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ABSTRACT In this paper, we propose a novel power control in vehicular 5G-connected network using Deep
Reinforcement Learning (DRL) algorithm. We investigate power allocation for Connected Autonomous
Vehicles (CAVs) on uplink connections in mm-wave bands between the CAVs and Roadside Units (RSUs).
Our objective is to achieve the desired uplink transmission capacity using the minimum required power and
minimize co-channel interference for neighboring cells. To achieve this goal, we use the Proximal Policy
Optimization (PPO) algorithm implemented by modified actor-critic architecture to solve the problem. In the
proposed architecture, a Deep Neural Network (DNN) model is used to gain the desired outputs of the
problem. The suggested approach is fully compatible with the existing 3GPP-based 5G architecture and
uses the available quantized information in cellular users’ measurement reports which provides seamless
integration within existing RAN architectures. The performance of the proposed algorithm is compared
with multiple power control algorithms in various road conditions. Simulation results show that the proposed
algorithm outperforms the 3GPP-based power control algorithm in the dynamic road environment.

INDEX TERMS 5G, autonomous vehicle, deep neural network, power allocation, power control, proximal
policy optimization, reinforcement learning, vehicular network.

I. INTRODUCTION
The cellular network is continuously evolving to respond
to the growing demands of wireless users for more exten-
sive connections with higher quality of service across
various fields and applications. Intelligent Transportation
Systems (ITS) represent one emerging field that can benefit
from cellular connections. Autonomous vehicles leverage
diverse types of sensors for environmental perception to
navigate on the road in disparate road/weather conditions.
By adding the communication capability to autonomous
vehicles, Connected Autonomous Vehicles (CAVs) can take
advantage of the added information and processing resources
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for safer driving. CAVs can access edge/cloud processing
resources, high-speed Internet connection, and other safety
features through cellular connections. Also, CAVs can use
the added data through wireless communication to enhance
their decision-making confidence, improve drive safety
and control, and increase commutation ease and pleasure.
Vehicles’ fast-moving ability, high data rate requirement for
safety and infotainment systems, and their battery-powered
energy source call for efficient resource allocation in their
cellular connection links [1], [2], [3], [4].

One of the promising technologies to connect CAVs to the
Internet, cloud infrastructure, and edge computing resources
is the Fifth-Generation (5G) networks. CAVs communicate
with the Road Side Units (RSUs) installed alongside the
road to connect to the 5G network. Power allocation is
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a crucial task in wireless communication, especially in
Vehicle-to-Infrastructure (V2I) connection between a CAV
and a 5G RSU, due to the variety of different types of
battery-powered users [5]. Efficient power allocation can
significantly improve connection quality, energy efficiency,
and spectral efficiency [6]. The high mobility of CAVs
and the small diameter of mm-wave cells in 5G make
efficient resource allocation more challenging [7]. Intelligent
uplink power control can reduce co-channel interference at
RSUs, enhance link reliability, guarantee users’ quality of
service, save on users’ energy consumption, improve network
capacity, and boost communication performance.

The 5G’s uplink power control, based on the 3rd Genera-
tion Partnership Project (3GPP) standard, is a sophisticated
mechanism. It relies on measurement reports from users that
contain various variables measured at the user equipment.
This mechanism aims to establish a balance between provid-
ing the desired quality of service and minimizing interference
for other users. Like previous generations, 5G’s power control
includes both open-loop and closed-loop control. The closed-
loop power control uses techniques like Transmit Power
Control (TPC) to dynamically adjust the users’ power level at
each time step in an iterative manner. Hence, for a new user
or a significant change in the channel condition, it might take
several time steps for TPC to get to the right power level [8].
The integration of Artificial Intelligence (AI) and Machine

Learning (ML) techniques, particularly Reinforcement
Learning (RL), has emerged as a promising approach for
optimizing resource allocation in 5G vehicular networks.
RL algorithms, such as Deep Q-Learning and Proximal
Policy Optimization, offer the capability to adaptively adjust
power control strategies based on real-time feedback from
the network environment. By leveraging historical data and
learning from interactions with the network, RL-based power
control methods can effectively optimize system performance
while mitigating interference and improving overall network
efficiency. This paradigm shift towards AI and ML-powered
solutions underscores the importance of exploring novel
techniques to meet the evolving demands of 5G vehicular
networks.

Many researchers are working on power control algorithms
for 5G networks with different objectives. Most of the
recent publications are focused on downlink channels,
Vehicle-to-Vehicle (V2V) andDevice-to-Device (D2D) links,
Non-Orthogonal Multiple Access (NOMA) systems, and
Unmanned Aerial Vehicle (UAV) aided networks [9], [10],
[11], [12]. Resource allocation methods in uplink connection
can be divided into two general groups of centralized and
distributed methods. In distributed systems, each user makes
a decision for their own power based on its algorithm and
assumptions on other users’ decisions [12], [13]. The cen-
tralized power control algorithms are mainly gNodeB-based,
where a gNodeB (5G’s base-station - Next Generation Node
B) collects the channel conditions from all users, makes
decisions for all users, and sends the power commands to
users [14], [15]. In this work, we adhere to the existing

TABLE 1. Alphabetized abbreviations Table.

centralized uplink power control structure of the 5G network
and utilize a centralized method. This approach offers
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the advantage of effective interference management and a
comprehensive understanding of neighboring user behavior,
leveraging the instantaneous network limits inherent to
centralized methodologies. To our knowledge, our study
represents the first application of the Proximal Policy
Optimization (PPO) algorithm for centralized power control
in the uplink channel of 5G’s V2I connections. Our emphasis
lies in integrating quantized user-reported values of link
conditions in accordance with 3GPP standards, setting our
work apart from existing DRL-based approaches.

In this paper we propose a novel power control algorithm
for vehicular users in 5G network at millimeter-wave (mm-
wave) bands, leveraging a Deep Reinforcement Learning
(DRL) algorithm. Our objective is to achieve the required
capacity by minimizing power consumption at the user end,
using only quantized reported values available at the gNodeB.
The PPO algorithm is used to train a Deep Neural Network
and the trained model is used in each gNodeB for power
control for all users under its coverage. The proposed scheme
relies solely on the available information at the gNodeB by
users’ reports, and it is compatible with the current structure
of the 5G network standardized by 3GPP. Similar to the
conventional 5G network, the uplink power level and resource
allocation decisions are made at the gNodeB and then sent to
users over downlink control channels. The key contributions
of this paper are as follows:

• A new power control algorithm for uplink channels
in a 5G vehicular network with small cells over mm-
wave bands. The objective is to minimize the achieved
capacity error from the desired capacity while satisfying
the required Quality of Service (QoS). This is achieved
by considering the individual user power level and
minimizing user power consumption.

• A DNN with a novel discrete state space and action
space in the Radio Resource Control (RRC) function of
a gNodeB’s central units. This model makes centralized
decisions for each gNodeB’s users and improves the
downlink power control command data traffic.

• APPO algorithmwith a novel actor-critic architecture to
train the DNN model. The proposed structure can adapt
the model to the vehicular environment changes with a
controlling parameter to prevent divergence, eliminating
the need for amassive storage space to keep replay buffer
data.

• ADesign of an innovative reward function to effectively
assist the PPO algorithm in satisfying the optimization
function’s requirements. The proposed reward function
can be easily adapted to include any number of
parameters effective in power control.

• An extensive numerical simulation to compare the
performance of the proposed model with multiple power
control models. The simulation results show that the
proposed system outperforms other models and satisfies
the desired objective.

The rest of this paper is organized as follows. The
background of the conventional power control, DRL, and

PPO algorithms is briefly investigated in Section II. The
related research works in power control for 5G’s uplink
channel are reviewed in Section III. In Section IV, we present
our system model, problem formulation, and assumptions.
The PPO-aided DRL-based power control model is presented
in Section V. The simulation results and comparison with
the reference algorithms are studied in Section VI. Finally,
the conclusion is provided in Section VII. To simplify cross-
referencing, Table 1 presents a compilation of abbreviations
utilized throughout this paper.

II. BACKGROUND
In this section, we offer an overview of prevalent power
allocation algorithms in wireless communication, shedding
light on their applicability to uplink power control and
our methodology for comparative analysis. Our examination
highlights why certain algorithms are unsuitable for our
purposes and why direct comparisons may not be feasible.
Additionally, we introduce a benchmark algorithm against
which we gauge the performance of our system.

Moving forward, we delve into the power control frame-
work within 5G networks, drawing from 3GPP standard
documents as our primary reference for simulations. This
framework serves as the cornerstone for evaluating the
performance of our proposed algorithm, aligning with our
primary objective of enhancing 3GPP-based power control
(1), as shown at the bottom of the next page.

A. GENERIC POWER ALLOCATION ALGORITHMS
There are many power allocation algorithms discussed
in the literature, including equal power allocation, max-
min fairness, channel inversion, water-filling, proportional
fairness, and many more. In this section, we briefly review
the most commonly studied power allocation algorithms and
go through some of their advantages and disadvantages.

• Equal Power Allocation: In the equal power allocation
algorithm, an identical power level is allocated to
all users. It is an easy algorithm to implement and
has low runtime complexity, but it could not insure
fairness among users. This is a suitable solution for an
environment where all users experience fairly similar
channels and have equal data rate requirements or
low implementation complexity is important [16]. This
strategy can be used in both uplink and downlink
communication scenarios.

• Max-Min Fairness: This algorithm aims to maximize
the minimum data rate among users through an iterative
resource allocation process. It serves as a viable solution
for environments where a baseline data rate must be
guaranteed for all users while striving for data-rate
fairness. However, one drawback of this algorithm is its
potential to result in a lower overall network data rate.
This is because more power may need to be assigned
to a link with a poor channel condition, leading to
unbalanced power allocation and increased interference
for other links [17], [18]. Hence, the objective of
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this algorithm does not align with the purpose of the
proposed algorithm, rendering any comparison of their
results unproductive and insignificant.

• Channel Inversion Power Allocation: In this
algorithm, the assigned power to users is relevant to
the inversion of their channel gain to keep a constant
value for Signal to Noise Ratio (SNR). The advantage
of this algorithm is a constant data rate at each channel
according to the determined value as long as the assigned
power does not exceed the maximum power limit. The
disadvantages of this algorithm include the need for
channel state information at the transmitter, and chances
of poor power efficiency [19]. Since this algorithm
relies on the channel gain, and given that the channel
gain is unavailable according to the system model
under consideration, it’s not feasible to compare its
performance with this algorithm.

• Water-Filling Algorithm: TheWater-Filling Algorithm
aims to maximize a network’s total capacity by allocat-
ing power to users based on their channel conditions,
considering both channel gain and noise level for power
allocation. This algorithm assigns more power to a link
with better channel quality to increase the total data rate,

while it may allocate no power to very weak channels.
The original Water-Filling Algorithm is solely based on
SNR and does not consider interference. Additionally,
it is designed for centralized transmission from one
source to multiple receivers, making it unsuitable for an
uplink scenario to control the power level of multiple
distributed users with a single channel per user [18],
[19]. Hence, it cannot be utilized for comparing the
performance of the proposed algorithm.

• Proportional fairness Algorithm: This algorithm aims
to provide resource allocation fairness with the goal
of maximizing the system utility function. In this
algorithm, each user gets a share of each resource
with three conditions: 1) the share of each user from
each resource is non-negative; 2) the sum of allocated
shares of one resource to all users is equal or less
than the capacity of that resource; and 3) the current
allocated share of resources is the maximum possible
share as provided by [20]. Proportional fairness can
be computationally intensive, and there is a trade-off
between fairness and total throughput in the system.
The algorithm’s formulation does not support its use
in distributed transmitter applications [18], [20]. So,

PPUSCH,b,f ,c(i, j, qd , l) = min

{
PCMAX,f ,c(i),PO_PUSCH,b,f ,c(j) + 10log10

(
2µ.MPUSCH

RB,b,f ,c(i)
)

+

αb,f ,c(j).PLb,f ,c(qd ) + 1TF,b,f ,c(i) + fb,f ,c(i, l)

}
PO_PUSCH,b,f ,c(j) = PO_NOMINAL,PUSCH,f ,c(j) + PO_UE_PUSCH,b,f ,c(j)

PO_NOMINAL,PUSCH,f ,c(j) =



PO_PRE + 1PREAMBLE,Msg3 if Type-1 RA, j=0, P0-PUSCH-AlphaSet not provided
PO_PRE + 1MsgA_PUSCH if Type-2 RA, j=0, P0-PUSCH-AlphaSet not provided
P0-NominalWithoutGrant if j=1, P0-NominalWithoutGrant is provided
PO_NOMINAL,PUSCH,f ,c(0) if j=1, P0-NominalWithoutGrant is not provided
P0-NominalWithGrant if j ∈ {2, . . . , J − 1}, P0-NominalWithGrant is provided
PO_NOMINAL,PUSCH,f ,c(0) if j ∈ {2, . . . , J − 1}, P0-NominalWithGrant is not provided

1TF,b,f ,c(i) =


10 log10

((
2BPRE.Ks − 1

)
.βPUSCH

offset

)
if Ks = 1.25

0 if Ks = 0
0 if PUSCH transmission is over one layer

BPRE =


C−1∑
r=0

Kr
NRE

if PUSCH transmission with UL-SCH

Qm.
R

βPUSCH
offset

if CSI transmission in a PUSCH without UL-SCH data

fb,f ,c(i, l) =



fb,f ,c(i− i0, l) +

C(Di)−1∑
m=0

δPUSCH,b,f ,c(m, l) if tpc-Accumulation is not provided

δPUSCH,b,f ,c(i, l) if tpc-Accumulation is provided
1Prampup,b,f ,c + δmsg2,b,f ,c if i = l = 0, and UE receives a random

access response message
1Prampup,b,f ,c if i = l = 0, and UE transmits the PUSCH

(1)
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it cannot be used as a benchmark to compare results with
the proposed algorithm.

In summary, the discussion of various generic power
allocation algorithms indicates that only Equal Power
Allocation can be feasibly compared with the proposed
algorithm. Practical limitations, such as unavailable channel
gain information or unsuitability for distributed transmitter
applications, preclude the comparison with other algorithms.

B. 3GPP-BASED POWER CONTROL ALGORITHM
This section delineates the 5G power control equation,
provided in (1), derived from 3GPP standard documents.
Subsequently, in the Simulation Results Section (Section VI),
these equations are employed to simulate the 3GPP-based
power control algorithm, enabling a comparative analysis of
its performance against the proposed algorithm.

The power control algorithm in uplink transmission of
3GPP-based 5G sets the power level for Physical Uplink
Shared Channel (PUSCH), Physical Uplink Control Channel
(PUCCH), Sounding Reference Signal (SRS), and Physical
Random Access Channel (PRACH) channels [8]. At each
time-step, each active User Equipment (UE) calculates its
own uplink transmission using the controlling parameters
provided by the 5G network (gNodeB). The radio resource
management function resides in the central unit of gNodeBs,
and one of its responsibilities is to prepare all of these power
control parameters and send them to UEs through the RRC
messages. Themain source of these power control parameters
is the UE’s serving gNodeB, but in some cases such as a
handover process, some of the parameters might come from
the other components such as from the 5G core network.
The gNodeB sets these parameters based on the gathered
measurement reports from the UEs under its coverage and
makes decisions for all of them.

In this section, we delve into the 3GPP-based power control
mechanism tailored for 5G networks. This fundamental
equation serves as the cornerstone for our subsequent simula-
tions, providing a benchmark for evaluating our experimental
outcomes against established standards. According to 3GPP’s
Technical Specification (TS) in [8], a UE determines its
power level on the PUSCH channel at time-step i on uplink
Bandwidth Part (BWP) b of carrier f of serving cell c
using (1). In Equation (1), the first line represents the
primary equation governing power calculation, followed by
subsequent lines detailing the definition of each variable
therein. In this equation, j is the parameter set configuration
index, qd is the Reference Signal (RS) index for the active
downlink BWP, and l is the PUSCHpower control adjustment
state index. The PCMAX,f ,c(i) is the maximum output power
configured for UE at carrier f of serving cell c at transmission
occasion i which is further explained in clause 6.2.4 of [21].
The variableµ is the Sub-Carrier Spacing (SCS) as described
on clause 4 of [22], and MPUSCH

RB,b,f ,c(i) is the bandwidth of
the PUSCH resource in terms of number of resource blocks.
PLb,f ,c(qd ) is the UE’s estimation of downlink pathloss using
RS. BPRE stands for Bits Per Resource Element, NRE is

a number of resource elements, δPUSCH,b,f ,c(i, l) is a TPC
command value included in a Downlink Control Information
(DCI) format that schedules the PUSCH.

The value for each of these parameters and the other
states and variables, that have not been described here as
there is no title or description in [8], get their values from
RRC messages. Depending on the conditions, each of them
obtains its value from a different parameter. This implies that,
in most cases, there are multiple conditions for each of the
aforementioned states and parameters. As can be seen, the
uplink power control equation in 5G is very complicated and
depends on many parameters, as well as the algorithm to
select the value of each of these parameters.

According to Table 6.2.1.0-1 of [21], seven UE power
classes are defined for the 5G network, where class 2 is
considered for vehicular UEs. The values of the minimum
and maximum output power for different operating bands
of class 2 users are presented in clauses 6.3.1.2 and 6.2.1.2,
respectively. The Effective Isotropic Radiated Power (EIRP)
has a maximum output power value of 43 dBm across all
operating bands, representing both the emitted power and
transmitter antenna gain.

The uplink messages on PUCCH carry the UE’s measure-
ment reports, including Signal to Interference plus Noise
Ratio (SINR), Reference Signal Received Power (RSRP),
Reference Signal Received Quality (RSRQ), and Received
Signal Strength Indicator (RSSI) [23]. The downlink mes-
sages on the Physical Downlink Control Channel (PDCCH)
transfer the RRCmessages, such as power control commands
and other controlling data, to the users. To minimize the
number of bits needed for transmitting these values over the
air interfaces, the 5G network transfers quantized mapped
values. The SINR report mapping equation, as presented in
clause 10.1.16 of [24], is as follows.

SINR Reported value = ⌊SINR ∗ 2 + 47⌋ (2)

where SINR is measured in dB, and the reported SINR value
is limited between 0 (equivalent to values less than −23 dB)
and 127 (for SINR values equal to or larger than 40 dB).

III. RELATED WORKS
In this section, we briefly review recent research on power
control algorithms for 5G networks. Our main focus is
on RL-based uplink power control algorithms designed for
vehicular users in 5G networks with small cells, utilizing
mm-wave frequency bands.

The power control algorithm has been investigated for
various links involving autonomous vehicles, including links
between vehicles and UAVs, as well as between vehicles
themselves. In [27], researchers aim to optimize power
allocation with the objective of maximizing the total data rate
for each UAV in the downlink channel of a UAV-assisted
vehicular network. In [28], the problem of joint power
and bandwidth allocation for V2V links is investigated,
employing the PPO algorithm for resource allocation, with
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each V2V link or vehicle acting as an agent. Zhang et al.
in [29], studied relay selection and power allocation for sub-
6 GHz in multi-hop vehicular networks using a centralized
hierarchical DRL in an RSU. The RSU provides support
for sub-6 GHz (for broad coverage) and mm-wave (for
high-bandwidth short-range communication). Two Deep
Q-Network (DQN) models are employed in the RSU: one
for relay selection and the other for power allocation in D2D
links. In [40], authors tried to achieve the maximumweighted
sum rate by proper power allocation in D2D transmission
using graph neural network.

The power control algorithm for V2I links can be
categorized into twomain groups: downlink and uplink power
controls. There is a key difference between these two types of
power control algorithms. Downlink transmission originates
from a centralized location, typically a gNodeB, and is
directed towards multiple distributed users. Consequently,
a total power limit must be equitably distributed among
different links, with all processing occurring in a single
central unit. Conversely, uplink transmission emanates from
multiple distributed sources to a central receiving unit
(gNodeB). Thus, each transmitter (or link) operates within its
own transmission power limit. Furthermore, the uplink power
control algorithm can be either centralized or distributed,
each with its own set of advantages and disadvantages,
as discussed below.

Given the predominant focus of power allocation research
on downlink connections within the realm of 5G networks,
we provide a brief overview of some of the most pertinent
publications in downlink power allocation. The downlink
power allocation algorithm is investigated in [11], [12], [30],
[31], and [32]. In [30], the authors explore downlink power
allocation and user association to base stations (BSs) in
ultra-dense small-cell mm-wave 5G BSs using a Q-learning
algorithm. Their proposed algorithm aims to maximize the
sum capacity and ensure the required QoS for users by
appropriately distributing power between BSs. Furthermore,
the problem of power allocation and resource management
in 5G’s mm-wave small cells is studied in [31], where the
authors propose a sub-optimal solution for maximizing the
sum rate on the downlink channel. Spectrum and power
allocation in ultra-dense networks are addressed in [32]
with the goal of achieving a trade-off between spectral
efficiency, energy efficiency, and throughput fairness using
DRL. In [11], the problem of joint power control and channel
allocation in downlink transmission in Wireless Local Area
Networks (WLANs) with multiple access points is solved
using the Q-learning algorithm. Authors in [12] solved the
power allocation problem jointly with handover management
with a multi-agent PPOwith centralized training to maximize
the throughput and reduce the handover frequency. They
considered a macro BS with multiple mm-wave small
BSs in downlink communication with multiple agents and
centralized training at the macro BS. The power control
in a vehicular network for video delivery and caching
service, involving a macro BS and multiple mm-wave BSs,

FIGURE 1. Considered 5G-connected V2I link structure for vehicular users.

is examined in [33]. The authors employed Deep Determin-
istic Policy Gradient (DDPG) for optimal power allocation
alongside cache allocation in downlink transmission.

As mentioned above, the uplink power control for cellular
users in the V2I link can be divided into two general groups:
centralized and distributed management [16]. The centralized
power control algorithms mainly reside in the gNodeB,
where the gNodeB gathers information from the environment,
makes decisions for all users, and then informs the users about
their new power levels. In this method, interference between
different users can be managed and reduced through proper
power allocation. However, a disadvantage of this method is
the extensive information exchange between users and the
network, as all users need to report their measurements to
the network for decision-making. This approach has been
adopted for the 3GPP-based 5G network.

On the other hand, in distributed power control mecha-
nisms, each user uses an algorithm and its locally available
information to make decisions for itself. In some approaches,
such as neural network-based algorithms, each user trains
its algorithm with its observations. Periodically, all users
send their local algorithms to a central location to merge
all locally trained algorithms. Finally, the central trainer
broadcasts the merged algorithm to the users. This approach
reduces the transmission of measurement data over the air
interfaces, but adds the periodic model transfer load, which
might be significant in the case of DNN. A disadvantage of
the distributed approach is its poor interference management,
as each user lacks information about other users’ decisions
and conditions.

In [34], the problem of uplink power allocation in
joint resource allocation for vehicular networks with
Software-Defined Network (SDN)-assisted Mobile Edge
Computing (MEC) architecture is addressed using a stateless
Q-learning algorithm. The authors attempt to minimize
computational overhead through transmission power control,
sub-channel allocation, and optimizing offloading strategy.
In their power control model, each user acts as an agent and
makes decisions locally. The model of distributed training
and centralized aggregation, as investigated in [35], focuses
on a macro cell and multiple small cells where users train
their DQN model and send it to the base station for federated
learning aggregation. This approach pursues two objectives:
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throughput maximization and total power consumption
minimization while ensuring the required QoS. Additionally,
[36] addresses the maximization of capacity for the vehicles’
uplink channel, considering the reliability and latency of V2V
links. The joint uplink power allocation and beamforming
problem for high-speed railways in mm-wave-equipped
base stations is explored in [7]. The authors decompose
the problem into two separate parts and address them
individually. They utilize a multi-agent DDPG algorithm
with an actor-critic architecture for power allocation, aiming
to maximize the achievable sum rate. To the best of
our knowledge, there is no existing literature investigating
centralized power control for 5G-based vehicular networks
with mm-wave small cells in the uplink channel using the
PPO algorithm.

IV. SYSTEM MODEL
In this section, we present the system model discussed in
this paper, and we formulate the problem we aim to address.
We envision a section of a road with multiple lanes in each
direction covered by the 3GPP-based 5G network, as shown
in Figure 1. Our focus is on vehicular users of the 5G network,
while pedestrians and other cellular users utilize separate
channel sets.

The 5G coverage for vehicular users is provided by small
cells known as RSUs, which are installed on the median
of the road. Each RSU covers all lanes in each direction
and its coverage extends a few hundred meters alongside
the road. RSUs offer full coverage for road users, with this
paper focusing solely on the connection between RSUs and
CAVs, namely the V2I link. The RSUs operate on mm-wave
bands, specifically the n257 operating band within the FR2-1
frequency range, which ranges between 26,500 MHz and
29,500MHz [21]. In this paper, we adopt the 3GPP’s gNodeB
split model, which includes a single Central Unit (CU or
gNB-CU) and multiple Distributed Units (DU or gNB-DU).
Each DU comprises multiple cells, and associated network
functions are embedded in units along the road. Our focus is
specifically on the small cells of the DU, also referred to as
RSUs in this context, which play a crucial role in facilitating
communication within the vehicular environment. It’s worth
noting that each gNodeB may or may not include both small
cells and large cells.

The communication link between the RSU and the CAV
is a direct Line-of-Sight (LoS) connection. The mobility
management model discussed in this paper adheres to the
scheme proposed in [23].
Our target is to optimize the uplink power control for

vehicular users in the 5G network, maintaining compatibility
with the 3GPP-defined network structure and signaling, while
proposing minimal changes to the network. We aim to
achieve the desired data rate for each user by controlling its
power level at each time-step, and guaranteeing the minimum
required QoS. Based on the described goal, our optimization
problem for power control at each gNodeB is defined as
follows. To our knowledge, this optimization problem for

FIGURE 2. Co-channel interferences for the uplink channel in the middle
RSU with Dthld of one.

uplink power control appears to be novel, as it has not been
previously addressed in existing literature.

Minimize
U∑
u=1

∣∣∣RuAchieved (i) − RuObjective(i)
∣∣∣ (3)

s.t. PuPUSCH,b,f ,c(i) ≤ PCMAX,f ,c(i), ∀u, i, (4)

PuPUSCH,b,f ,c(i) ≥ PCMIN,f ,c(i), ∀u, i, (5)

γ uPUSCH,b,f ,c(i) ≥ γCMIN (i), ∀u, i. (6)

The term RuAchieved (i) represents the achieved data rate of
the u-th user at time-step i, as defined in (7). RuObjective(i)
denotes the desired data rate for the u-th user at time-step
i, determined by the network based on user requirements.
PuPUSCH,b,f ,c(i) indicates the power level of the u-th user
at time-step i on the uplink PUSCH over BWP b of
carrier f of serving cell c. PCMAX,f ,c(i) and PCMIN,f ,c(i)
represent the maximum and minimum permitted uplink
power, respectively, at carrier f of serving cell c at time
i, as mentioned in the Background section. The terms
γ uPUSCH,b,f ,c(i) and γCMIN,b,f ,c(i) denote the achieved uplink
transmission SINR of the u-th user at its serving RSU and the
minimum required SINR, respectively, at time i for PUSCH
transmission over BWP b of carrier f of serving cell c.

The u-th user’s achieved data rate at time-step i is
calculated as follows.

RuAchieved (i) = BuPUSCH(i). log2
(
1 + γ uPUSCH,b,f ,c(i)

)
(7)

where BuPUSCH(i) represents the uplink bandwidth of the
u-th user on PUSCH transmission at time step i. The
γ uPUSCH,b,f ,c(i), as defined above, denotes the SINR at the
gNodeB and is calculated using (8).

γ uPUSCH,b,f ,c(i) =
Pur,PUSCH,b,f ,c(i)∑

u′∈SIFR P
u′

r,PUSCH,b,f ,c′ (i) + n0
(8)

In (8), Pur,PUSCH,b,f ,c(i) represents the received power at RSU
c from user u via the PUSCH link, using BWP b, carrier f ,
at time-step i. Pu

′

r,PUSCH,b,f ,c′ (i) denotes the received power at
RSU c from interfering user u′ located on RSU c′, utilizing
the same channel as user u for communication with its serving
cell at time-step i. Additionally, n0 signifies the noise power
and SIFR is the set of all interfering users for user u.
According to the channel allocation scheme proposed

in [23], there should be a distance ofDthld between two RSUs
utilizing a channel for two users, as depicted in Figure 2.
Consequently, for channel assignment at the c-th RSU, the
gNB-CU considers all channels in use at the c-th RSU and
Dthld RSUs on each side of the c-th RSU.
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TABLE 2. List of major notations.

V. PPO-DNN-BASED ADAPTIVE POWER CONTROL
This section presents our solution to the optimization problem
defined in Section IV. We introduce a novel adaptive power
control model for 3GPP-based 5G networks, leveraging a
DNN trained using the PPO algorithm. The model is based on
a centralized power control algorithm in gNodeBs for uplink
transmissions, akin to traditional power control in 5G, where
decisions are made at the gNodeB and transmitted to the
users. Inputs to our model consist of quantized mapped data
measured and transmitted by users to the serving gNodeB,
utilizing the same resolution as defined for the 5G gNodeB’s
power control mechanism. The output power levels of our
model are quantizedmapped power values based on the 3GPP
mapping formula, designed for efficient transmission over
the air. This proposed algorithm demonstrates the capability
to converge to the desired data rate in fewer number of
time-steps compared to conventional 5G iterative power
control algorithms.

In our system, each gNodeB is an agent, making decisions
for all users connected and served by cells within that

gNodeB. Each power control agent is equipped with a
DNN and a PPO algorithm to gradually train and adapt the
DNN to environmental changes. The PPO algorithm has the
ability to train the DNN with only a few observations (mini-
batch) at each time-step, which eliminates the need for a
large storage space for a replay buffer, as required in some
other RL algorithms like Deep Q-Learning algorithm. The
environment includes the road, the RSUs, and all cellular
users communicating with their RSUs to measure their signal
quality and report it to the network.

A modified actor-critic architecture is used in our PPO
algorithm, wherein the actor constitutes the DNN model
utilized for power level predictions, while the critic is
substituted with a simple fixed value generator to suit the
specific nature of our problem. In this scenario, the reinforce-
ment learning problem is a single-episode task, where each
decision for every user is considered independent of previous
decisions. This independence stems from the fact that the
power of interfering users can be changed at each time-
step, consequently affecting the objective user’s SINR. Thus,
a power level deemed suitable in the past might not suffice
in the present moment. Consequently, decisions at each
time-step are made independently of prior instances, with a
single-episodic task deemed the optimal approach to achieve
the best results in an interference-laden environment. Since
the critic’s role involves estimating the expected value at
each state, in our single-episodic task, the maximum expected
value at each state corresponds to the maximum reward per
action. This obviates the necessity for a critic DNNmodel and
its associated training, simplifying the network architecture
while enhancing stability and processing efficiency.

It is essential to highlight that during the exploration of
solutions for the optimization problem outlined in (3) to (6),
we experimented with a wide range of inputs and various
reinforcement learning algorithms such as Q-Learning, DQN,
and Double DQN (DDQN). However, due to the intricate
nature of the vehicular environment coupled with the unpre-
dictable characteristics of wireless links,characterized by
small-scale fading and interference, these algorithms failed
to achieve satisfactory performance. Consequently, we opted
for the PPO algorithm, and experimentally increased the
number of inputs (states) to enhance the efficacy of the power
control mechanism. Additionally, it’s worth noting that the
parameter ϵ in PPO algorithm plays a crucial role in ensuring
the stability and convergence of the training process in PPO
algorithms [26]. By constraining the ratio of the old and
new policy probabilities within a certain range, ϵ prevents
excessive updates and divergence during training, facilitating
more stable and efficient convergence.

Now, let’s proceed with the description of the states,
actions, and reward function of our system.
States: The PPO algorithm is capable of handling both

continuous and discrete input values. Since some of the power
control algorithm’s input data are measured and sent by users
over the air interfaces in discrete format, all inputs to our
algorithm are considered as discrete values. Each element of
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the input state vector represents the condition vector of one
user, which will initiate the generation of a power value for
that user in the next time-step. The set of all state vectors at
time-step i is defined in (9), which includes the state vectors
of all U users in a gNodeB.

S(i) =

{
s1(i), s2(i), . . . , su(i), . . . , sU (i)

}
(9)

In (9), su(i) represents the state vector of user u at time-step
i, while in total there areU users in this serving gNodeB. Each
user’s state includes its current transmission information, the
interfering users’ information, the serving RSU’s data, and
the requirements for the desired rate and QoS. To satisfy
the QoS, multiple parameters such as SINR, RSRP, RSSI,
latency, reliability, jitter, handover success rate, packet loss
rate, and some other parameters need to be met. In this paper,
we focus on SINR and satisfy the required data rate with the
assumption of equal bandwidth for all users. However, the
concept can be easily extended to include more parameters.
Hence, the state of user u at time-step i is defined as a vector
presented in (10).

su(i) =


cu(i), chu(i),EIRPu(i), γ uPUSCH,b,f ,c(i),
PLuRS,qd

(i),EIRPIFR1(i),EIRPIFR2(i),
PLIFR1

RS,qd (i),PL
IFR2
RS,qd (i), γ

opt
PUSCH,b,f ,c(i), d

RSU
c


(10)

In (10), cu represents the serving Cell Identification
(CID) number. In real-world scenarios with numerous
heterogeneous RSUs per gNodeB, cu may denote each
unique type of RSU. The channel number for the u-th
user is denoted by chu, while its current EIRP for PUSCH
transmission is represented by EIRPu(i). The SINR received
at RSU c for user u during PUSCH transmission over
BWP b on carrier f is denoted by γ uPUSCH,b,f ,c(i). The
reported Path-Loss (PL) by user u at time-step i on
downlink RS by index qd is given by PLuRS,qd

(i). This PL
value provide insights into the user’s channel conditions,
potentially impacted by weather, obstacles, or proximity
to the RSU’s coverage edge. Similarly, the downlink PL
of the two major interferers in vicinity that are using the
same channel on other cells (co-channel interference), are
given by PLIFR1

RS,qd (i) and PLIFR2
RS,qd (i). Additionally, the EIRPs

of the two primary interfering users nearby are denoted
as EIRPIFR1(i) and EIRPIFR2(i), respectively. The desired
SINR level at RSU c for successful uplink transmission
decoding on PUSCH over BWP b of carrier f is quantified
as γ

opt
PUSCH,b,f ,c(i), which is a mapped value derived from (2).

The coverage diameter of the c-th serving RSU (repre-
senting the coverage length of the road) is communicated
to the DNN as dRSUc , particularly valuable for hetero-
geneous networks with various RSU types and coverage
patterns.
Actions: The gNodeB, which hosts the power control agent

for all users within its coverage, takes individual actions for
users upon receiving the state vector at time-step i. The action

FIGURE 3. Graph of the proposed reward function for a single-variable for
the range of SINR reported value with the desired value of 90 (21.5 dB).

vector for all users at time-step i+ 1 is as follows.

A(i+ 1)

=

{
a1(i+ 1), a2(i+ 1), . . . , au(i+ 1), . . . , aU (i+ 1)

}
(11)

In this context, the action for user u refers to the EIRP values
at time-step i+ 1, denoted as EIRPu(i+ 1).
Rewards: One critical aspect of the reinforcement learning

system is the design of the reward function. The reward
function should provide the RL algorithm with enough
information to guide it toward the desired output [37]. In our
system, the objective is to achieve as close to the desired
data rate as possible while satisfying the demanded QoS
at each time-step through proper adjustment of the uplink
transmission power at the user, at the same time minimizing
interference to users in other RSUs. The proposed reward
function to achieve the desired QoS is provided in (12).

Rwdu(i) = (rmax − rmin) exp
−
Xu(i)
2g +rmin (12)

In (12), rmin and rmax are the minimum and maximum
limits of the reward function values. Hyperparameter g
controls the expansion or contraction of the multidimensional
bell-shaped reward function and the equation for Xu(i) is
expressed in (13). The determination of this hyperparameter
typically relies on assessing the disparity between the
minimum acceptable SINR and the desired SINR mappings.
Nevertheless, our simulations across various values of
this hyperparameter have revealed minimal impact on the
ultimate outcome of the achieved average data rate, primarily
due to the algorithm’s focus on maximizing reward points.

Xu(i) =

(
Xu
PUSCH,b,f ,c(i) − Xopt,b,f ,c(i)

)T
×

(
Xu
PUSCH,b,f ,c(i) − Xopt,b,f ,c(i)

)
(13)

Vector Xu
PUSCH(i) represents the vector of observed param-

eters associated with the u-th user’s QoS at time-step i,
structured as anM × 1 vector. Xopt,b,f ,c(i) denotes the vector
containing the optimal values of QoS parameters at RSU c
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across BWP b of carrier f at time-step i, mirroring the shape
of vector Xu

opt(i). The symbol T represents the transpose
operator, converting the output vector of subtraction from
M × 1 to 1 × M , where M signifies the number of QoS
parameters.

In our scenario with the focus on SINR, M = 1 and the
reward function simplifies to the below equation and depicted
in Figure 3.

Rwdu(i)

= (rmax−rmin) exp

−

(
γ uPUSCH,b,f ,c(i)−γopt,b,f ,c(i)

)2
2g


+rmin (14)

In (14), γ uPUSCH,b,f ,c(i) represents the achieved SINR of the
u-th user during uplink transmission at time-step i. γopt,b,f ,c(i)
denotes the optimal SINR at time-step i for RSU c, BWP b,
and carrier frequency f .
Considering our system setup as explained above and

the PPO algorithm presented in Section II, the prediction
and training process of our DNN is as follows. At each
time-step, the gNodeB collects all the measurement reports
(including the pathloss and PUSCH SINR measurements)
from all users connected to its RSUs. The gNodeB create
the state vector of each user as expressed in (10). These state
vectors serve as inputs to the DNN, and the outputs (actions)
are then sent to the users as their power levels for the next
time-step. Meanwhile, in a separate processing thread and
without interrupting the real-time power control algorithm,
the PPO algorithm utilizes this recent interaction with the
environment to train and update the DNN for subsequent
decisions. Therefore, while the DNN model is employed for
power control of users at each time-step, the PPO algorithm
utilizes each time-step’s experiences to gradually train and
enhance the performance of the DNN model. The PPO
algorithm inherently possesses rapid change limitations due
to the clip function and the ϵ hyper-parameter as explained
earlier. Also, the bell-shaped design of the reward function
encourages the algorithm to remain near optimal values of the
QoS effective parameters applied in (13). Consequently, the
DNN cannot change significantly at each time-step, thereby
reducing the risk of algorithm divergence while enabling it to
adapt the model to changes in the dynamic environment of
the road.

Based on the structure of the proposed power control
algorithm explained above, its distinguishing features are as
follows.

• By satisfying the desired capacity instead of only
focusing on maximizing it, our algorithm utilizes
the minimum required power for each uplink chan-
nel, thereby automatically controlling and minimizing
co-channel interference.

• Minimizing the interference will result in the improve-
ment of network spectral efficiency and an increase in
system capacity.

• The proposed algorithm can instantly adapt the user’s
power level based on real-time channel changes,

contrasting with traditional 5G iterative algorithms that
require more time to converge to the proper power level.

• The PPO’s mini-batch update ability helps update
the DNN model with immediate observations with-
out requiring large storage space, unlike Deep
Q-learning-based power control algorithms.

• The suggested algorithm can provide the desired QoS
with multiple effective parameter for all users.

• Our algorithm uses quantized measurement data already
envisioned in the network, rather than exact SINR or full
Channel State Information (CSI) assumptions made by
some other algorithms.

• Our algorithm does not use or rely on user location
information that is not available/easily accessible in
gNodeB, as assumed in some resource allocation
articles.

• The proposed algorithm is adaptable to environmental
changes and can learn from experiences, enabling it to
make better decisions as the environment evolves over
time.

• Since the algorithm provides the demanded QoS with
minimum power, it improves users’ energy efficiency.

• This algorithm can adjust users’ power levels to achieve
any demanded link capacity, including the maximum
capacity if needed, providing the freedom to attain any
capacity on demand.

• The proposed algorithm is specifically tailored for
uplink transmission, addressing the complexities and
challenges inherent in this aspect of 5G networks.
However, with minor modifications, it can be adapted
for downlink power control as well, extending its
applicability across both uplink and downlink channels.

VI. SIMULATION RESULTS
In this section, we provide a performance comparison of
the proposed PPO-DRL-based power control algorithm with
other algorithms through extensive simulations conducted in
the Python language.

A. PROPOSED ALGORITHM’S SIMULATION SETUP
We investigate a road segment serviced by 5G RSUs located
in the road median, ensuring coverage for both directions
of traffic. Our study centers on CAVs’ V2I connection in
uplink transmission via PUSCH, focusing on the mm-wave
band FR2-1 of the 3GPP standard, specifically at 28 GHz.
Each channel has a 100 MHz bandwidth with a 2.45 MHz
guard-band between consecutive channels. Users maintain a
direct LoS connection with the nearest RSU.

We utilize a channel allocation mechanism proposed
in [23], designed for a 5G mm-wave vehicular network akin
to this study’s assumptions. According to this allocation, one
channel can serve two CAVs with only one RSU between
their serving RSUs (see Figure 2). Consequently, each user
may encounter a minimum of two dominant interferers
nearby (one in front and one behind the CAV). While
assuming sufficient channels to accommodate all users,

96396 VOLUME 12, 2024



M. Raeisi, A. B. Sesay: Power Control of 5G-Connected Vehicular Network Using PPO-Based DRL Algorithm

TABLE 3. Assumptions of the road and network parameters.

we allocate the minimum required number of channels to
each configuration to simulate intense interference scenarios.

In our simulations, each RSU and user is equipped with
one antenna, with the RSU antenna gain set at 35 dBi. The
EIRP level, determined by users’ uplink transmission antenna
gain and output power, is exclusively used throughout
all simulations. RSUs have a 25 dBi antenna gain on
the sidelobe towards interferers, while users’ transmission
antennas directed towards other RSUs incur a 5 dB loss.

In these simulations, one lane per direction is considered
only for processing simplicity, but our algorithm can be
applied to any number of lanes without negative impact.
The algorithm is trained with RSU coverage lengths ranging
from 50 to 500 meters, resulting in varying simulated road
lengths based on the total of 8 RSUs considered. The total
number of users depends on the road length and traffic
intensity.

For the large scale fading model of the channel, the
Free Space Path Loss (FSPL) model is considered and
Rician distribution for the small scale fading model of
the uplink channel [39]. Table 3 presents the network
parameters assumption in our simulations and Table 4 lists
the hyper-parameter values of our DNN and PPO algorithm.

The actor in the PPO algorithm utilizes a DNNmodel, with
the inputs being the state vector for each user (As presented
in (10)) and the output (action) being the user’s uplink power
level. Both the input features and output values are discrete.

TABLE 4. Assumptions of the DNN and PPO hyper-parameters.

To ensure uniformity across input values, we normalize
each state vector value to a range of 0 to 1. All hidden
layers are fully connected with a dense architecture and
employ the hyperbolic tangent activation function. The output
layer consists of 46 nodes, representing values ranging from
−15 to 30 dBm, and utilizes a linear activation function.

B. REFERENCE ALGORITHM’S SIMULATION SETUP
We compare the performance of the proposed scheme
with four power control algorithms. These algorithms
include a simplified 3GPP-based power control for 5G [8],
the Maximum-Power allocation, and the Equal-Power
allocation [16].
The 3GPP-based power control algorithm for the 5G

network, as briefly explained in Section II, is complicated
for exact implementation and depends on many variables.
The value of each of these variables is selected based on
a rule or using an algorithm within a network’s function.
Since the algorithms for these variables are inaccessible,
we employ a simplifiedmodel of the equation provided in (1),
utilizing the available information. The variable PCMAX,f ,c(i)
is set to 30 dBm, representing the maximum EIRP value
discussed in this paper. PO_NOMINAL,PUSCH,f ,c(j) dependent
on frequency f , carrier c, and parameter j, all of which
remain constant throughout our simulations. Therefore,
PO_NOMINAL,PUSCH,f ,c(j) is set to −60 dBm, approximately
the mid-range value. The variable PO_UE_PUSCH,b,f ,c(j)
ranges from −16 dBm to 15 dBm. We set it to zero for the
same reason as PO_NOMINAL,PUSCH,f ,c(j). The SCS variable
µ ranges from 0 to 6, representing sub-carrier spacings
of 15 kHz to 960 kHz, respectively. We set it to zero,
equivalent to 1f = 15 kHz. The PUSCH bandwidth variable
MPUSCH

RB,b,f ,c(i) is considered equal to 50, as it is an integer
ranging from 10 to 100 and depends on fixed b, f , and c
parameters. The path loss gain factor αb,f ,c(j) can assume
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one of the following values: zero, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
or 1. After extensive simulations to determine the optimal
value for the given environment, it is set to 0.4. 1TF,b,f ,c(i)
is also set to zero, equivalent to single-layer transmission,
as defined in (1). The function fb,f ,c(i, l) is modeled with a
weighted SINR error relative to the desired SINR, denoted by
β(γopt−γ (i)), where β is set to 0.5 due to its best performance
confirmed by simulations. The value of PLb,f ,c is reported
by users at each time-step as a quantized value through their
measurement reports, while SINR is measured and provided
by the gNodeB.

The Maximum-Power algorithm allocates a power level of
30 dBm to each user, serving as an upper limit on achievable
capacity in the event that all users aim for maximum power.
This results in both the signal level and interference reaching
their peaks. It should be noted that this is different from
achieving the maximum possible capacity, which requires
effective interference mitigation strategies. Maximum link
capacity can be attained through an optimal power control
algorithm.

In an Equal-Power allocation algorithm, akin to the
Maximum-Power algorithm, all users’ power levels are set
to an equal value at each time step. Within our simulations,
we employ two distinct Equal-Power algorithms: Equal-
Power-1 and Equal-Power-2. In Equal-Power-1, all users’
power levels at time-step i are identical and adjusted to match
the average of the powers allocated by our algorithm (the
Proposed-Algorithm) at that time-step. Conversely, Equal-
Power-2 maintains a fixed power level of 5 dBm for all users
at all times. By employing both Maximum- and Equal-Power
algorithms, we aim to discern the performance disparities
between a straightforward equal power allocationmethod and
more intricate algorithms such as the proposed one.

C. PERFORMANCE COMPARISONS
To demonstrate the settling time and power allocation
efficiency of the algorithms, we perform 10,000 random
initialization of the entire network. This process involves
randomizing users’ locations, channel assignments, and
power allocations. At each iteration, each user takes a random
power level from the valid range of −15 dB to 30 dB by
a uniform distribution. This is an extreme case scenario
whereas in the network all users would never restart at
the same time and begin transmitting by a random power.
However, it helps to evaluate our proposed algorithm’s
behavior in total random situation.

Figures 4, 5, and 6 depict the users’ achieved SINR with
different power control algorithms at 3, 5, and 10 time-steps
after network initialization, respectively. The graph for each
algorithm in each figure represents the results for 150 users
across 8 RSUs with coverage length of 100 meters and over
10,000 random iterations.

In these figures, the optimal SINR per link is set to 21.5 dB,
equivalent to a reported SINR value of 90 and a link capacity
of approximately 715 Mbps. It should be noted that the
SINR value of 90 is provided as an example and can be

FIGURE 4. Achieved SINR of 1,500,000 data points across different
algorithms, observed 3 time-steps after random initialization of the
environment.

FIGURE 5. Achieved SINR of 1,500,000 data points across different
algorithms, observed 6 time-steps after random initialization of the
environment.

set to any arbitrary value. However, for consistency and
the ability to compare results across different simulations,
we maintain the same desired SINR value in our simulations.
At each initialization, all algorithms experience the same
user locations and environmental conditions, but the channel
fading is different and randomly generated for each link
with similar characteristics. Due to the random positioning,
channel allocation, and power allocation of users at each
initialization, each link experiences a new random SINR
within a wide range of values, resulting in a significantly
different state for each user. These states serve as inputs to
the power control algorithms for adjusting user power levels
at the next time-step.

The updated SINR levels after the specified time-steps for
each figure, reflecting the outcomes of the algorithms’ power
controls, are illustrated in Figures 4 to 6. The horizontal axis
separates the algorithms, while the vertical axis represents the
range of achieved reported-value SINR for each algorithm
(ranging between 0 to 127). In each algorithm’s graph, the
width alongside the horizontal axis indicates the probability
density of the data at that SINR value. The average of
achieved SINR values for each algorithm is depicted with a
small white dash-line on the middle vertical black straight
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FIGURE 6. Achieved SINR of 1,500,000 data points across different
algorithms, observed 10 time-steps after random initialization of the
environment.

line, while the thick black section represents the median of
the data.

Based on the results in Figure 4, 3 time-steps after random
initialization, the average achieved SINR of CAVs using
both the proposed DNN-based and 3GPP-based algorithms
is close to the desired SINR of 90 (21.5 dB). The average
SINR of the Equal-Power and Max-Power algorithms is
further away from the desired value. So, the performance
of our algorithm and the 3GPP-based approach after three
time-steps is similar, but the probability distribution of SINRs
differs, as illustrated in Figure 4. The standard deviation
of achieved SINR values for the proposed algorithm is
approximately 7.1 units, while for the 3GPP-based algorithm,
it is about 6 units. Other algorithms exhibit a range between
8.2 and 9.2 units as it can be observed in Figure 8.
At 4 time-steps after the initialization, the statistics

(average and the standard deviation) of the users’ SINR
with the proposed algorithm is better than the 3GPP-based
algorithm. 6 time-steps after the random initialization, users’
SINR values with both the proposed DNN-based and the
3GPP-based algorithms are very close to their long term
statistics. At this stage and after it, the proposed algorithm’s
statistics and the distribution of the SINRs is considerably
better than the 3GPP-based algorithm as shown in Figure 5.

The average SINR values of the proposed algorithm at
6 time-steps demonstrate stabilization of users’ powers close
to the desired SINR. The average SINR value of the proposed
algorithm is 90.7 with a standard deviation of 3 at 5 time-
steps, while the average is 90.4 with standard deviation of
2.7 nearing the desired SINR value of 90 and very close to
its results at 10 time-steps. Considering the noisy wireless
channel with large-scale and small-scale fading, the achieved
result is close enough to be acceptable.

Comparing the results of the 3GPP-based algorithm in
Figure 5 with those in Figure 4, we observe improvements
over time in both the average and standard deviation of
users’ SINRs. As expected, the Equal- and Maximum-Power
allocation algorithms exhibit constant SINR statistics once all
users’ power levels are allocated, a process occurring within
a single time step. The only variation lies in the average

FIGURE 7. Average uplink SINR changes over multiple time-steps
for 150 CAVs distributed across 8 RSUs, employing different power control
algorithms.

SINR of the Equal-Power-1 algorithm, as users’ power levels
are set equal to the average allocated power of the proposed
algorithm.

The results depicted in Figure 6 allow us to observe the
long-term changes in probability density of the algorithms.
Both the proposed algorithm and the 3GPP-based algorithm
have shown slight improvements in their average and
standard deviation of SINRs beyond 6 time-steps, although
these improvements are not very significant. However, the
probability density of the uplink SINR values for the
proposed algorithm at 10 time-steps more closely resembles
a normal distribution with the average over the desired SINR
level.

In Figure 7, we present the average SINR levels on uplink
transmission, utilizing various power control algorithms
across 8 RSUs covering a diameter of 100 meters length
of a road (per RSU) on a 2-lane road. The horizontal
axis represents the number of time-steps after network
initialization, while the vertical axis denotes the average
SINR values computed from 1.5 million data points (150
users over 10,000 iterations). To facilitate comparison,
a magenta horizontal line with a ▲symbol is added that
indicate the reference desired SINR level of 90 (21.5 dB).

Figure 8 illustrates the standard deviation of the achieved
SINRs for different algorithms across 1 to 10 time-steps
following initialization under the same environmental condi-
tions depicted in Figure 7. Analysis of the graphs in Figures 7
and 8 suggests that all algorithms achieve stability after
6 time-steps in the simulated environment, with SINR statis-
tics showing negligible variation thereafter. Consequently,
it can be inferred that user power levels stabilize at 6 time-
steps. However, individual user power levels may change
due to relocations and channel changes, while total network
power statistics remain stable. Comparison of the proposed
algorithm with others beyond 6 time-steps, as presented
in Figures 7 and 8, indicates superior performance of the
proposed algorithm.

Figure 9 depicts the average of uplink capacities per user
over 10,000 iterations in a channel with 100 MHz bandwidth
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FIGURE 8. Standard deviation of uplink SINR changes over multiple
time-steps for 150 CAVs distributed across 8 RSUs, employing different
power control algorithms.

FIGURE 9. Average uplink capacity per channel across 8 RSUs for a
diverse range of traffic (number of CAVs) with a desired capacity
of 715 Mbps.

while their uplink transmission power is controlled by the
considered algorithms. These graphs are the results of power
control on 6 time-steps after the network initialization which
users’ power levels are stabilized. Similar to previous figures,
in this figure also a section of a road equivalent to coverage
area of 8 RSUs with 100 meter coverage length alongside
the road is investigated. The considered section of the road
has one lane on each direction and this figure covers different
number of users on the road ranging between 50 to 500 users
which are simulating very low traffic to very high traffic on
the road. The reference average capacity line for a channel
with 100 MHz bandwidth and SINR of 90 (21.5 dB) is added
to this figure in magenta color and ▲symbol.
By comparing the results of different algorithms in

Figure 9, it is evident that the proposed algorithm achieves
results closest to the desired channel capacity and maintains
this level across varying traffic loads within the network.
The Equal-Power-1 algorithm also yields results close to
the desired capacity since its power levels are equal to the
average of the proposed algorithm. However, its stability
falls short compared to the proposed algorithm, exhibiting
fluctuations across different numbers of users on the road.
The 3GPP-based algorithm’s achieved average channel
capacities are almost close to the reference line (desired

FIGURE 10. Standard deviation of uplink capacity per channel
across 8 RSUs for a diverse range of traffic (number of CAVs) with a
desired capacity of 715 Mbps.

FIGURE 11. Average power [dB] of CAVs across 8 RSUs under varying
traffic loads, with a desired SINR of 90.

capacity), but its worse than the proposed algorithm, and its
performance decreases with an increase in the number of
users on the road.

Figure 10 illustrates the standard deviation of the uplink
capacities of CAVs using different power control algorithms
over 10,000 iterations under the same channel and environ-
mental conditions as described for Figure 9. According to
the graphs in Figure 10, the proposed algorithm exhibits
the best performance in terms of achieved capacity stability.
Our algorithm demonstrates the lowest variation in achieved
capacity across various traffic loads on the road, with the
standard deviation even slightly decreasing as the traffic
load increases. The 3GPP-based algorithm presents a steady
standard deviation that is higher than that of the proposed
algorithm. The Equal- and Maximum-Power algorithms
exhibit the highest standard deviation for users’ capacities,
as these algorithms employ fixed power levels for all users,
leading to high variation in channel capacities due to channel
variations.

Figure 11 illustrates the average allocated power to
users employing different power control algorithms with the
achieved capacity statistics depicted in Figures 9 and 10.
Based on the graphs in Figure 11, both the 3GPP-based
and the proposed algorithms have an average power level
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FIGURE 12. Distribution of allocated power to 150 users over 10,000
iterations by various power control algorithms across 8 RSUs, with a
target SINR of 90.

ranging between −36 dB and −34 dB. The average power of
the 3GPP-based algorithm remains relatively constant across
varying traffic loads, resulting in a decline in the average
achieved capacity of users as the number of users increases
(as shown in Figures 9). In contrast, the proposed algorithm’s
average allocated power gradually increases with the rise in
the number of users to mitigate the growing interference in
the network. Consequently, our algorithm maintains a stable
average capacity at demanded level for users under various
traffic conditions.

In Figure 11, we observed the average allocated power
levels for different number of users. To gain insight into the
distribution of allocated power to 150 CAVs across 8 RSUs
over 10,000 iterations, at 6 time-steps after initialization,
Figure 12 is provided. Since the Equal-Power-2 (−25 dB) and
Max-Power (0 dB) algorithms allocate a fixed power level to
all users, their power level distributions appear as flat lines at
equivalent power levels.

The power levels of CAVs in the Equal-Power-1 algorithm
change according to the average of the proposed algorithm.
Consequently, the distribution of power values of 150 CAVs
utilizing the Equal-Power-1 algorithm over 10,000 iterations
is concentrated around two power levels. In contrast, the
proposed algorithm employs a broader range of power
levels to adapt to varying channel conditions and achieve
the desired channel capacity. Meanwhile, the 3GPP-based
algorithm exhibit an almost uniform distribution of power
values ranging between −41 and −32 dB.

It is worth noting that the distributions of power values
in the 3GPP-based and proposed algorithms are jagged due
to quantized integer power levels available to algorithms to
allocate to users, ranging between −45 dB and 0 dB with
steps of 1 dB.

In order to observe the impact of RSU coverage length
(along the road) on algorithm performance, Figure 13 has
been generated. This figure illustrates a section of a 2-lane
two-way road serviced by 8 RSUs, each with equal coverage
length and traffic intensity. The horizontal axis displays
the range of coverage length per RSU, varying from 50 to
500 meters in increments of 50 meters. For instance, a

FIGURE 13. Average SINRs on uplink channels across varying RSU
coverage lengths along the road for 8 RSUs in 10,000 iterations with a
fixed traffic intensity.

200-meter coverage length corresponds to a section of
1600 meters of a road. To maintain uniform traffic load
across all coverage lengths, the average distance between
consecutive CAVs remains fixed at 10 meters throughout the
simulation. Consequently, the number of CAVs on the road
for a coverage length of 200 meters is almost twice that of
the coverage length of 100 meters.

The results of the average SINRs of the proposed algorithm
across 8 RSUs with varying coverage lengths, as depicted
in Figure 13, demonstrate the robustness of our power
control algorithm across various RSU coverage diameters.
The average SINRs of uplink channels, when using the
3GPP-based algorithm, gradually decrease with increasing
RSU coverage length. This performance degradation of the
3GPP-based algorithm in Figure 13 is attributed to the
limited time available for this algorithm to adjust the power
levels, as results in this figure obtained after 6 time-steps
post-initialization. As, the 3GPP-based algorithm requires
additional time in larger cell sizes, because at each time-
step, it can only increment user power levels by a restricted
amount. Consequently, for users near the cell edge, the dispar-
ity between the random initial power and the desired power
level may be too substantial to rectify within 6 time-steps.
Thus, iterative algorithms like the 3GPP-based algorithm
necessitate more time to stabilize user power levels within
larger RSUs.

The average SINRs on the Equal-Power-2 algorithm are
dropping rapidly with the increase of RSUs’ coverage area,
as users on the cell edge in larger RSUs require more power
to overcome interference and noise. Therefore, a constant
power level (−25 dB in the Equal-Power-2 algorithm) is
not sufficient in larger RSUs. However, conditions for the
Max-Power algorithm are different, as the allocated power
of 0 dB in this algorithm is adequate for each user to
communicate with its RSU even at cell edge, while the
increase of RSUs’ coverage area will reduce interference.
As a result, in the Max-Power algorithm, with the increase of
RSUs’ coverage area, the average SINR gradually increases
until it reaches a balance between the power of desired signal
and interference on RSUs’ coverage length above 200meters.

VOLUME 12, 2024 96401



M. Raeisi, A. B. Sesay: Power Control of 5G-Connected Vehicular Network Using PPO-Based DRL Algorithm

FIGURE 14. Average allocated power [dB] to CAVs in each algorithm
across various RSUs’ coverage lengths, evaluated over 10,000 iterations
with fixed traffic intensity and involving 8 RSUs.

Figure 14 displays the average allocated power to CAVs
across varying RSU coverage lengths to achieve the desired
SINR of 90 (21.5 dB). This figure illustrates the allocated
power to CAVs by different algorithms, while the achieved
SINRs by applying these power levels are demonstrated in
Figure 13.

In Figure 14, we observe a gradual increase in average
allocated power levels with the enlargement of RSU sizes
to compensate for the elongated distance between the CAVs
and their serving RSUs, in both the proposed algorithm
and the 3GPP-based algorithm. However, the proposed
algorithm demonstrates agility in terms of power level
adjustment, enabling rapid stabilization of users’ power
levels irrespective of the environment size. In contrast, the
3GPP-based algorithm requires more time to reach the final
desired power level in larger RSUs, explaining the significant
gap between its average power and our algorithm at higher
RSU coverage lengths.

As we observed in above simulations, the proposed power
control algorithm outperforms the 3GPP-based algorithm in
achieving the desired link capacity for all users in various
conditions. This advantage is particularly notable in high
dynamic environments with battery powered users like in
5G-based vehicular networks.

VII. CONCLUSION
In this paper, we introduced a novel DRL-based power control
algorithm tailored for vehicular users in 5G networks. Our
focus was on optimizing PUSCH transmissions between
vehicular users and mm-wave band RSUs of the 5G gNodeB
infrastructure. Our objective centered on improving the per-
formance of power control algorithm for CAVs connection to
the 5G small-cells, aiming to achieve desired uplink channel
capacities while maintaining QoS standards, considering the
individual transmitters’ power limits, and staying compatible
with the 3GPP-based 5G network architecture. That means,
the environment state information will be limited to the quan-
tized data reported by users on their measurement reports.

To address this challenge, we proposed a centralized
power control algorithm integrated into the gNodeB’s RRC

function. Our approach leverages a DNN architecture with
normalized quantized input states and quantized power
level outputs. The DNN model is trained and continually
updated using PPO with a modified actor-critic architecture,
incorporating recent interaction data to enhance model
performance.

Our extensive simulations demonstrate that the proposed
algorithm consistently outperforms existing 3GPP-based
power control methods, achieving desired capacities within
comparable time intervals or even faster in certain scenarios.
Furthermore, our algorithm ensures demanded SINR level
across varying traffic loads and RSU coverage areas,
with minimal variance and average error. By optimizing
transmission power, our approach mitigates co-channel
interference, enhances spectrum efficiency, and promotes
energy efficiency among users.

In conclusion, our research contributes a robust solution
for optimizing power control in 5G vehicular networks,
aligning with the demands of future CAV deployments while
upholding network performance standards and compatibility
with existing 3GPP frameworks.
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