmission of data.
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