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ABSTRACT Although there have been numerous studies on visibility prediction, there have been insignif-
icant studies conducted to predict nominal current output based on visibility. Therefore, this study focuses
on optimizing nominal current output at Subang Airport by employing artificial intelligence and meteoro-
logical data. The research leverages daily meteorological data to enhance visibility prediction and address
aeronautical ground lighting issues emphasizing on the runway edge light. The methodology involves a
three-step modeling approach with Bayesian optimization. First, Gaussian Process Regression was utilized
to predict visibility, incorporating various meteorological parameters. Second, a correction filter refines the
predictions, integrating models such as Regression Trees, Support Vector Machines, Ensemble of Trees,
Neural Networks, and Gaussian Process Regression. Finally, prediction of nominal output current was
conducted using error squared, generated from the correction filter, and time. Various machine learning mod-
els, including Decision Trees, Discriminant Analysis, Naive Bayes Classifiers, Support Vector Machines,
Nearest Neighbor Classifiers, Ensemble Classifiers, and Neural Network Classifiers were evaluated to
determine the most effective model. Cross-fold validation with a 5-fold split ensures the reliability and
precision of the machine learning algorithms. Performance metrics such as Mean Absolute Error, Mean
Squared Error, Root Mean Squared Error, and R-squared were used to evaluate the models. Results highlight
the stacked model of Gaussian Process Regression, Gaussian Process Regression, and Nearest Neighbor
Classifiers as the most accurate, achieving a 96.2 % accuracy in predicting and improving nominal output
current. In conclusion, this study has introduced a novel approach to predicting and improving nominal
output current for runway edge light utilizing limited historical meteorological data.

INDEX TERMS Aeronautical ground lighting, machine learning, meteorological data, nominal current
output.

I. INTRODUCTION

In today’s modern era of aviation, the lack of a standard or
guidance on the nominal current output in airport operations
is becoming a growing concern. This could potentially pose
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risks to the safety and efficiency of aircraft operations. From
the foregoing will be evident the importance of adjusting
the intensity of the lights in an aerodrome lighting system
according to the prevailing conditions is crucial to achieve
optimal results without excessive glare that could disori-
ent the pilot. The appropriate intensity setting will depend
on the background brightness and visibility conditions [1].
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Additionally, it is recommended that every country should
adapt their intensity setting procedures to ensure optimal
lighting intensities [2].

To accurately predict the optimized nominal current out-
put, which is directly related to visibility, it is essential to
have a precise prediction of visibility. When it comes to the
input variables used for prediction, two types of data are com-
monly chosen. The first type includes fine particulate matter
(PM) and atmospheric aerosol [3], while the second type
comprises various meteorological elements that may impact
visibility [4], [5]. In terms of prediction methods, artificial
intelligence techniques have become increasingly popular
in recent years for studying airport visibility [6]. However,
there are limited studies on airport visibility prediction due
to the challenge of obtaining a large amount of long-term
meteorological data and visibility observations around air-
ports [6]. At Sofia Airport, machine learning methods were
employed to evaluate visibility by analyzing meteorological
factors such as fog stability index, dew point temperature,
cloud base, temperature, wind speed, time, pressure, wind
direction, and cloud coverage [7]. Additionally, [8] also used
meteorological factors to predict visibility in Mondofiedo,
Galicia, Spain. The models utilized in their study included
Support Vector Machine (SVM), Random Forest (RF), Gaus-
sian Naive Bayes (GNB), K-Nearest Neighbors (KNN),
AdaBoost (AB), Gradient Boost (GB), and Multilayer
Perceptrons (MLP).

In order to develop reliable forecasting tools for predict-
ing haze in China, [9] collected a comprehensive dataset
of meteorological parameters from various monitoring sta-
tions across the country. These parameters included wind
speed, wind direction, temperature, humidity, and visibility
records. Three popular machine learning methods, namely
SVM, KNN, and RF, were then employed for visibility
forecasting. These methods were chosen due to their estab-
lished performance in various prediction tasks. In addition,
[10] conducted a low visibility prediction at Jay Prakash
Narayan International Airport (JPNI) in Patna, India. They
used dry bulb temperature, dew point temperature, wind
speed, wind direction, relative humidity, and cloud amount
to make their predictions. Similarly, [11] conducted a study
to predict visibility at six airport stations in the United
Arab Emirates. They used meteorological parameters such
as air temperature, relative humidity, wind speed, rain-
fall, sea level pressure, and dew point temperature. They
employed Linear Regression (LR), Regression Tree (RT),
Ensemble Tree (ET), SVM, GPR, and ANN to predict
visibility.

Some researchers also use classification techniques to pre-
dict visibility, as shown in [12]. In this study, the authors
utilized meteorological parameters including cloud cover,
wind direction, wind speed, temperature, pressure, relative
humidity, and dew point temperature. They applied vari-
ous algorithms such as Decision Tree, Linear Discriminant
Analysis, Naive Bayes, SVM, KNN, and ANN. Another
study conducted by [13] focused on analyzing the persis-
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tence and prediction of low-visibility events at Villanubla
Airport in Spain during the winter season. In this study, SVM
and Extreme Learning Machines (ELM) were employed to
forecast visibility. Additionally, [14] developed a visibility
estimation model for South Korea using RF, incorporating
meteorological parameters. This model successfully provided
visibility information in areas where no observations were
available.

The summarized literature is presented in Table 1. The
table shows that previous studies have contributed to predict-
ing visibility using regression and classification techniques.
Howeyver, there are limited studies on how to use these meth-
ods to determine the optimal nominal current output for
aeronautical ground lights. Additionally, it is evident from
the table that parameters such as temperature, dew-point
temperature, wind speed, wind direction, and pressure are
common across all studies. Furthermore, most studies did not
apply Bayesian optimization to enhance visibility prediction
accuracy.

Therefore, this study utilizes the squared error from visi-
bility prediction along with time and Bayesian optimization
to classify the optimum nominal output current. Time is
chosen as one of the parameters because it affects the oper-
ational aspects of lighting. In actual airport operations, even
though the visibility is over 10 000 meters during the day,
the lights are switched off. However, during the night when
the visibility is more than 10 000 meters, the lights are
switched on.

Hence, as shown in Table 1, the purpose of this study is to
predict the optimal nominal current output based on visibility
and time. The novelty of this study lies in its approach, which
includes:

1) The use of an optimum correction filter to improve
visibility prediction in a tropical country.

2) Utilizing the error produced by regression models
together with time to classify the optimal nominal cur-
rent output.

3) Assessing and fine-tuning a wide range of relevant
regression and classification techniques, and subse-
quently assembling these machine learning models to
create a robust model with high accuracy for predicting
the nominal current output.

This study specifically focuses on the operation of run-
way edge lights at Subang Airport, particularly in relation
to the use of nominal current output to ensure aircraft
safety. However, it does not include a study on the impact
of nominal current consumption on airside safety, air-
side operations, electrical and aeronautical ground lighting
maintenance programs, and the cost of implementing the
results. This is due to specific confidentiality issues with
stakeholders.

The research paper consists of Section I, which explains
the previous studies, problem statements, objectives, scope
of work, and limitations. The rest of the paper is organized
as follows: Section II presents the methodology used to
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FIGURE 1. Layout of WMSA showing it is situated in the city, surrounded
with commercial, residential and buildings with rapid and dense
development.

achieve the objectives of this study, Section III describes the
results and discussion, and Section IV concludes the overall
study.

Il. METHODOLOGY

A. STUDY AREA

Subang Airport, as shown in Fig. 1, also known as WMSA
in the ICAO Code, is located at 03°07°56” North and
101°33°01” East in Subang, Selangor, Malaysia. It is situated
approximately 15 kilometers west of Kuala Lumpur, mak-
ing it conveniently accessible to both business and leisure
travelers. Geographically, WMSA benefits from a favorable
climate with consistent weather patterns throughout the year,
which makes it an ideal choice for domestic and regional
flights. This reliability and convenience to passengers, how-
ever, are hampered by an ongoing issue with the airport’s
aeronautical ground lighting. Currently, halogen fittings are
still being used [15], leading to energy wastage. Furthermore,
there is no standard or guidance in place for the current
consumption of the lighting system in real-time.

To address the issue, daily meteorological data corre-
sponding was collected from the National Oceanic and
Atmospheric Administration (NOAA) [16]. Data from April
15t, 2023 until June 30™, 2023 were collected and analyzed.
Meteorological factors such as time, daily air temperature,
dew point temperature, difference between air temperature
and dew point temperature, wind direction, wind speed and
pressure were utilized in the calculation and screening pro-
cesses. The information regarding the collected data can be
found in Table 2. The predicted visibility was calculated
through modelling, utilizing daily meteorological data. The
wind direction is a variable that ranges over a set of degrees.
Therefore, it is substituted with the constant numeric repre-
sentation of 359 degrees to establish a common datum so that
it can be read as an integer in MATLAB and visibility exceed-
ing 10 000 meters is replaced with the value of 10 so that
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a common reference point is obtained to run the regression
learner program thus the model could be generalized better.

B. NOMINAL CURRENT

The electrical power for aerodrome ground lighting circuits
(series circuit) is typically supplied by constant current reg-
ulators (CCRs). This is done to maintain a consistent light
output over long distances, such as on aerodrome runways.
CCRs are devices specifically designed to provide a steady
current output, even when there are variations in input volt-
age or load resistance. In the aviation industry, it is crucial
to maintain consistent lighting conditions for pilots during
take-off, landing, and taxiing. Therefore, constant current
regulators are used to power runway and taxiway light-
ing [17]. These regulators are designed to produce a constant
current output that remains unaffected by changes in the
circuit load or input voltage from the power source. They
are also capable of providing two or more output currents
when dimming of the lights is required. Based on [17] and
the type of CCRs used in Malaysia, the current consumption
classification is categorized into 5 steps, as shown in Table 3.
These 5 steps are used to select the appropriate intensity,
ranging from 2.8 amperes to 6.6 amperes, with a tolerance
of £0.1 amperes. This selection ensures the safe operation of
aircraft under specific atmospheric conditions.

C. K-FOLD CROSS-VALIDATION

A cross-validation method was used to develop every
algorithm, regardless of the split in data used for training
and evaluating [13], [18]. The fold was set to 5, with a split
of 20 % for validation and 80 % for training, in order to
prevent overfitting and avoid suboptimal models due to an
unbalanced distribution of the dataset [19]. Fig. II illustrates
an example of the stacking structure when fold is set to 5. This
method proves valuable for evaluating the effectiveness of a
machine learning system, offering several benefits. Firstly,
it provides a more precise evaluation of algorithm perfor-
mance compared to training and assessing using a single
data split. Secondly, it optimizes data utilization by allow-
ing for the inclusion of all datasets, providing an objective
assessment of algorithm performance. Thirdly, the k-fold
approach facilitates hyperparameter adjustment, preventing
overfitting to the validation set. By adjusting hyperparameters
and assessing their effectiveness across each fold, optimal
hyperparameters can be selected based on their average per-
formance.

D. OVERFITTING

Overfitting refers to a situation in which a model performs
well on training data but poorly on unseen test data [21].
This indicates that the model has learned noise in the train-
ing data instead of the underlying patterns. Several factors
can contribute to overfitting, including the complexity of
the model, such as the number of hyperparameters. When a
model becomes too complex, it tends to fit too closely to the
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TABLE 1. Summary of previous study and proposed method in this study.

Ref Location Independent variable Dep ffndent Visibility prediction model B‘a yesian Nommg% cul-*rent
variable optimization classification
[7] Sofia Fog stability index, dew- Visibility i. Random Forest No No
Airport point temperature, cloud ii. Long Short-Term Memory
base, temperature, wind
speed, time, pressure, wind
direction, cloud coverage
[8] Galicia, Accumulated precipitation, Visibility i. Support Vector Classifier No No
Spain air temperature, atmospheric ii. Random Forest
pressure, dew-point iii. Gaussian Naive Bayes
temperature, ground iv. K-Nearest Neighbors
temperature, global solar v. AdaBoost
radiation, relative humidity, vi. Gradient Boost
salinity, wind direction, vii. Multilayer Perceptrons
wind speed
[9] Shenzhen Time, wind speed, wind Visibility i. Support Vector Machine No No
direction, relative humidity, ii. Random Forest
temperature iii. K-Nearest Neighbors
[10]  Jay Prakash  Dry bulb temperature, dew- Fog i. Artificial Neural Network No No
Narayan point temperature, wind ii. Gradient Boosting Machine
International  speed, wind direction, iii. Extremely Randomized Tree
Airport relative humidity, cloud iv. Extreme Gradient Boosting
amount v. Discrete Random Forest
vi. Generalized Linear Models
[11] Airports in ~ Temperature, relative Visibility i. Linear Regression No No
United Arab  humidity, wind speed, ii. Regression Trees
Emirates rainfall, pressure, dew-point iii. Ensemble Trees
temperature iv. Support Vector Machine
v. Gaussian Process Regression
vi. Artificial Neural Network
[12] Chengdu Total cloud cover, low cloud Visibility i. Decision Tree No No
cover, wind direction, wind ii. Linear Discriminant Analysis
speed, temperature, iii. Naive Bayes
humidity, vapor pressure, iv. Support Vector Machine
dew-point temperature, v. K-Nearest Neighbors
atmospheric pressure vi. Artificial Neural Network
[13] Villanubla Temperature, relative Visibility i. Support Vector Machines No No
Airport, humidity, wind speed, wind ii. Extreme-Learning Machines
Spain direction, atmospheric iii. Markov Chain Model
pressure iv. Mixture of Experts
[14]  South Korea  Temperature, pressure, wind Visibility Random Forest No No
speed, relative humidity,
precipitation
Temperature, dew-point Visibility i. Regression Trees Yes Yes

Proposed method
in this study

temperature, difference
between temperature and
dew-point temperature,
pressure, wind speed, wind
direction

Error squared from visibility

prediction, time consumption

Nominal current

iii. Ensemble Trees

iv. Support Vector Machine

v. Gaussian Process Regression
vi. Artificial Neural Network

i. Decision Trees

ii. Discriminant Analysis
iii. Naive Bayes

iv. Support Vector Machine
v. Nearest Neighbor

vi. Ensemble

vii. Neural Network

training data and performs poorly on new data. This high-
lights the need to find a balance between model complexity

and performance on unseen data. Research by [22] indicates
that overfitting in machine learning happens when the model
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TABLE 2. Information regarding the meteorological parameters utilized
in this study.

No Features Unit

1 Hourly visibility Kilometer (km)

2 Hourly temperature Degree Celsius (°C)

3 Hourly dew-point Degree Celsius (°C)
temperature

4 Hourly wind speed Knot (kt)

5 Hourly wind direction ~ Degree (°)

6 Hourly relative Percentage (%)
humidity

7 Hourly pressure Hectopascal (hPa)

TABLE 3. Nominal constant current regulator output current range.

Stvle Current Nominal output Allowable range
¥ step (RMS Amperes) (RMS Amperes)
5 6.60 6.50-6.70
5-step 4 5.20 5.10-5.30
CCR 3 4.10 4.00-4.30
2 3.40 3.30-3.50
1 2.80 2.70-2.90

fits the training data too closely, which reduces its ability
to generalize. This is a widespread problem where further
training improves the model’s fitness on the training data,
but its performance on unseen data decreases. Overfitting can
harm the interpretability and generalizability of the result-
ing equations. A study by [23] shows that in Convolutional
Neural Networks (CNN), overfitting occurs when the model
performs well on the training data but fails to generalize to
unseen data, resulting in lower accuracy. When training a
CNN with limited samples, overfitting is often exacerbated,
making it difficult for the model to effectively generalize.

Besides the k-fold approach, the Bayesian approach also
helps reduce overfitting by considering the noise in the
training data [22]. It guides the model’s evolution towards
an appropriate level of complexity based on the dataset.
This leads to equations that are more suitable for the data,
resulting in slight simplifications in the model form instead
of overfitting. As a result, the model’s generalizability and
interpretability are enhanced [22]. The analysis of root mean
square error demonstrates that regularization with Bayesian
optimization effectively suppresses overfitting in the learning
model [24]. This highlights the importance of proper model
fitting. The Bayesian method is proven to be proficient in
solving the overfitting issue, showcasing its ability to achieve
accurate curve fitting while maintaining good generalization
performance. By utilizing the Bayesian method, the cognitive
abilities of machine learning are enhanced [24]. This demon-
strates the practical implications of addressing overfitting in
modeling tasks.

E. BAYESIAN OPTIMIZATION
One of the methods used to identify the most effective
hyperparameter values in machine learning is the Bayesian
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FIGURE 2. Example of cross fold validation with k = 5 ([20]).

approach [25], [26], [27]. The process begins by defining
the variables: X represents the input data, Y is the target
variable, and 6 represents the model’s hyperparameters. The
main objective is to determine the values of 6 that maximize
the probability of the data given the model, P(Y|X, 8). The
Bayesian approach starts with a prior distribution over 6,
denoted as P(6), which captures the initial beliefs about the
likely ranges of hyperparameters before any data is observed.
Then, using Bayes’ rule, the target variables are updated
based on the observed data [28];

P (©)
P(Y,X)

As shown in equation (1), P(6 |X,Y) represents the updated
distribution over 6, which reflects new information about
potential values of training hyperparameters given the data.
P(Y|X, 0) indicates the probability of the data considering
the training hyperparameters, reflecting how well the given
set of hyperparameters fits the data. P(9) is the prior distribu-
tion, encoding our beliefs about likely hyperparameter values
before observing any data.

As for this study, the Bayesian optimization with acqui-
sition function of expected improvement per second plus,
iterations of 35 and false training time limit were used.

POIX,Y)=P(Y|X,0) x (1)

F. MODELLING FOR VISIBILITY PREDICTION
In this study, to predict the visibility error squared, five
artificial intelligence models were compared to identify
the optimal model based on meteorological conditions
(Fig. 3). After conducting a preliminary evaluation using the
Regression Learner in MATLAB R2023a software, Gaus-
sian Process Regression (GPR) was selected as the first
model (Model 1) among various algorithms. This choice was
made because GPR yielded the lowest RMSE compared to
other algorithms [29]. As described by [30] and [31] that
used predefined settings optimized for specific data patterns
and classification challenges, this study also uses the same
approach where predefined settings in the regression learner
model have been used. This comprehensive set of models sig-
nificantly reduces the need for manual model optimization,
streamlining the selection process and saving valuable time
and effort in building and evaluating machine learning within
MATLAB.

After the data is obtained from METAR, it must be cleaned
first. The entire data set is checked for incorrect data entry,
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Raw METAR data for SZB

v

Data processing

Data collection

Data cleaning ‘

Complete 80 data points

v
Regression Learner (Model 1) 4—|
GPR
k=5
v with Bayesian

optimization

P—

Corrective filter (Model 2)
GPR, RT, SVM, ET and NN

\ 4

Evaluate model

\ 4

Error squared

FIGURE 3. Flow chart showing the process used to obtained error
squared.

inaccurate data, missing data, empty cells, and meaningless
data compared to the raw METAR data. This process was
conducted because the METAR data were manually separated
into independent and dependent variables. The number of
data points and features before and after cleaning the data set
remains the same.

The search for optimized hyperparameters for the first
model are shown in Table 4. The input data included tem-
perature, dew point temperature, the difference between air
temperature and dew point temperature, wind direction, wind
speed, and pressure. The target output, on the other hand,
is visibility. According to [32], applying an input lag time
of 7 days usually yields the best results for most machine
learning models and generalizes well across different subject
areas. Therefore, for this study, a lag time of 3 days (from
April 1% until April 3" 2024), comprising of 80 data points
with 480 input parameters were chosen.

The predicted visibility generated by GPR (Model 1) was
used as an input to the second model, which is known as
the correction filter (Model 2). The target output for both
models is visibility. The correction filter utilized several mod-
els, including GPR, Regression Trees (RT), Support Vector
Machines (SVM), Ensemble of Trees (ET), and Neural Net-
works (NN) [32]. These models were selected to improve the
prediction capability of the regression learners [7], [10], [33],
[34]. The hyperparameters for the correction filter are shown
in Table 5. In this phase, the first model is stacked with the
second model to predict visibility. The squared error from this
model is then used, along with time, as input for the third
model to classify the optimum nominal current consumption.

The following four statistical indicators, Mean Abso-
lute Error (MAE), Mean Squared Error (MSE), Root Mean
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TABLE 4. GPR hyperparameters used as the first model.

Model Hyperparameters

No Features Unit / Parameter
1 Signal standard deviation 0.79749
By Optimize numeric Yes

parameters

Hyperparameter Search Range

0.0001 — 11.2783

Constant, Zero, Linear
Nonisotropic Exponential,
Nonisotropic Matern 3/2,
Nonisotropic Matern 5/2,
Nonisotropic Rational Quadratic,
Nonisotropic Squared
Exponential, Isotropic
Exponential, Isotropic Matern
3/2, Isotropic Matern 5/2,
Isotropic Rational Quadratic,
Isotropic Squared Exponential,
0.359 - 359

True, false

W

Sigma
4 Basic function

5 Kernel function

6 Kernel scale
7 Standardize data

Squared Error (RMSE) and Coefficient of Determination
(R?) were utilized to evaluate the performance of the models
(Equations (2) — (5)).

> i — xil

MAE = 2)
n
1 <~ 5
MSE = - Z,-z | i = xi) A3)
R 5
RMSE = \/ - Z,-z | i = xi) )
n N2
R2 —1— zil=1 (i )fz)z (5)
Z,-Zl i —x)

where x; is the actual visibility, y; is the predicted visibility
and n is the number of observations.

According to [7], evaluating the performance of a model
often involves calculating the coefficient of determination
(R2). This metric measure how well the model can predict true
visibility values on a scale from 0 to 1. An R? value of 1 indi-
cates a perfect prediction, while 0 suggests no discernible
relationship between the model’s input and output. In addition
to RZ, model accuracy is commonly assessed using MAE
and RMSE. R? provides insights into precision, while MAE
and RMSE measure the average differences and magnitude
of these differences, respectively, between predictions and
observations. When evaluating model performance, the fol-
lowing criteria are typically considered:

1) RMSE is always positive, and a smaller value indicates
a more accurate model.

2) R?ranges from O to 1, with values closer to 1 indicating
a well-performing model.

3) MSE is the square of RMSE, and a smaller MSE
implies a successful model.

4) Similar to RMSE, MAE is positive, and a smaller value
suggests a successful model. An error percentage close
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TABLE 5. Model hyperparameters used as correction filter.

GPR MODEL

Model Hyperparameters

No Features Unit / Parameter
1 Signal standard deviation 0.79749
5 Optimize numeric Yes
parameters
Hyperparameter Search Range
3 Sigma 0.0001 —11.2783
4 Basic function Constant, Zero, Linear
Nonisotropic Exponential,
Nonisotropic Matern 3/2,
Nonisotropic Matern 5/2,
Nonisotropic Rational Quadratic,
5 Kernel function Nomsotrqplc Squarefl
Exponential, Isotropic
Exponential, Isotropic Matern
3/2, Isotropic Matern 5/2,
Isotropic Rational Quadratic,
Isotropic Squared Exponential,
6 Kernel scale 0.005-5
7 Standardize data True, false
RT MODEL
Model Hyperparameters
1 Surrogate decision splits Off
Hyperparameter Search Range
2 Minimum leaf size 1-40
SVM MODEL
Model Hyperparameters
1 Kernel scale 1
Hyperparameter Search Range
2 Box constraint 0.001 — 1000
3 Kernel scale 0.001 — 1000
4 Epsilon 0.00074129 — 74.129
5 Kemel function Gau_ssw.n, Linear, Quadratic,
Cubic
6 Standardize data True, false
ET MODEL
Hyperparameter Search Range
1 Ensemble method Bag, LSBoost
2 Number of learners 10-500
3 Learning rate 0.001 -1
4 Minimum leaf size 1-40
5 Number of predictors to 1-2
sample
NN MODEL
Model Hyperparameters
1 Iteration limit 1000
Hyperparameter Search Range
2 Number of fully connected 1-3
layers
3 Activation ReLU, TanH, Sigmoid, None
4 Standardize data Yes, no
5 First layer size 1-300
6 Second layer size 1-300
7 Third layer size 1-300
3 Regularization strength 1.25e-07 — 1250
(Lambda)
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Input

Error squared

Classification Learner ) k=5 )
(model 3) 4 with Bayesian
optimization
v

‘ Evaluate model ‘

v

Analysis of result

v

‘ Finalized model ‘

FIGURE 4. Flow chart showing the process used to obtained predicted
current consumption for runway edge light.

to zero signifies that predicted values closely align with
actual values.

G. MODELLING FOR NOMINAL OUTPUT CURRENT

The main objective of this study is to predict the nominal
output current. As shown in Fig. 4, the input data for the
models developed in this stage included the following param-
eters; time and error squared. The error squared represents the
output from the visibility prediction modelling, while the time
is obtained from the METAR data. The output is the nominal
output current. For this stage, a total of 26 data points, gath-
ered on October 4™ 2023, with 52 input parameters, were
used for training and validation. The data points consist of
7 observations of 3.4 A, 9 observations of 4.1 A, 7 observa-
tions of 5.2 A, and 3 observations of 6.6 A. The reason there
is no data for 2.8 A is that the airport operates 24 hours a
day, and the lights must be visible at all times. If the nominal
current were set at 2.8 A, the lights would become almost
invisible.

The software used for this analysis was MATLAB R2023a,
and the Classification Learner was utilized. Using the same
approach as [30] and [31] the models employed in this study
included Decision Trees (DT), Discriminant Analysis (DA),
Naive Bayes Classifiers (NBC), SVM, Nearest Neighbor
Classifiers (KNN), Ensemble Classifiers (EC), and Neural
Network Classifiers (NNC) [35]. In this process, 20 % of
the dataset was allocated for validation, while the remaining
portion was used for training. This approach ensures that the
models’ performance is not biased by the training data [35].
In this phase, every cascaded model from the previous phase
will be tested with each of the Classification Learner models.

The confusion matrix, also known as an error matrix, is a
tool used in machine learning to evaluate the effectiveness
of classification models. It is a summary table that shows
how well the model has performed in predicting samples
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TABLE 6. GPR optimized hyperparameters used as the first model.

TABLE 7. Optimized hyperparameters used as correction filter.

Optimized Hyperparameters

1 Basic function Zero

2 Kernel function Isotropic Exponential
3 Kernel scale 37.425

4 Sigma 0.00020804

5 Standardize data Yes

from different classes. After analyzing the confusion matrix,
various performance parameters, such as accuracy and area
under the curve (AUC), are calculated to assess the model’s
performance. Accuracy is defined as the proportion of cor-
rect predictions out of all the predictions made. The AUC
quantifies the model’s ability to distinguish between different
classes [35].

Ill. RESULTS AND DISCUSSION

A. MODELLING FOR VISIBILITY PREDICTION

Table 6 presents the results obtained from implementing the
Regression Learner with Bayesian optimization. The first
model, GPR, achieved MAE, MSE, RMSE, and R? values
of 0.44391, 0.42288, 0.65029, and 0.67, respectively. This
model was then combined with RT, SVM, GPR, NN, and ET
to create the second model. The optimized hyperparameters
used as correction filter is shown in Table 7 and the result for
MAE, MSE, RMSE and R? is shown in Table 8.

In assessing the GPR model, the Nonisotropic Rational
Quadratic yielded the best results with MAE, MSE, RMSE,
and R? values of 0.11114, 0.097761, 0.31267, and 0.92,
respectively. In evaluating the RT model, the best perfor-
mance was achieved with a minimum leaf size of 5, resulting
in MAE, MSE, RMSE, and R? values of 0.23393, 0.30409,
0.55145, and 0.76. For the SVM model, based on perfor-
mance, the Linear function was found to be the most suitable
choice, producing MAE, MSE, RMSE, and R? values of
0.088952, 0.087573, 0.29593, and 0.93, respectively. Sub-
sequently, for the ET model, LSBoost was selected as the
superior technique based on accuracy, achieving MAE, MSE,
RMSE, and R? values of 0.21393, 0.17311, 0.41607, and
0.86, respectively. Finally, regarding NN, None was found
to be the best activation function, resulting in MAE, MSE,
RMSE, and R? values of 0.10388, 0.092309, 0.30382, and
0.93.

B. MODELLING FOR NOMINAL OUTPUT CURRENT

To determine the most suitable model for predicting the
nominal output current based on error squared and time, the
best models among DT, DA, NBC, SVM, KNN, EC and
NNC models were determined first. To determine the optimal
internal structure of each model, various internal parameters
were set to assess the accuracy level. The model with the
highest accuracy was identified as the best-fit model. Owing
to the number of iterations performed to
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GPR MODEL

Optimized Hyperparameters

1 Basic function Linear
2 Kernel function Nonisotropic Rational Quadratic
3 Kernel scale 0.26219
4 Sigma 0.00010285
5 Standardize data No
RT MODEL
Optimized Hyperparameters
1 Minimum leaf size 5
SVM MODEL
Optimized Hyperparameters
1 Kernel function Linear
2 Box constraint 14.1927
3 Epsilon 0.0031914
4 Standardize data Yes
ET MODEL
Optimized Hyperparameters
1 Ensemble method LSBoost
2 Minimum leaf size 1
3 Number of learners 10
4 Learning rate 0.3719
5 Number of predictors to 1
sample
NN MODEL
Optimized Hyperparameters
1 Number of fully connected 1
layers
2 Activation None
3 Standardize data No
4 First layer size 6
Regularization strength
5 (Lambda) 1.4549¢-07

TABLE 8. Result for MAE, MSE, RMSE and R2 for model 1 and model 2.

Regression

MAE MSE  RMSE R?

Learner
Molde] GPR 044391 042288  0.65029  0.67
RT 023393 030409 055145  0.76
Model SVM 0.088952  0.087573 029593  0.93
‘; ¢ GPR 0.11114  0.097761 031267 0.92
NN 0.10388  0.092309 030382  0.93
ET 021393 017311 041607  0.86

achieve the best model, the results of each step involved
are not provided. However, Table 9 showcases the results
obtained from the best-fit model for every cascaded model.
The combination of GPR, GPR, KNN achieved the highest
accuracy of 96.2 %. On the other hand, the combination of
GPR, RT, SVM was the least accurate with an accuracy of
88.5 %.
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TABLE 9. Result for best-fit model.

Regression Classification True False Acc.
Learner Learner predicted  predicted (%)
M(;del M(;del Model 3
RT SVM 23 3 88.5
SVM KNN 24 2 92.3
GPR GPR KNN 25 1 96.2
NN KNN 24 2 923
ET KNN 24 2 92.3
34 1
4.1 2
L_l\;
z
2
=
5.2
6.6 3
3.4 44 5.2 6.6

Predicted Class
FIGURE 5. Confusion matrix for GPR, RT and SVM model combination.

4.1

True Class

5.2 1

6.6 3

3.4 4.1 5.2 6.6
Predicted Class

FIGURE 6. Confusion matrix for GPR, SVM and KNN model combination.

Fig. 5 to Fig. 9 illustrate the confusion matrices used to
evaluate the performance of DT, DA, NBC, SVM, KNN, EC,
and NNC models in forecasting the nominal output current.
The x-axis represents the predicted class, showing the values
predicted by the respective models. The y-axis represents the
true class, indicating the actual values used at the airport. The
numerical values 3.4 A, 4.1 A, 5.2 A, and 6.6 A represent
the nominal current output. Values successfully predicted by
the respective model are shown in blue, while inaccurately
predicted values are shown in orange. The cumulative number
of predictions amounts to 26.

For example, in Fig. 5, there are 6 instances where the pre-
dicted data is exactly 3.4 A, 7 instances where the predicted
data is exactly 4.1 A, 7 instances where the predicted data
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34 1

41

True Class

52

66 3

34 41 52 6.6
Predicted Class

FIGURE 7. Confusion matrix for GPR, GPR and KNN model combination.

|

34 1

4.1

True Class

5.2 1

6.6 3

|
34 4.1 52 6.6
Predicted Class

FIGURE 8. Confusion matrix for GPR, NN and KNN model combination.

4.1

True Class

5.2 1

6.6 3

34 4.1 52 6.6
Predicted Class

FIGURE 9. Confusion matrix for GPR, ET and KNN model combination.

is exactly 5.2 A and 3 instances where the predicted data
is exactly 6.6 A. However, there is 1 case where the model
inaccurately predicted 4.1 A, and 2 cases where the model
inaccurately predicted 5.2 A. Therefore, cuamulatively, there
are a total of 26 predictions.

Based on these findings, it can be concluded that KNN
is the most accurate model for classification purposes. This
model has outperformed other models in classifying the nom-
inal current output.
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TABLE 10. Result for implementing the models at actual airport
operation.

Improve and

Model combination ACE;: )a cy pr:gil(l;etlilon
(%)
Model 1 Model 2 Model 3
GPR RT SVM 88.5 91.85
GPR SVM KNN 92.3 91.85
GPR GPR KNN 96.2 91.85
GPR NN KNN 92.3 91.85
GPR ET KNN 92.3 91.85

TABLE 11. AUC result for all models.

Models

AUC for Nominal Output Current (A)

34 4.1 5.2 6.6
GPR, RT, SVM 0.9774 0.8824 0.9699 1
GPR, SVM, KNN 0.9286 0.9412 0.9286 1
GPR, GPR, KNN 0.8759 0.9575 1 1
GPR, NN, KNN 0.8797 0.9542 0.985 1
GPR, ET, KNN 0.8797 0.9542 0.985 1

To further evaluate the success of the models in predicting
or improving the nominal output current, a selected combina-
tion of models was tested from October 5®, 2023 to October
10, 2023 during actual airport operations. The total number
of data points were 135 that consists of time and error squared
for each data points. The results of this test, as shown in
Table 10, indicate that the models have successfully achieved
a 91.85 % accuracy rate in predicting the same or improved
nominal output current.

The concept of “improved nominal output current” in
the context of constant current regulators (CCRs) refers to
the model’s ability to optimize the output current settings
based on specific operational conditions. In standard practice,
CCRs are set to a nominal current value, such as 6.6 A,
which is presumed to be adequate under typical conditions.
This setting ensures that lighting systems operate within the
desired parameters, providing sufficient illumination for safe
airport operations. However, the model is able to predict
an optimized nominal output current that is more suitable
for current operational conditions. For instance, instead of
maintaining a constant 6.6 A, the model may determine that
a setting of 5.2 A is sufficient for the prevailing conditions.

Fig. 10 to Fig. 14 depict the receiver operating character-
istic (ROC) curves and the corresponding area under them.
The ROC curve illustrates the relationship between the true
positive rate (TPR) and the false positive rate (FPR) at various
thresholds for classification scores, which are calculated by
the currently selected classifier. The Model Operating Point
displays the false positive rate and true positive rate that corre-
spond to the threshold utilized by the classifier for classifying
an observation.

The AUC value, shown in Table 11, is a measure of
the overall quality of the classifier. The AUC values are
in the range 0 to 1 and larger AUC values indicate bet-
ter classifier performance. For a nominal output current of
3.4 A, the combination of GPR, RT and SVM achieves
the highest AUC of 0.9774. This indicates excellent model
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FIGURE 12. AUC for GPR, GPR and KNN.

performance with nearly perfect classification ability. Other
model combinations, such as GPR, SVM, KNN and GPR,
GPR, KNN, also perform reasonably well with AUC values
of 0.9286 and 0.8759, respectively. However, combinations
of GPR, NN, KNN and GPR, ET, KNN show slightly lower
AUC values of 0.8797 each. This suggests that while GPR,
RT, SVM models collectively offer the highest predictive
accuracy for 3.4 A, NN and ET could still provide viable
alternatives with slight trade-offs in performance.
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At a nominal output current of 4.1 A, the combination
of GPR, GPR, KNN achieves the highest AUC of 0.9575.
This suggests that it has a strong predictive capability at
this current level, surpassing other combinations. Interest-
ingly, both GPR, SVM, KNN and GPR, NN, KNN also
achieve high AUC values of 0.9412 and 0.9542, respectively,
indicating consistent performance across these models. The
combination of GPR, RT, SVM shows a relatively lower
AUC of 0.8824, which may suggest a slight decrease in the
effectiveness of the model for this specific current. However,
this decrease is still within an acceptable range, indicating
satisfactory performance.

When the nominal output current is increased to 5.2 A,
the combination of GPR, GPR, KNN achieves a perfect AUC
score of 1. This suggests flawless classification capability for
this current setting. Similarly, the combination of GPR, RT,
SVM also yields a near-perfect AUC of 0.9699, highlighting
its robustness. The GPR, NN, KNN and GPR, ET, KNN com-
binations show very high AUC values of 0.985, indicating
excellent predictive performance. These results underscore
that for 5.2 A, GPR combined with any of the other models
provides superior predictive accuracy.

For a nominal output current of 6.6 A, all model combi-
nations achieve a perfect AUC score of 1. This indicates that
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all tested combinations are equally capable of perfectly dis-
tinguishing the classes at this current level. The universality
of this result suggests that at higher currents, the predictive
models reach an optimal performance plateau, potentially due
to clearer differentiation between the classes.

In terms of model combination, GPR, RT, SVM exhibits
superior performance at 3.4 A. However, it slightly under-
performs at 4.1 A compared to other combinations. It does,
however, have near-perfect or perfect performance at 5.2 A
and 6.6 A. GPR, SVM, KNN performs consistently well
across all current levels. It is particularly strong at 4.1 A.
GPR, GPR, KNN achieves the highest AUC at 4.1 A and
is perfect at 5.2 A and 6.6 A. This shows that the model
is reliable and has robust performance, demonstrating the
efficacy of combining GPR models. GPR, NN, KNN and
GPR, ET, KNN show remarkable consistency and high AUC
values across all current levels, while having a perfect AUC
at 6.6 A indicates robustness at higher current levels.

This analysis shows that GPR-based model combina-
tions generally provide robust and high-performing solutions
across various nominal output currents. The combination of
GPR, RT and SVM stands out at 3.4 A, while GPR, GPR,
KNN demonstrates exceptional performance at 4.1 A, 5.2 A
and 6.6 A. The inclusion of NN and ET also contributes
to high performance, suggesting their potential integration
in predictive modeling for nominal output currents. This
detailed evaluation highlights the importance of selecting
appropriate model combinations tailored to specific current
settings to achieve optimal nominal current output accuracy.

Overall, this supports the findings of this study that the
combination of GPR, GPR, KNN produced the best accuracy
for optimum nominal current output based on error squared
and time.

IV. CONCLUSION

In this study, to determine the best model for the prediction
of nominal current output based on meteorological param-
eters and time at Subang Airport, five Regression Learner
models that consists of Gaussian Process Regression (GPR),
Regression Tress (RT), Support Vector Machines (SVM),
Ensemble of Trees (ET) and Neural Networks (NN) and
seven Classification Learner models such as Decision Tress
(DT), Discriminant Analysis (DA), Naive Bayes Classifiers
(NBC), Support Vector Machines (SVM), Nearest Neighbor
Classifiers (KNN), Ensemble Classifiers (EC) and Neural
Network Classifiers (NN) were applied and their accuracy
was compared.

Meteorological factors, including time, daily air tem-
perature, dew point temperature, difference between air
temperature and dew point temperature, wind direction, wind
speed and pressure, are used for calculation and screen-
ing. The performance of classification models in machine
learning was analyzed using a confusion matrix. Accuracy
and area under the curve (AUC), were calculated based on
the obtained confusion matrix to evaluate the models’ per-
formance. The combination of GPR, GPR, KNN algorithm
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achieved the highest accuracy of 96.2 %. The accuracy is
aligned with the AUC of the model, having the highest
value compared to other models. Therefore, according to the
results, the GPR, GPR, KNN model was the most suitable
model for the prediction of nominal current output. Eventu-
ally, by introducing the model to predict the nominal current
output during actual airport operation, the model can predict
the actual and improved nominal current output by 91.85 %.

In conclusion, this study has achieved its novelty by
improving visibility prediction using an optimum correction
filter, classifying the optimum nominal current output by
harnessing the error produced by regression models, and
providing a robust model with optimum performance and
high accuracy for predicting nominal current output. As a
recommendation, it is suggested that this study be expanded
to incorporate other types of lighting systems so that regula-
tors and airport operators can have a comprehensive model
for the entire aeronautical ground lighting system at different
airports, which may have diverse configurations, settings, and
operations.
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