
Received 30 June 2024, accepted 8 July 2024, date of publication 12 July 2024, date of current version 22 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3427146

A Deep Learning-Based Fault Diagnosis Method
for Flexible Converter Valve Equipment
JIANBAO GUO1, HANG LIU1, LEI FENG1, LIFENG ZU2, TAIHU MA 2, AND XIAOLE MU2
1EHV Maintenance & Test Center of China Southern Power Grid, Guangzhou 510663, China
2XJ Electric Flexible Transmission Company, Xuchang 461000, China

Corresponding author: Taihu Ma (mtaihu@163.com)

This work was supported by the Innovation Project of China Southern Power Grid Company Ltd., under Grant CGYKJXM20220059.

ABSTRACT Long-term failures in flexible converter valve equipment pose significant risks, potentially
compromising operational efficiency or leading to complete malfunction. Accurately identifying equipment
faults is essential to improve overall reliability and minimize downtime. This study introduces an innovative
fault diagnosis method utilizing an attention mechanism. The method integrates a lightweight model
incorporating one-dimension depthwise convolutional layers for spatial feature extraction and bidirectional
long short-termmemory for capturing temporal dynamics. A pioneering time-channel joint attention module
enhances the extraction of fault-related data from time series and channel maps. Experimental results
underscore the method’s efficacy in fault diagnosis under varying Gaussian noise conditions. Notably, the
approach demonstrates remarkable consistency in accuracy across various experimental setups, underscoring
its robust performance and potential applicability in real-world scenarios where reliability is critical.
In addition, the proposed method has a moderate number of parameters and training time, indicating that
the model can be embedded in front-end equipment.

INDEX TERMS Bidirectional long short-term memory, channel attention module, deep learning, depth-
wise convolution, fault diagnosis, flexible converter valve equipment, high voltage direct current system,
lightweight, power system, time attention module.

NOMENCLATURE
DC Direct current.
SVM Support vector machine.
PCA Principal component anlysis.
RF Random forest.
CNN Convolutional neural network.
1DCNN One-dimensional CNN.
GRU Gated recurrent unit.
LSTM Long short-term memory.
BiLSTM Bidirectional LSTM.
Lineari(·) Fully connected layer.
δ ReLU function.
σ Sigmoid function.
f 1×k Filter with size 1× k .
X Average value of X .

The associate editor coordinating the review of this manuscript and
approving it for publication was Gerard-Andre Capolino.

Xgmp Global maximum pooling.
Xgap Global average pooling.
SCE Secure crypto engine.
TP True positive.
TN True negative.
FP False positive.
FN False negative.
BPNN Back propagation neural network.
DSC Depth-wise convolution.
SE Squeeze-and-excitation.
CBAM Convolutional block attention module.
JAM Joint attention module.
TCJAM Time-channel joint attention module.
SM Sub-module.
it Input gate.
ft Forget gate.
ot Output gate.
C̃t Candidate cell state.
Ct Cell state.
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ht Hidden state.
RN×d Input and output

samples with dimensions of N and d.
−−−→
LSTM(X ) Forward LSTM.
←−−−
LSTM(X ) Backward LSTM

I. INTRODUCTION
The flexible converter valve equipment is crucial in High
Voltage Direct Current (HVDC) systems, facilitating the
conversion between HVDC transmission and alternating cur-
rent transmission [1]. However, the flexible converter valve
equipment is prone to failure after long-term operation due
to its complex structure and extreme operating conditions,
which affects the normal operation of HVDC [2]. Therefore,
developing an effective fault diagnosis method is of great
significance for ensuring the safe and stable operation of the
power grid [3].

Due to the limited research on fault diagnosis for flexible
converter valve equipment, we conducted research on HVDC
fault diagnosis as a reference. Current fault diagnosis meth-
ods on HVDC fault diagnosis are primarily based on models
and machine learning [4]. Model-based methods mainly rely
on empirical judgment or simple rules for fault diagnosis,
examples of which include fault observer [5], expert sys-
tems [6], [7], fault tree analysis [8], and model prediction
methods [9]. Although these methods can infer the causes
of faults and locate faulty components from the perspective
of fault occurrence mechanisms, they have limitations such
as subjectivity, low diagnostic efficiency, and susceptibility
to human factors. In addition, model-based methods have
limited capabilities in handling complex and diverse fault
patterns and large amounts of data, thus not satisfying prac-
tical application requirements [10]. The complex and diverse
nature of the flexible converter valve equipment limits the
performance of model-based methods in feature extraction
and rule design, and their significant manual involvement
requirements render them unsuitable for this context.

Accordingly, several fault diagnosis methods for flexi-
ble converter valve equipment have been proposed based
on machine learning algorithms [11], [12], [13], [14].
By learning the operational data generated during the
operation of flexible converter valve equipment (e.g., power
signals), machine learning algorithms can obtain the mapping
relationship between power signals and different fault
states without relying on expert knowledge. For exam-
ple, Ghashghaei et al. [11] adopted Support Vector Machine
(SVM) and K-Nearest Neighbours (KNN) algorithms to
detect DC transmission line faults and serve as a redundant
module for unsure fault declaration from the startup unit.
Similarly, Ye et al. [12] and Zhou et al. [15] adopted
different SVM kernel functions to quickly and accurately
diagnose faults in simulated circuits. Under the ensemble
learning framework, Movahed et al. [13] proposed a method
based on Principal Component Analysis (PCA) and Random

Forest (RF) to reduce dataset dimension and account for
data imbalance, thus reducing misleading alarms in fault
diagnosis. Under the artificial neural network framework,
Liu et al. [14] proposed a Backpropagation Neural Network
(BPNN) method for flexible DC transmission line fault
diagnosis, which achieved high-precision fault localization
by analyzing operation mode and control strategy. The tra-
ditional machine learning methods above use historical data
and algorithm rules to iteratively derive appropriate model
parameters in an automated and intelligent manner, i.e.,
through ‘‘trial and error’’ withmultiple training episodes [16].
However, traditional machine learning methods perform
poorly in the case of large amounts of data and heterogeneous
and complex signal diagnostics.

Recently, deep learning-based fault diagnosis methods
have become a research hotspot due to their ability to extract
fault features and achieve high diagnostic accuracy [17]. For
instance, Liu et al. [18] presented a wavelet neural network
based commutation failure diagnosis method, which extract
fault feature by wavelet transform. Compared with the BPNN
method, this method achieves higher accuracy and diagnostic
speed under multiple fault types. Similarly, Wang et al. [19]
proposed a flexible DC distribution system fault diagnosis
method based on wavelet transform and CNN. Firstly, this
method decomposes the fault voltage signal through wavelet
transform and reconstructs it into a two-dimensional time-
frequency image. Subsequently, themethod inputs image data
into the CNN model for training and testing. Although CNN
has high accuracy and robustness, the data processing process
is time-consuming and requires high system computing
resources. Considering the electrical signal sample is a kind
of temporal signals, Han et al. [20] adopted improved Long
Short-term Memory (LSTM) to process the wavelet entropy
fault information in the time dimension and obtained the
adaptive classification results by SVM. This method can
significantly reduce the number of voltage signal samples
required for diagnosis. To further improve the accuracy
of fault diagnosis, Zhou et al. [21] integrated multi-layer
perceptron, LSTM, and CNN models to construct a weighted
fault diagnosis model, accurately diagnosing the Converter
Valves device. However, this method has a large number
of parameters and high complexity, and has limitations in
resource limited scenarios. The LSTMmethod can effectively
capture and remember dependency relationships in long
sequences, but it is computationally complex and has high
training and inference costs. After adding bidirectional
information flow, the BiLSTM method considers both past
and future contextual information, which helps to predict the
current state or fault more accurately. However, compared
to unidirectional LSTM, BiLSTM requires more computing
resources and time for training and inference.

To reduce model complexity, Xia et al. [22] used a GRU
model with a simpler structure and faster training speed for
fault diagnosis of wind turbines. Although GRU has fewer
gating units and fewer parameters, it cannot effectively handle
certain complex time series patterns. To further reduce model
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complexity, Liu et al. [23] proposed a shallow deep belief
network model based on parameter optimization, which
reduces the time for fault signal processing while ensuring
diagnostic accuracy. In addition, Hou et al. [24] proposed
a fault diagnosis method based on depthwise separable
convolution, with a parameter size of only 1.912 KB
and inference time of only 75% of that of ordinary
one-dimensional neural networks. It should be noted that
although depthwise separable convolution can significantly
reduce model parameters, it may to some extent lose the
perception ability of global information.

Considering the significant impact of faults in flexi-
ble converter valve equipment on voltage signals, it is
beneficial to refer to the above methods for accurately
identifying abnormal changes in voltage signals. However,
the prerequisite of expanding the above methods to the
flexible converter valve equipment lies in the analysis and
summary of the challenges in its fault diagnosis, which are as
follows:
• The equipment has a complex structure and variable
working environment, and the resultant non-linear
characteristics in sensor data increase the fault diagnosis
difficulty.

• Model-based methods are based on manual feature
extraction and rule design, involving the extensive
utilization of the complex characteristics of flexible
converter valve equipment.

• Since earlier fault diagnosis is more conducive to repair
work, simplifying the fault diagnosis model and deploy-
ing it on the device side can improve the timeliness of
fault diagnosis, which has high requirements for model
design.

This study proposes a fault diagnosis method for flexible
converter valve equipment based on a one-dimensional
convolutional neural network (1DCNN) and an attention
mechanism in deep learning, aiming to address the above
research challenges. The specific contributions are as
follows:
• A fault diagnosis model based on 1DCNN and an
attention mechanism is proposed, which accurately
diagnoses faults in flexible converter valve equipment
by automatically learning feature representation and rule
discrimination capabilities.

• The number of samples for small-sample-size categories
is expanded through overlapping sampling, thereby
avoiding ignoring the small-sample-size categories
during training.

• The effectiveness and feasibility of the proposed method
are validated through experiments and comparison with
traditional methods, demonstrating the advantages of
the proposed method in the fault diagnosis of flexible
converter valve equipment.

This work aims to improve the accuracy and efficiency of
fault diagnosis for flexible converter valve equipment using
deep learning and attention mechanisms, providing technical
support for safe and stable power grid operation.

FIGURE 1. Different input features targeted by (a) Ordinary convolution
and (b) One-dimensional convolution.

II. BASIC THEORY
A. ONE-DIMENSIONAL CONVOLUTIONAL NEURAL
NETWORK
Convolutional Neural Networks (CNNs) are artificial neural
networks specifically designed to process video and image
data. CNNs extract features from input images and learn to
classify output images based on the learned features [25].
As shown in Figure 1 (a), ordinary convolution, often referred
to in the context of two-dimensional convolution, is widely
used in image processing. This process involves sliding a
kernel (or filter) over the image (or input data) in two
dimensions (height and width). At each position, the kernel
values are multiplied with the values of the input pixels
that they cover, and the results are summed to produce a
single pixel in the output feature map. This operation helps to
detect features such as edges, textures, or gradients in images.
In order to handle numerical data, the 1DCNN has been
developed and applied in signal processing and sequence
data analysis. As shown in Figure 1 (b), 1DCNN performs
convolution operations on input sequences to extract features
and applies them to tasks, e.g., classification and regression
of sequence data. In this type, convolutional operations are
performed along a single spatial dimension (the time axis,
in the case of time-series data). 1DCNN has several important
characteristics:

First, 1DCNN can capture local correlations within the
input sequence. By defining convolutional kernels of different
sizes, 1DCNN can perform sliding window operations on
the input sequence at different scales and extract local
subsequences of different lengths, which contributes to
effectively capturing the local patterns and features within the
input sequence. Secondly, 1DCNN has a parameter sharing
mechanism. Each convolutional kernel performs convolution
operations with the entire input sequence in the convolutional
layers, thereby generating new feature maps. Thus, the
number of parameters the model needs to learn is not affected
by the length of the input sequence but remains constant. This
parameter-sharing mechanism significantly reduces model
complexity and enhances training efficiency.
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Furthermore, 1DCNN can increase the depth and com-
plexity of the model by stacking multiple convolutional
layers and pooling layers. Through hierarchical feature
extraction and abstraction, 1DCNN gradually learns more
advanced and abstract feature representations, enhancing the
model’s expressive power in the case of complex sequence
data.

B. BIDIRECTIONAL LONG SHORT-TERM MEMORY
NETWORK
The bidirectional long short-term memory network
(BiLSTM) is a sequence model that uses three gate units
to address the gradient vanishing problem in traditional
recurrent neural networks [26]. When a given time series is
input into the LSTM layer, the LSTM unit computes the t-th
data in (1) [27]:



it = σ (Lineari([ht−1, xt−1]))
ft = σ (Linearf ([ht−1, xt−1]))
ot = σ (Linearo([ht−1, xt−1]))
C̃t = tanh(Linearc([ht−1, xt−1]))
Ct = ft ⊙ Ct−1 + it ⊙ C̃t
ht = ot ⊙ tanh(Ct )

(1)

where Lineari(·) represents fully connected layers, and k ∈
{i, f , o, c} represents the input gate, forget gate, output gate,
and cell state, respectively. H = {h1, h2, · · · , hN } represents
all the time outputs of the encoder. The input gate it regulates
the amount of new information that should be stored in the
cell state. This gate inputs the concatenation results of the
previous hidden state (ht−1) and the current input (xt−1)
into Lineari(·), and then applies σ to calculate. The forget
gate (ft ) determines how much information is retained from
the previous cell state. This gate is also calculated through
Lineari(·) and σ . The output gate (ot ) controls how much
information in the current cell state will be transmitted to
the next layer. It is calculated through Lineari(·) and σ . The
candidate cell state (C̃t ) using the tanh activation function to
process the output of Lineari(·), it is also calculated based on
the hidden state of the previous time and the current input.
Cell state (Ct ) updated by the product of the weights of ft and
it , as well as C̃t . Hidden state (ht ) calculated based on ot and
the updated Ct .

As expressed in (2) [28], BiLSTM comprises two LSTM
networks with opposite directions, where N and d represent
the length of the input samples and the dimension of the
output features, respectively.

H = BiLSTM(X ) ∈ RN×d
= [
−−−→
LSTM(X );

←−−−
LSTM(X )]′ (2)

The forward LSTM and the backward LSTM process the
input sequence data in chronological order and reverse
order, respectively, as shown in Figure 2. This setup enables
BiLSTM to simultaneously capture both preceding and
succeeding temporal information around the current time
step. By concatenating or merging the forward and backward

FIGURE 2. Bidirectional long short-term memory network simultaneously
processing data in forward and reverse orders.

LSTM outputs, a comprehensive representation can be
obtained that considers the entire input sequence information.
This bidirectional model design allows BiLSTM to better
capture and reveal the various patterns and regularities
underlying the temporal data.

C. ATTENTION MECHANISM
The attention mechanism enhances the model’s focus on
important parts of the input sequence [29]. In sequence data
processing tasks, it helps the model automatically learn the
contribution of different positions or features to the task
and assigns weights to them according to their importance.
It also allows the model to treat different parts of the input
sequence more flexibly. In fault diagnosis tasks, the attention
mechanism enables the model to direct more attention to
fault-related signal segments or features, thereby improving
the accuracy and robustness of fault diagnosis.

As shown in Figure 3, the attention module can stim-
ulate fault-related features from the periodic regularity of
time-series data or the importance of different convolutional
kernel channels. The time attention module is used to weigh
the information from different times in time series data,
so that the model can identify abnormal trends in fault
features over time. Usually, one-dimensional convolutional
or recursive neural networks are used to model temporal
dependencies. Based on this, the time attention module can
dynamically allocate attention weights for different time
steps, allowing the model to better focus on important time
segments whereas ignoring irrelevant parts. The channel
attention module assigns weights to the information of
different channels so that the model can focus on the
most discriminative feature channels. Usually, it obtains
global information for each channel through global pooling
operations such as global average pooling or globalmaximum
pooling whereas learning the weight of each channel through
fully connected layers or one-dimensional convolutional
layers. On this basis, the module can dynamically adjust
the importance of each channel, thus improving the model’s
effectiveness in feature extraction. The time-channel joint
attention module combines the advantages of the time and
channel attention modules to simultaneously capture the
correlations between time and channels. It first weights the
information of each time step through the time attention
module and then weights the weighted feature map through
the channel attention module. In this way, the time-channel
joint attention module can dynamically adjust the attention
weights in the time and channel dimensions, thereby better
capturing key information in time series data.
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FIGURE 3. Time-channel joint attention module. The time attention
module optimizes weights on time steps. The channel attention module
optimizes weights between channels. Both attention modules strengthen
fault-related features in different dimensions to improve the accuracy of
fault diagnosis models.

In addition, the attention mechanism provides an inter-
pretable method for understanding the decision-making
process of deep learning networks. By observing the distri-
bution of attention weights, researchers can understand the
preferences of the deep learning network for fault features at
different time points or frequency ranges, which is helpful for
subsequent fault analysis and optimization.

III. PROPOSED METHOD
The proposed fault diagnosis method combining
1DCNN-BiLSTM with an attention module is illustrated in
Figure 4. The main process is as follows:
• Dataset construction: The one-dimensional voltage sig-
nals are acquired under different fault conditions and
are labeled manually. To simulate the real environment,
different levels of Gaussian noise are injected into the
data. Subsequently, an overlapping sampling method is
adopted, which groups each class of samples into sets of
300 data points, with the overlap step determined by the
number of fault samples in that class.

• Feature extraction: In the first layer (DSConv1 in
Figure 4), the proposed method adopts 40 one-
dimensional convolutional kernels with a size of 10× 1.
In the second layer (TCJAM2 in Figure 4), a time-
channel joint attention module is adopted to inspire
fault-relatedmaps from the first layer. The time attention
module utilizes a 1×1 convolutional kernel and 40 5× 1
depth-wise separable convolutional kernels to obtain
importance weights along the time dimension. Mean-
while, the channel attention module uses two 5× 1 fully
connected layers and two 40× 1 fully connected layers
to allocate weights to different channels based on their
importance.
The proposed attention module maps the input sequence
X into the weighted output sequence Y , as expressed
in (3).

Y = X + δ(f 1×k (σ (f 1×1(X +max(X )))))

+ σ (f 1×c(δ(f 1×c/r (Xgmp + Xgap)))) (3)

where δ and σ represent the ReLU and Sigmoid
functions. f 1×k indicates the 1× k filter. X and max(X )
represent the average value and maximum value of X
along the channel axis. f 1×c and f 1×c/r represent fully

FIGURE 4. Flow chart of the fault diagnosis method combining
1DCNN-BiLSTM with attention module.

connected operations with different hidden sizes, c and
r denote the number of channels and compression ratio.
Xgmp and Xgap indicate global maximum pooling and
global average pooling operations of X . At the third and
fourth layers (BiLSTM3 and BiLSTM4 in Figure 4),
temporal features are extracted from weighted feature
maps through TCJAM.

• Classifier: To simplify the model, the fully connected
layer is replaced with global average pooling in the
final layer (Classifier in Figure 4). Subsequently, the
obtained feature maps are input into a Softmax layer
for classification. The model is optimized based on the
specified loss function until the iteration reaches the
set number or satisfies the early termination condition.
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FIGURE 5. Prototype of fiber optic networking dynamic mode equipment,
where 54 SCE boards are adopted as sub-modules for networking.
By using few physical sub-modules can achieve full access testing of
large-scale node valve control, thereby reducing the cost of power testing
for the key equipment in the power system, e.g., driver boards,
high-voltage power supplies.

FIGURE 6. Fiber optic intensive SCE board receiving valve control
instructions, where four optical modules are used for fault tolerance.

After obtaining a well-trained model, the performance
of the fault diagnosis model is verified using the test set.

IV. EXPERIMENTAL SETUP AND RESULT DISCUSSION
A. EXPERIMENTAL SETUP
1) EXPERIMENTAL DEVICE
As a key component in flexible DC transmission systems,
flexible converter valve equipment directly determines the
operational performance of the entire flexible DC trans-
mission system. The prototype of flexible converter valve
equipment is shown in Figure 5. The core and bottom boards
of the SCE board are shown in Figure 6. Each SCE board
has four pairs of optical modules which are sequentially
numbered. For example, the four optical modules on the #1
SCE board are labeled SM-1, SM-2, SM-3, and SM-4.

It should be noted that by default, the valve control
instructions are first received by Receiver 1. If there is a

communication failure with Receiver 1, Receiver 2 is used,
and so on. The sub-modules perform frame synchronization
based on Receiver 1; if there is a fault with Receiver 1, frame
synchronization is performed using Receiver 2. In addition,
all transmitting ports forward commands by 10 µs in
advance (based on frame synchronization) and then generate
transmission enable signals, transmission voltages, and status
information based on their positions.

In real-world applications, a modular multilevel converter
architecture consists of six bridge arms, each series connected
by multiple flexible DC transmission converter sub-modules
(over 100 of which are diagnosed in the experiment). After
the series connection, sub-modules communicate through
networking and are divided into normal working sub-modules
and redundant sub-modules. In the case of abnormalities in
normal working sub-modules (e.g., internal optical module,
communication fiber, and photoelectric conversion circuit),
the redundant sub-modules will be used. Modular multilevel
converter will trip if the number of redundant sub-modules is
insufficient. Considering the high cost of directly diagnosing
modular multilevel converters and the disadvantage ofmining
the fault characteristics of each sub-module, this study
focuses on the faults of sub-modules.

2) FAULT TYPES
The primary fault types diagnosed in this paper include com-
ponent fault, fiber optic fault, power voltage drop fault, and
abnormal flow injection fault. The fault voltage data collected
using an oscilloscope are shown in Figure 7. The experiment
was conducted in an industrial testing environment. The
component fault was introduced by intentionally inducing a
malfunction in the control system or the valve itself. The fiber
optic fault was introduced by disconnecting a section of the
fiber optic cable. The power voltage drop fault was introduced
using a variable power supply to gradually reduce the voltage
supplied to the system. The abnormal flow injection fault was
introduced by modifying the flow control settings to inject
a higher or lower flow rate than normal into the system.
Note that each fault experiment only covered one type of
fault to avoid the coupling effect of other faults on the fault
signal. Examples of voltage waveform patterns under normal
and different fault conditions are shown in Figure 8, where
the horizontal and vertical axes represent sample points and
voltage values. As shown in Figure 8 (b), component fault can
stem from various issues, e.g., loose connections, inadequate
welding, excessive valve vibration, and equipment overheat-
ing, leading to abnormal voltage fluctuations. According
to Figure 8 (c), fiber optic faults could encompass issues
such as loosening, detachment, and breakage. The fiber optic
might endure physical or environmental harm, like excessive
bending, breakage, or scratching, leading to irregular signal
transmission. Disconnecting a section of the fiber optic cable
caused fiber optic faults, leading to continuous voltage signal
gains. As shown in Figure 8 (d), power voltage drop faults
may arise from unstable power supply voltage, power line
faults, or power overload, resulting in voltage drops. Loose
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FIGURE 7. Acquiring voltage data of the experimental equipment under
different fault conditions using an oscilloscope. The experimental
environment is controlled, and fault experiments are conducted on
different components with controlled variables to ensure that the fault
data is only related to the set fault.

FIGURE 8. Voltage waveform under (a) No fault, (b) Component fault,
(c) Fiber fault, (d) Voltage drop fault, and (e) Abnormal flow injection fault
conditions.

or damaged connections could obstruct current transmission,
also causing voltage drops. Additionally, defective power
filters may play a role in voltage drops. As can be observed
from Figure 8 (e), anomalous flow injection faults might
originate from hardware malfunctions such as damaged
network interfaces or processor failures. Misconfigurations
or improper settings could redirect or inject anomalous flows,
leading to voltage signal step changes. Figure 8 shows
that the voltage data variation trends differ under different
faults. However, the fluctuations in the voltage data are
strong due to the influence of actual working conditions,
and high-precision models are needed to deeply extract fault
features.

3) DATA DESCRIPTION
Five scenarios are designed with no fault and each of the
four types of faults. Among them, the data sample length in
the no-fault scenario is 22,800, and those of the component

fault, fiber optic fault, voltage drop fault, and abnormal flow
injection fault scenarios are 102,300, 345,600, 526,100, and
125,300, respectively. As a newly developed equipment, the
fault data generated during actual operation is insufficient.
In addition, the cost of relevant fault diagnosis experiments
is high due to high equipment costs. As a result, the fault data
used for training is limited and unbalanced, requiring data
augmentation.

Data augmentation methods for numerical data include
data translation, data scaling, data noise, and overlapping
sampling. The unique advantage of overlapping sampling
is that it generates new samples by overlapping different
samples, effectively increasing the data. Unlike traditional
data augmentation methods, overlapping sampling does not
require changing the shape and structure of the original
data, allowing for increased data diversity without losing
information. Therefore, it performs well in situations with
limited data and sample imbalance. In this paper, each fault
scenario is enhanced to 300 samples with 300 sequential
data points based on the sample length of that scenario
using different overlapping sampling steps, which also
contributes to avoiding overfitting of the training model [30].
Maintaining the same sample size for each type of fault
through data augmentation can avoid biased representation
of fault categories. A total of 1,500 one-dimensional data
samples with a size of 300× 1 are obtained, with 80% of the
samples used for training and 20% for testing. In the training
samples, 20% are used to validate the model at this iteration.

4) EVALUATION METRICS
Using appropriate evaluation metrics to assess the effec-
tiveness of the proposed fault diagnosis model is cru-
cial. Therefore, the following well-known metrics are
adopted [31]:
• Accuracy: As one of the most common evaluation
metrics in classification tasks, accuracy represents the
proportion of correctly predicted samples compared to
the total number of samples, which is calculated as

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
× 100% (4)

• Precision: It indicates the proportion of true positive
samples among all samples predicted as positive by the
classifier, which is calculated as

Precision =
TP

TP+ FP
× 100% (5)

• Recall: It represents the proportion of true positive
samples predicted as positive by the classifier among all
actual positive samples, which is calculated as

Recall =
TP

TP+ FN
× 100% (6)

• F1-score: Thismetric combines precisionwith recall and
is the harmonic mean of the two, which is calculated as

F1-score = 2×
Precision× Recall
Precision+ Recall

× 100% (7)
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Where TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative results, respectively. These
metrics complement each other, and considering them
together can comprehensively evaluate the performance of a
classifier.

5) OPERATING ENVIRONMENT AND PARAMETER
CONFIGURATION
The experiments were implemented with Python 3.8 and
Google’s TensorFlow deep learning framework 2.3, which
provide stable APIs and extensive community support and
have a wide range of industrial applications and academic
research support. The operating environment is Windows
11, and the simulation platform is equipped with a Core i7-
1165G7 2.8 GHz CPU. The hyperparameters of the model are
listed in Table 1. Among them, Adam optimizer is adopted,
categorical cross-entropy is adopted as the loss function, and
the mini-batch training method is adopted with a batch size
of 16. Meanwhile, the number of iterations is set to 100,
and the learning rate is set to 0.001. To avoid overfitting the
training model, the Dropout function parameter is set to 0.3,
and the early stopping strategy is applied. To estimate the
variability and bias of the overlapping sampling operation,
10-fold cross validation is adopted to assess the stability and
generalizability of the proposed method.

TABLE 1. Model hyperparameter settings.

B. RESULT DISCUSSION
1) TRAINING PERFORMANCE
Based on the set model hyperparameters, the proposed fault
diagnosis model is trained. Figure 9 shows the indicators of
the loss function of the proposed method after 100 iterations,
where the train loss and the val loss indicate the classification
cross-entropy under the training and validating processes.
As the number of iterations increases during model training,
the loss value decreases and accuracy gradually improves.
The gradual stabilization of both metrics indicates that the
model gradually converges during training. In other words,
the accuracy and classification cross-entropy of the model
tend to stabilize during training, indicating that the fault
diagnosis model has reached a relatively optimal state.

2) PERFORMANCE COMPARED WITH TYPICAL MACHINE
LEARNING METHODS
Because the device is newly developed, the fault diagnosis
method is compared with other methods in similar scenarios,
including SVM in [15], RF in [13], and BPNN in [14].
Figure 10 presents the comparative results, revealing that the
proposed method consistently outperforms these benchmark

FIGURE 9. (a) Classification cross-entropy and (b) Diagnostic accuracy
variations of the proposed method with the number of iterations.

FIGURE 10. Performance of SVM, RF, BPNN, and the proposed method
represented by blue, dark orange, orange yellow, and purple lines.

techniques. This superiority is particularly notable due to
the non-linear separability inherent in the fault samples
analyzed in this study. Non-linear separability implies that
the boundaries between different fault classes cannot be
effectively modeled by linear methods like SVM without
complex transformations or kernels. As a result, SVM shows
noticeably lower performance compared to RF and BPNN,
which are more adept at capturing complex, non-linear rela-
tionships within the data. Furthermore, the results underscore
the importance of selecting appropriate methods tailored to
the specific characteristics of fault data. In this case, the
proposed method demonstrates robustness and efficacy in
handling the complexities of non-linearly separable fault
patterns, thereby surpassing traditional SVM approaches.

3) PERFORMANCE OF DIFFERENT NETWORK STRUCTURES
Proposed method is also compared with several other
methods with different network structures and attention
modules under the same parameter configuration. Table 2
shows the model structures of the different methods. For
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TABLE 2. Model structures of different methods, where ‘‘+’’ denotes
serial connection. Drouput and Softmax operations are used in all models
for Preventing model overfitting and calculating the confidence level for
each fault type.

instance, ‘‘1 layer of DSC + SE + 2 layers of BiLSTM
+ GAP + Dropout + Softmax’’ in Model 7 indicates that
its network structure is a DSC operation in the first layer,
a Squeeze-and-Excitation (SE) attention operation in the
second layer, two BiLSTM operations in the third and fourth
layers, GAP and Drouput operations in the fifth layer, and a
Softmax operation in the final layer.

Models 1 to 6 do not contain attention modules and are
used to compare the fault diagnosis accuracy using only
one-dimensional depth-wise convolutional layers (DSC),
only BiLSTM layers, only BiGRU layers, and three hybrid
models. Models 7 to 9 and the proposed method are all
based on a model combining DSC and BiLSTM (M6).
After the DSC layer, they each incorporate the SE attention
module [32], the Convolutional Block Attention Module
(CBAM) module [33], the Joint Attention Module (JAM)
module [34], and the Time-Channel Joint Attention Module
(TCJAM) module (the proposed method).

Figure 11 provides a detailed insight into the feature
extraction process of fault-related data within the proposed
fault diagnosis model. Initially, the time (Figure 11(a)) and
frequency (Figure 11(b)) domains of the original signal
illustrate the raw data characteristics before undergoing
processing. Subsequently, in Figure 11(c) and (d), after
passing through the DSC layer and the TCJAM layer, fault-
related data features are highlighted within yellow rectangles.
These features become notably more pronounced compared
to the original frequency signal after DSC operation,
effectively reducing noise artifacts generated during the
convolution process. The combination of DSC and TCJAM
layers enhances the distinction between fault-related and
fault-free features, thus amplifying the signal-to-noise ratio
crucial for accurate fault detection. This approach not only
improves the diagnostic precision but also ensures robustness
against the typical environmental and operational variability
in flexible converter valve equipment.

FIGURE 11. Significant polarization of data features after feature
extraction from original signal (shown as (a) time domain and
(b) frequency domain) to (c) DSC layer and (d) TCJAM layer.

The diagnostic accuracy of the above models is shown in
Figure 12(a), where the box plots represent the diagnostic
accuracy of 10 repeated experiments, and the lines represent
the means of the diagnostic accuracy of 10 repeated
experiments. The results indicate that the proposed method
consistently achieves the highest diagnostic accuracy in
repeated experiments (with a mean of 93.05%, 0.57% higher
than the next-best method). These results demonstrate that
the proposed method can accurately diagnose the five types
of faults in flexible converter valve equipment. Furthermore,
the proposed method exhibits the smallest deviation in
multiple experimental results (1.47%), indicating its strong
robustness.

The diagnostic precision, recall, and F1-score of the
above models are shown in Figures 12(b), 12(c), and 12(d).
Precision indicates the proportion of samples predicted as
certain faults among all test samples of that fault. In contrast,
recall indicates the proportion of actual samples with certain
faults among all test samples accurately predicted with that
fault. These evaluation metrics are commonly used to assess
the performance of fault diagnosis models under sample
imbalance. As shown in Figures 12(b), 12(c), and 12(d),
the proposed method’s diagnostic precision, recall, and F1-
score are significantly higher than those of the comparison
methods. These results indicate that the proposed method can
accurately diagnose the five types of faults in the flexible
converter valve equipment, which is critical for maintaining
operational reliability and minimizing downtime.

In practical terms, the high recall rate observed in
Figure 12(c) is particularly noteworthy. It signifies the
model’s ability to minimize false negatives, thereby reducing
the likelihood of undetected faults that could potentially lead
to equipment damage or operational failures. This aspect is
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FIGURE 12. (a) Accuracy, (b) precision, (c) recall, and (d) F1-score of different methods, where the cyan box and red box represent compared
methods and the proposed method, respectively. The box diagram is used to display the distribution of fault diagnosis results from multiple
experimental groups. The degree of discreteness shown in the box diagram represents the robustness of the fault diagnosis method.

crucial in industries where system reliability and safety are
paramount, such as in power grid stability and DC equipment
operations. In addition, while false positives (Figure 12(b))
incur costs associated with unnecessary maintenance, they
are less critical compared to the ramifications of missing true
faults. Therefore, prioritizing a high recall rate aligns with
operational priorities to ensure comprehensive fault detection
without compromising system stability or incurring excessive
operational costs.

In summary, the experimental results validate that the
proposed fault diagnosis model excels in accuracy and
reliability, making it well-suited for real-world applications
in maintaining the operational integrity of flexible converter
valve equipment. Its robust performance in both precision and
recall positions it as a viable solution for industries requiring
stringent fault detection capabilities.

4) PERFORMANCE UNDER DIFFERENT GAUSSIAN NOISE
LEVELS
In the actual operation of power equipment, there are
various noise sources, e.g., electromagnetic interference,
environmental vibration, which may affect the quality of
sensor data or signals. In addition, a good fault diagnosis
method should be able to work effectively even under
noise conditions that have not been seen during training.
By simulating different Gaussian noise scenarios, it is
possible to evaluate whether the proposed approach can be
generalized to new noise conditions, rather than just per-
forming well in clean environments during training. In order
to evaluate the robustness, reliability, and generalization
of the proposed method in noisy environments, this paper
injects Gaussian noise of SNR 10 dB, SNR 20 dB, and
SNR 30 dB in the test set, respectively. The experimental
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TABLE 3. Performance of difference methods under noiseless, SNR 10 dB, SNR 20 dB, and SNR 30 dB gaussian noise levels.

FIGURE 13. Parameter quantities and iteration time required for different
methods, where the blue line and dark orange line represent the number
of model parameter and running time of one iteration.

results are shown in Table 3. The results show that the
proposed method can achieve the highest average accuracy
in various Gaussian noise environments. In different noise
environments, compared to the sub-optimal method, the
proposed method has an average improvement of 0.42%,
1.18%, 0.53%, and 0.83% in Accuracy, Precision, Recall,
and F1-score, respectively. The above results indicate that
the proposed method effectively distinguishes fault modes
and noise through attention modules, thereby enhancing
the model’s generalization ability in different noise envi-
ronments. In addition, the deviation from multiple training
processes is low, indicating that the diagnostic results of the
proposed method have high consistency and stability.

In summary, high robustness and stability ensure the
reliability and sustainability of the proposed method in

practical industrial environments, even in the face of con-
stantly changing noise conditions or data quality changes.
In addition, stable multiple training results mean that the
time cost of tuning and validation can be reduced, thereby
accelerating the deployment and optimization process of fault
diagnosis systems.

5) METHOD EFFECTIVENESS
Figure 13 shows the parameter sizes and the time required
for one iteration of the ten fault diagnosis models. The blue
line represents the model parameter size and the orange
line represents the runtime for one iteration. The results
show that the proposed method has a moderate model
parameter size (22,616 parameters), which ensures sufficient
model capacity without excessive computational overhead.
Similarly, the proposed method has a moderate runtime for
one iteration (approximately 8 seconds), which demonstrates
efficient computational performance suitable for real-time
or near-real-time fault diagnosis applications. In addition,
it can be concluded that the proposed method has the highest
diagnostic accuracy compared to other methods, and that
the size of the model parameters and the training time are
moderate. The combination of moderate model complexity,
efficient computational performance, and superior diagnostic
accuracy underscores the practical viability and effectiveness
of the proposed method in real-world fault diagnosis scenar-
ios. These attributes not only enhance the applicability of the
method in diverse industrial contexts but also contribute to
its potential scalability and usability in complex operational
environments.

V. CONCLUSION
To address the limitations of traditional fault diagnosis
methods for flexible converter valve equipment, this study
presents a deep learning and attention mechanism-based fault
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diagnosis method. Firstly, 1DCNN and BiLSTM are utilized
to learn the temporal features in the data. Additionally,
the time-channel joint attention module is proposed to
achieve adaptive weight adjustment in the model, thus better
capturing key information and reducing noise interference.
To validate the effectiveness of the proposed method, various
fault data are collected on flexible DC transmission system
valves in experiments. To facilitate model training and
testing, data augmentation is performed through overlapping
sampling to balance the samples. The results indicate that
the deep learning-attention mechanism-based method can
accurately diagnose four types of faults in the flexible
converter valve equipment of DC transmission systems. Com-
pared with typical machine learning methods and different
network structures, the proposed method demonstrates better
performance with an average accuracy of 91.16%, an average
precision of 81.59%, an average recall of 80.59% and an
average F1-score of 81.07%. In different Gaussian noise
levels, the proposed method almost has the best performance
with an average improvement of 0.42%, 1.18%, 0.53%, and
0.83% in accuracy, precision, recall, and F1-score compared
with the sub-optimal method, respectively. After multiple
tests, the accuracy deviation rate and F1-score deviation rate
of the proposed method do not exceed 1.79% and 2.93%,
respectively, which is lower than the deviation values of
most comparison methods. The above results indicate that the
proposed method enable more accurate and stable diagnosis
of various faults.

Although the proposed method has achieved good fault
diagnosis results in the experimental environment, its per-
formance may decrease due to real-world factors, e.g.,
system complexity (more than 22,000 model parameters and
8 seconds training time for one iteration) and uncertainty
during long-term operation. Future research will focus on
diagnosing faults after the series connection of multiple
flexible converter sub-modules in DC transmission systems.
In addition, improving the interpretability of the fault
diagnosis model can help understand the model’s decision-
making process, build trust and reliability, and correct faults.
To achieve this goal, model simplification and interpretable
models are suggested.
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