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ABSTRACT Sea surface temperature (SST) is a critical factor in the interaction between the ocean and the
atmosphere, directly influencing global climate patterns and the dynamic changes in marine ecosystems.
Accurate prediction of SST is of great significance for assessing and managing global climate change and
maintaining marine ecological balance. However, existing SST prediction methods face challenges such
as low accuracy, short prediction periods, and significant errors. This paper proposes an innovative deep
learning prediction method, Ocean Temperature Cycle Fusion and Analysis Model (OTCFM), constructed
based on datasets from the South China Sea and the East China Sea. This approach aims to accurately
capture and predict the cyclical variations and variability in ocean temperature data to provide more precise
forecasts of ocean temperatures. Firstly, based on observations of SST’s seasonal and periodic variations,
we present a periodic partitioning strategy to decompose complex temperature changes into intra-period
and inter-period variations. Secondly, we propose the Ocean Unit to capture both long-term and short-term
small-scale changes, moving beyond the inherent attributes of the dataset’s frequency and time domain
characteristics to extract intra-period and inter-period feature changes simultaneously. Finally, by stacking
the Ocean Units using residual connections, we alleviate the gradient vanishing problem and achieve more
accurate long-term and short-term SST predictions. In this study, data from the East China Sea and the
South China Sea with different spatial distribution patterns are selected for predictive analysis of the National
Oceanic andAtmospheric Administration (NOAA) data from September 1, 1981, to June 7, 2023, with a total
of 15,408 data. The experimental results show that OTCFM can accurately capture the evolution patterns of
SST data in the spatial and temporal processes under different experimental conditions. The MAE values on
the East China Sea and South China Sea SST datasets are improved by 19.08% and 19.52%, respectively,
compared with the convolutional long short-term memory neural network (ConvLSTM), which improves
the accuracy of the long and short-term prediction of SST time series and has a far-reaching impact on the
subsequent promotion of sustainable marine resource management and environmental protection.

INDEX TERMS Sea surface temperature, time series prediction, periodic partitioning, adaptive fusion.

I. INTRODUCTION
The oceans cover 70% of the Earth’s surface, and their vari-
ability profoundly affects the global climate. Sea surface tem-
perature (SST) is a central indicator of ocean thermal energy,
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which reflects the energy exchange in the global atmo-
spheric and marine ecosystems and dramatically impacts
many climate and environmental issues, such as ocean acid-
ification, rainfall distribution, and typhoon formation [1].
It reflects the energy exchange in the global atmospheric
and oceanic ecosystems and greatly influences many cli-
mate and environmental issues, such as ocean acidification,
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rainfall distribution, and typhoon formation. Therefore, accu-
rate prediction of the SST evolution pattern is meaningful for
many environment-related research activities. However, the
complexity of the marine environment and the many factors
that influence the accurate prediction of SST are challenging
in time and space [2].

At the same time, with the increase of human activities at
sea, the increased reliance on marine resources also implies
higher requirements for predictive analysis of marine envi-
ronmental elements, such as the rapid development of space
launch activities at sea in recent years, which puts forward
a higher demand for the observation of many marine ele-
ments [3]. However, current prediction techniques are still
unable to meet the demand for long-term stable operation and
more accurate predictions of over-water systems. Specific
challenges in the existing prediction tasks include: (1) SST
exhibits significant seasonal and cyclic variations, e.g., atmo-
spheric conditions and tropical currents directly or indirectly
affecting SST. Only multi-step temporal projections can track
the evolution of SST over long time scales. (2) Existing
ocean prediction tasks are limited to the extraction of intrin-
sic attributes such as frequency domain features and time
domain features of the dataset itself, ignoring short-term,
small-amplitude variations in the sea surface temperature
time series, including intermixing and overlapping variations
of rising, falling, and fluctuating sea surface temperatures, all
of which make the process of modeling the time series of sea
surface temperatures more challenging.

The currently available sea surface temperature prediction
methods can be categorized into two main groups. One is
numerical methods, and the other is data-driven methods.
Numerical methods are based on physical, chemical, and
biological parameters and their complex interactions. They
describe the relationship between sea surface temperature
changes by establishing a series of mathematical-physical
equations to build corresponding mathematical prediction
models. Richter et al. used linear inverse models (LIMs) and
atmospheric circulation models to make statistical forecasts
of tropical Sea Surface Temperature using linear inversemod-
els (LIMs) and atmospheric circulation models [4]. Yati et al.
effectively predicted and assessed the change of SST in the
North Pacific Ocean using 23 years of data from the Coperni-
cus Climate Change Service Center [5]. However, numerical
modeling is limited by the high complexity of the physical
equations and the sizeable computational volume, suppress-
ing the time series performance. It is more suitable for
predicting SST at large scales with relatively low resolution
while requiring higher conditions for hardware equipment,
and it isn’t easy to simulate nonlinear sequences [6].
On the other hand, data-driven methods learn patterns of

SST variability from historical data to model sea surface
temperature prediction. Compared to numerical methods,
they require less knowledge of the marine and environmental
domains. They can predict sea surface temperatures at a high
resolution on more minor scales, with efficient fitting of

nonlinear relationships, and do not require much hardware
equipment. Traditional data-driven methods are available in
several forms, such as logistic regression, decision trees, and
artificial neural networks. For small-scale data, thesemethods
can obtain more accurate prediction results [7]. However,
traditional machine learning algorithms have many short-
comings when faced with large-scale sea temperature data,
especially temperature data with long time spans and drastic
changes [8], [9].

With the development of deep learning technology, it has
been widely used as an end-to-end computational method
in the fields of climate research [10], satellite remote sens-
ing [11], and power systems [12]. A recurrent neural network
(RNN) is a class of neural networks that can store mem-
ory, and the gradient disappears when dealing with long
time series [13]. Long-short-term memory (LSTM) [14] is
an improved RNN capable of learning long-term dependent
information in a time series through a specific gate struc-
ture mechanism to prevent back propagation errors. Gated
Recurrent Unit (GRU) [14] builds on LSTM by retaining
only the update and reset gates, mitigating the overfitting
and underfitting phenomena that may occur with training.
The three deep learning methods have all achieved better
prediction performance in SST forecasting [15].

Based on the above deep learning methods, Liu et al. [16]
were the first to employ convolutional neural networks
(CNNs) to extract relevant features from historical ocean
temperature and salinity data. The extracted vital features
were input into an LSTM network for SST prediction.
Zhang et al. [17] developed a mid-to-long-term SST predic-
tion model based on the GRU neural network algorithm. This
model utilized monthly and quarterly SST data, selecting the
Bohai Sea area, which exhibits significant annual temperature
variations, for its predictions. The GRU layers captured the
temporal relationships inherent in the SST data. It is impor-
tant to note that while single deep learning models are adept
at capturing subtle changes between consecutive time points
in time series data, they often struggle to simultaneously
identify spatial and temporal dependencies when dealingwith
data features spanning different periods.

Researchers have used the attention mechanism and its
variants in sea surface temperature prediction tasks in recent
years, combining them with other deep learning methods.
Lin et al. [18] further improved the prediction results by
integrating the self-attention mechanism with LSTM for sea
surface temperature prediction. However, it is difficult for the
attention mechanism to find reliable dependencies directly
from dispersed time points. Data dependencies between
neighboring periods may be ignored and blurred in the com-
plex time series feature extraction process [19].

To adapt to the complex and changingmarine environment,
this paper analyzes the time series from the perspective of
multiple cycles. First, we observe that the time series of sea
surface temperature is usually affected byweeks, months, and
quarters, showing multi-periodicity, while multiple cycles
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cross and interact with each other, making it relatively com-
plicated to model based on historical sea surface temperature.
Secondly, considering that the sea surface temperature series
data between neighboring periods are interdependent during
data acquisition, it is difficult for past deep learning methods
to capture the data dependencies located at neighboring time
points within a cycle. Based on this, in this paper, the sea
surface temperature data trends are further categorized into
inter-period variation and intra-period variation. Inter-week
variability reflects the long-term trend of sea surface temper-
ature changes with periods such as year, quarter, month, etc.
In contrast, intra-period variability implies a small range of
short-term variability characteristics within a certain period.

In this paper, to further capture the intra-periodic and
inter-periodic features in the SST time series, we propose
an advanced deep learning method, the Ocean Tempera-
ture Cycle Fusion Model (OTCFM). This method extracts
features from the re-divided two-dimensional time-series
matrices through a modular approach called Ocean Unit. The
inter-periodic feature extraction module utilizes autocorre-
lation coefficients (ACCs) to determine convolution kernel
sizes, aiming to mine the short-term strong correlations in
the time series data. By applying weight sharing, the method
also avoids the problem of parameter explosion. To ensure
that the subtle changes of the close neighboring time points
within a specific period can be captured, the intra-period
feature extractionmodule uses a multi-layer structure ofMLP
for smooth feature extraction. Finally, based on the weighted
aggregation of amplitudes, a feature that integrates many
different frequencies and intra-periodic and inter-periodic
features is obtained, providing a new method for analyzing
and predicting SST data.

In addition, two sea areas with different spatial distribution
patterns, the East China Sea and the South China Sea, are used
as the study areas in this paper to implement a comprehensive
prediction task for the surface temperatures of the selected
sea areas. The main contributions of this paper can be sum-
marized as follows:

(1) We used the Fast Fourier Transform to spectrally ana-
lyze the sea surface temperature series, reclassifying and
obtaining the different cycles that contain the maximum
information andmaximally preserving the two different types
of local characteristics of the time-series data.

(2) To accomplish high-precision long- and short-term SST
time prediction, We implement intra-period and inter-period
feature extraction by Ocean Unit, a modular modeling
method proposed in this paper.

(3) Based on the complex interactions between intra-
periodic and inter-weekly periods of the SST time series,
we propose a deep learningmethod, OTCFM, oriented to SST
prediction to capture the long- and short-term variations of
the SST and predict the state and trend in the future period by
connecting Ocean Unit in a residual stacking manner.

(4) A comprehensive comparative analysis with classi-
cal and state-of-the-art baseline methods is conducted, and
the experimental results demonstrate the superiority of our

proposed deep learning method, OTCFM, in SST time series
prediction.

The rest of the paper is organized as follows: Section II
defines the problem for sea surface temperature prediction.
Section III presents the details of the OTCFMproposed in this
paper. In Section IV, we conduct a series of experiments to
demonstrate the effectiveness and superiority of our proposed
method. Finally, we provide a comprehensive summary of the
paper.

II. PROBLEM DEFINITION
The ocean surface temperature is usually divided into a grid
system according to latitude and longitude, forming a height
and width temperature matrix W to record temperature data
at a specific point in time T (i). Here W , the number of
grids along the latitude and longitude directions is repre-
sented. The temperature matrix forms a sequence over time
that records historical changes in ocean surface temperature.
Formally, given a historical sea surface temperature series
([T1,T2, . . . ,Tm]) with time stepm, the objective is to predict
the sea surface temperature series ([Tm+1,Tm+2, . . . ,Tm+n])
with step n, and the prediction process can be expressed as:

Tm+1,Tm+2, . . . ,Tm+n = ζ ([T1,T2, . . . ,Tm]) (1)

where ζ denotes a segment mapping.

III. METHODOLOGY
A. OVERVIEW
In this paper, to accurately capture and predict the cyclical
changes and variability of ocean temperature data, we pro-
pose for the first time a state-of-the-art deep learning method
for SST prediction scenarios, namely OTCFM. Figure 1
illustrates the model structure of the proposed OTCFM. The
overall structure is formed by stacking Ocean Unit compo-
nents through complete connections. Ocean Unit first utilizes
the Fast Fourier Transform method to divide adequate peri-
ods. Then, it uses an efficient feature extraction module
to capture time-varying features within and between peri-
ods, finally integrating and outputting the results. In the
inter-period feature extraction module, inspired by convolu-
tional neural networks, convolutional kernels capture the time
correlations between time series values of different periods.
Meanwhile, we use the autocorrelation coefficient (ACC)
calculation to determine the size of the convolutional ker-
nels, aiming to achieve higher feature extraction capabilities.
In the intra-period feature extraction module, we choose
the multi-layer perceptron (MLP) as the relevant extraction
component, using a multi-layer structure to achieve smooth
feature extraction and capture subtle changes within specific
periods as much as possible.

1) PERIOD SEGMENTATION MODULE
Without the aid of other external attributes, when only using
the SST time series within a period in the past for temperature
prediction, it is easy to neglect the long-term temporal trend
and only focus on the temperature change relationship in
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FIGURE 1. Overview of the proposed OTCFM.

the neighboring time points. Therefore, to take into account
both intra-periodic and inter-periodic temperature trends, the
period of the sea surface temperature series will be further
redefined and divided in this paper to overcome the limita-
tions brought by the original one-dimensional series.

Specifically, the Fast Fourier Transform used can visually
identify the period and frequency of the central time series
through spectral analysis and complete the conversion of
frequency domain data. In this paper, we use FFT (·) it to
denote the Fourier transform that the temperature time series
undergoes Amp(·) to obtain the amplitude of the Fourier
transform resultant image and Avg(·) to find the mean value.
We can write the transformation process as follows:

V = Avg(Amp(FFT (T1D))) (2)

Many signals concentrate their energy in a few fre-
quency components in the frequency domain. In contrast, the
energy distribution at other frequencies is tiny. The spectrum
obtained from the Fourier transform of the SST time series
data can contain the amplitude values of each frequency com-
ponent. To highlight the significant frequency components,
we focus only on the k frequency components with the largest
amplitudes and ignore the rest of the smaller components.
Equation (3) shows the overall process.

{µ1, · · · , µz} = argTopk(V),

× µ∗ ∈

{
1, . . . , [

M
2
]
}

, z ∈ {1, · · · , k}

(3)

where {µ1, · · · , µz} denotes the most significant frequency
chosen, where k is the hyper-parameter. Due to conju-
gate symmetry, only the positive frequency part, i.e. µ∗ ∈{
1, . . . , [M2 ]

}
, is retained in the calculation. Based on the

given frequencies µfi and the time series length M , the cycle
length pz

pz =
M
µz

, z ∈ {1, · · · , k} (4)

Thus, we can further write equation (1) as:

V, {µ1, · · · , µz}, {p1, . . . , pz} = Per(T1D) (5)

The 1-dim time series is re-modeled according to the
reclassified period {p1, . . . , pz} using the 2-dim matrix, and
the temperature time series data is shape-padded Padding(·)
as follows:

T z2D = Reshapepz,µz (Padding(TlD)) , z ∈ {1, · · · , k} (6)

where and constrain the shape of the formed 2-Dim matrix,
i.e., the rows and columns, which can also reflect the tem-
poral trends within and between cycles corresponding to
the selected cycle lengths. After a series of transformations,
a set of 2-Dimmatrices {T 1

2D, . . . ,T k2D} derived from different
cycles is finally obtained, which contains two different types
of local properties at the same time:(a) Within the same
cycle, the time points corresponding to neighboring columns
of the matrix are adjacent to each other, implying changes
within the cycle of the temperature series. (b) For moments
located within different cycles, adjacent rows of the matrix
correspond to contiguous cycles, and obtaining features from
the direction of the row projections better captures the trend
of the temperature series from cycle to cycle.

2) OCEAN UNIT
Given an SST time series ([T1,T2, . . . ,Tm]) of length m,
reclassified and modeled by the period extraction module to
obtain {T 1

2D, . . . ,T k2D} further capture of inter-period vari-
ation and intra-period variation features, we design two
modules to perform feature extraction separately.
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a: INTER-PERIOD VARIATION FEATURE EXTRACTION
MODULE
Convolutional Neural Networks (CNN) have powerful
image-processing capabilities and can simultaneously pro-
cess tens of millions of image values. We can consider
the transformed 2-Dim tensor as an image pixel point and
perform image-like feature extraction operations. We will
design the local sensing field mechanism of CNN to sense
the pixel points locally in close neighboring neighborhoods,
which can reduce the network’s parameters while mining the
temporal data for short-term solid correlations. The size of
the convolutional kernel determines the size of the receptive
field. The size of the receptive field is determined by the
convolutional kernel size IC(l)1 × IC(l)2 , which also determines
the mapped range of the output feature values of each layer.
We can formalize the convolution process by transforming
the time series cycles according to their division:

T̂ z2D = kernelIC(l)1 ×IC(l)2
(T z2D), z ∈ {1, · · · , k} (7)

To obtain inter-period variation characteristics, when the
column size IC(l)2 of the fixed convolution kernel is C , con-
volution kernels with different row sizes IC(l)1 have varying
weights in capturing periodic characteristics. We can effec-
tively determine the convolution kernel size by calculating the
ACC of the sea surface temperature time series over periods.
The autocorrelation coefficient, which represents the lag i
order of the time series, can be expressed as follows:

γ acc
i =

V(t(x), t(x − i))
√
V(t(x))V(t(x − i))

, (8)

where V denotes the variance, and ACC represents the lin-
ear correlation between measurement points separated by i
intervals. Notably, the correlation among column elements
represents the correlation within a period, while the cor-
relation among row elements represents the inter-period
correlation. Accordingly, the row size IC(l)1 of the convolution
kernel is determined by the inter-period correlation, while
the column size IC(l)2 of the convolution kernel depends on
the intra-period correlation. Thus, the row size IC(l)1 of the
convolution kernel can be determined as follows:

IC(1)1 := {j | j ≥ 1 : γ acc
j∗p+1 > γ },

IC(1)2 := C, (9)

where γ is a pre-set threshold value, in this paper, set. γ = 0.5
After applying the convolution kernel transformation, the

2-D matrix T̂ z2D is truncated and restored to its original
sequence length M . The digital form of this process is rep-
resented as follows:

T̂ l,iIn−ID = Reshape1,(pi×fi)
(
T̂ l,i2D

)
, i ∈ {1, · · · , k} (10)

Additionally, thanks to the periodic extraction module,
we have accomplished the multi-period division of the
one-dimensional raw sequence. On this basis, convolution
kernels determined by the autocorrelation coefficient can

capture the periodic variations in the sea surface tempera-
ture sequence, thereby uncovering the temporal correlations
between time series values within different periods. More-
over, the short-term strong correlation of the time series
allows us to avoid issues such as parameter explosion by
applying the weight-sharing method.

b: INTRA-PERIOD VARIATION FEATURE EXTRACTION
MODULE
To enhance the extraction of intra-period features in sea
surface temperature, we selected the MLP component as
the optimal solution. The MLP can achieve smooth feature
extraction through a multi-layer structure, capturing subtle
changes within specific periods in time series data as much
as possible. The MLP has multiple neurons, each connected
to all neurons in the previous layer. By adjusting the values
of elements in the weight matrix, the correlation within each
column vector, i.e., the intra-period temporal dependency
relationship, can be obtained, as shown in the formula.

T̂ l,iBetween-ID = Relu(WlT
z
2D + bl) (11)

where l denotes the depth of the feedforward neural network
and bl each layer’s bias. The ReLU is capable of performing
nonlinear transformations to capture more complex patterns.

c: ADAPTIVE FUSION MODULE
For the generated k-periodic features {T̂ l,1in−ID, . . . , T̂ l,kin−ID,

T̂ l,1Between−ID, . . . , T̂ l,kBetween−ID, }, we observe that the ampli-
tude A can be used to measure the importance of each
transformed one-dimensional representation in the over-
all feature extraction, where we will use amplitude-based
weighted aggregation to obtain a feature that combines sev-
eral different frequencies as well as intra- and inter-periodic
periods.

T̂ l−1
f1

, · · · , T̂ l−1
fk

= Softmax

(
T̂ l,1in-ID , . . . , T̂ l,kin−ID,

T̂ l,Belween-ID , . . . , T̂Between-ID

)

T̂ liD =

k∑
i=1

Âl−1
fi × T̂ l,iID . (12)

It is worth noting that the components mentioned above,
including the period segmentation module and the feature
extractionmodules within and between periods, together con-
stitute the Ocean Unit. To predict sea surface temperature
more accurately over a future period, we stack the Ocean Unit
using a residual network approach. By incorporating skip
connections, we ensure smoother information flow between
Ocean Units, addressing the issues of gradient vanishing
and exploding in the SST time series prediction task and
significantly enhancing prediction performance. The process
is formalized as follows:

T llD = OceanUnit
(
T l−1
lD

)
+ T l−1

lD . (13)
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In the entire SST prediction process, we have redefined
and interpreted periodicity, reshaped the dimensions of the
time series, and overcome the limitations of the original
one-dimensional spatial vector representation. This approach
retains all intra-period and inter-period features, and the
adaptive fusion module balances long-term and short-term
prediction performance, demonstrating a solid feature extrac-
tion capability. The proposed OTCFMmethod achieves good
SST time series prediction task results. Section IV provides
detailed empirical evaluations and discussions.

B. PREPARATION
(1) Data Selection. Similar to many literatures that use deep
learning methods for sea surface temperature prediction, the
experimental data in this paper is the best-interpolated SST
data (daily OISST, version 2) produced by the National
Oceanic and Atmospheric Administration (NOAA) Data
Center. This dataset contains daily mean SST observations on
a global scale, with a spatial resolution of 0.25◦x0.25◦, and
spans the period from September 1, 1981, to June 7, 2023,
with a total of 15,408 data entries. The dataset provides a
complete ocean temperature fieldwith high temporal and spa-
tial coverage by combining bias-adjusted observations from
different digital acquisition platforms (e.g., satellites, buoys)
on a global latitude-longitude grid.

(2) Region Selection. To maximize the exploration of the
application effect of our proposed method in different sea
areas, we selected the South China Sea, where the change of
sea characteristics is gentler, and the East China Sea, where
the change is more significant, as the study areas in this study,
while avoiding land areas as much as possible. Expressly, the
study area of the South China Sea is set between 14.125◦ and
20.125◦ N latitude and 110.625◦ and 116.625◦ E longitude,
covering 24× 24 grid points. In comparison, we set the study
area of the East China Sea between 26.875◦ and 32.875◦ N
latitude and 121.375◦ and 127.375◦ E longitude, including
24 × 24 grid points.
(3) Dataset division. To answer the research questions

posed above, the entire OISST dataset was further divided
for training, validation, and testing, where 70% of the data
from September 1, 1981, to September 1, 2022, was used
for training and 30% for validation, and the data from
September 1, 2022, to June 7, 2023, was used as the test
dataset. Specifically, the training dataset contains 15,129
samples, and the test dataset includes 279 samples.

To accelerate the training speed of the model, in this paper,
the maximum and minimum normalization is applied to the
SST training set to normalize the data to [0,1] with the
following formula:

x∗
=

x − xmin

xmax − xmin
(14)

where x∗ denotes the normalized SST, x denotes the actual
observed SST, xmin denotes the minimum value of the actual
observed SST, and xmax denotes the maximum value of the
actual observed SST.

(4) Evaluation Metrics. In the context of the SST time
series prediction task, this paper employs four widely used
evaluation metrics: Root Mean Square Error (RMSE), Coef-
ficient of Determination (R2), Mean Absolute Error (MAE),
and Mean Absolute Percentage Error (MAPE) to assess the
accuracy of our proposedmethod. The specific definitions are
as follows:

RMSE =

√√√√1
n

n∑
i=1

(
ŷi − yi

)2 (15)

R2 = 1 −

n∑
i=1

(
ŷi − yi

)2
n∑
i=1

(ȳi − yi)2
(16)

MAE =
1
n

n∑
i=1

∣∣ŷi − yi
∣∣ (17)

MAPE =
100%
n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (18)

where ŷ represents the predicted value of SST, y represents
the actual observed value of SST, ȳ represents the average
value of the actual observation, and the smaller the value of
MAE and RMSE, the better the prediction performance of the
algorithm.

(5) Equipment parameters. The proposed algorithm’s
experimental design and baseline model were executed on a
hardware configuration of a 64-bit Windows server equipped
with an Intel Core i9-13900HX processor, GeForce RTX
4060 graphics card, and a 3TB hard disk. The Win 11 oper-
ating system is the software environment, and the integrated
development environment is selected as VSCODE.

IV. EXPERIMENTS
To validate the prediction performance of our proposed
OTCFM, this section conducts comprehensive experiments
on real marine datasets to answer the following research
questions (RQs):

RQ1: Does our proposed OTCFM outperform the classical
baseline methods of the past and the current state-of-the-art
forecasting methods?

RQ2: Can the OTCFM perform long-term sea surface tem-
perature forecasts effectively?

RQ3: How do the intra-periodic and inter-periodic fea-
ture extraction modules affect the prediction accuracy of
OTCFM?

RQ4: How do the visualization results of the proposed
OTCFM perform?

A. COMPARISON OF PREDICTION PERFORMANCE WITH
OTHER MODELS(RQ1)
To evaluate the effectiveness of our proposed OTCFM,
we compared it with four classic methods, including three
baseline models: LSTM [20], TCN [21], ConvLSTM [22],
and an advanced model 3D U-Net [23].
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TABLE 1. SST prediction performance of OTCFM and baseline models on south china sea and east china sea datasets.

1) LONG SHORT-TERM MEMORY NETWORK (LSTM)
LSTM features a unique gating mechanism that can better
capture long-term dependencies in sequential data, learning
patterns, and features in time series data.

2) TEMPORAL CONVOLUTIONAL NETWORK (TCN)
The TCN model has higher parallelism and a more flexible
receptive field, saving significant runtime.

3) CONVOLUTIONAL LSTM NETWORK (CONVLSTM)
The ConvLSTM model establishes temporal relationships
similar to LSTM and possesses spatial feature extraction
capabilities akin to CNN.

4) 3D U-NET
The 3D U-Net model can utilize a three-dimensional U-Net
structure combined with multi-source sea surface variables
to predict sea temperature, playing different roles in various
prediction periods.

To evaluate the effectiveness and feasibility of the OTCFM
method in sea surface temperature forecasting, we con-
ducted a detailed comparison with four other methods.
In the SST forecasting task, the prediction step directly
affects the forecasting results. Generally, as the prediction
step increases, the forecasting accuracy decreases. Consid-
ering that the prediction step is closely related to ocean
forecasting and prediction systems, we conducted experi-
ments on sea temperature datasets from the South China
Sea and the East China Sea, fixing the prediction steps
at 1 day, 2 day, 3 day, and 4 day. The results are shown
in Table 1.

Table 1 shows that in the short-term prediction process,
since the LSTM model only extracts the time-dependent fea-
tures of the SST data without considering the spatial features,

the prediction accuracy is the worst, with a prediction RMSE
of 0.482 at 1 day. Due to the insufficient extraction of spatial
features, the performance of the ConvLSTM model is worse,
with an RMSE of 0.397. In contrast, our proposed Ocean Unit
model shows significant advantages. It effectively captures
the multi-periodic features, and the 2D vectors generated
by feature transformation are highly structured and rich in
information. The columns and rows of these vectors represent
the positional relationships between time points and periods,
respectively. The OTCFM model performs optimally in all
four evaluation metrics by adequately modeling the cyclic
patterns.

Specifically for the 4 d prediction task, the OTCFMmodel
achieves MAE, RMSE, and MAPE of 0.327, 0.386, and
0.94%, respectively, better than the TCN model’s 0.427,
0.621, and 1.59%. Despite the advantages of the TCN model
in parallel computation and handling sequences of different
lengths, it is still insufficient in capturing the long-term time
dependence, which further emphasizes the advantages of the
OTCFMmethod. On the 4 day, the MAE, RMSE, and MAPE
of the ConvLSTM model were 0.392, 0.511, and 1.31%,
respectively. Although the ConvLSTMmodel can capture the
spatial distribution features, its prediction accuracy is still
limited when dealing with complex and variable temperature
information, making it challenging to meet the demand for
accurate prediction.

In addition, we find that although 3D U-Net shows good
prediction performance in predicting the surface temperature
of the South China Sea with MAE, RMSE, and MAPE of
0.381, 0.459, and 1.29%, respectively, it performs poorly
in predicting the temperature of the East China Sea. This
difference may be because the South China Sea is relatively
far from the mainland, less affected by human activities,
more direct environmental factors, and less interference in the
prediction process [24].
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FIGURE 2. Comparison of medium and long-term prediction errors of different models on the East and South China Sea test sets.

B. MEDIUM TO LONG-TERM SST PREDICTION(RQ2)
The prediction of SST in the medium to long term can pro-
vide early warnings of temperature changes over extended
periods. This information is valuable for industries such
as fisheries and shipping, which rely on ocean conditions.
Understanding the future SST changes can help practitioners
better plan their activities. To evaluate the robustness and
reliability of the OTCFMmethod across different time scales,
this paper conducts a detailed comparison with four other
models. We selected RMSE and MAE as evaluation metrics.
We conducted repeated experiments on datasets from the
South China and East China Sea, with prediction steps fixed
at 1 day, 5 day, 9 day, and 14 day. Figure 2 illustrates the
prediction accuracy for different steps in the datasets from
the East China Sea and the South China Sea. The following
conclusions can be drawn from observing Figure 2:

(1) Observing Fig. 2, it can be seen that at 1 day, the
evaluation indexes of the five models reach the optimal
results, among which the MAE of OTCFM is 0.285, lower
than the other models. With the help of intra-period and
inter-period features, OTCFMoutperforms the different mod-
els in predicting the South and East China Seas datasets,
with an MAE of 0.711 at 14 day, much lower than that
of the LSTM of 0.990. Thanks to the assistance of the
intra-period and inter-period features, OTCFM demonstrates

excellent performance in predicting the South and East China
Seas datasets. In particular, its MAE value of 0.711 for the
14 day prediction is significantly lower than that of 0.990 for
the LSTM model. Time series data usually harbor intrinsic
volatility, such as seasonal and cyclical variations. Tradi-
tionally, ConvLSTM models have effectively captured and
exploited these volatilities in short-term forecasting tasks.
However, in long-term forecasting, this capturing ability is
limited by the uncertainty of future fluctuations, which affects
the accuracy of the forecast.

(2) The challenge of forecasting increases as the fore-
casting period lengthens. In this regard, the OTCFM model
demonstrates a better ability to fit the spatio-temporal evo-
lutionary pattern of SST, and its performance reaches the
highest level in terms of both evaluation metrics, with an
MAE of 0.728. In contrast, the prediction accuracy of the
ConvLSTM and TCN models is more average, with an MAE
of 0.819 and 0.879, respectively, and the LSTM model is
the most unsatisfactory, with an MAE as high as 0.914.
The OTCFM model consistently maintains the lowest MAE
and RMSE values in the SST prediction task, proving its
adaptability in oceanic regions’ medium- and long-term
forecasting tasks. On the other hand, TCN models tend to
require more computational resources for long-term fore-
casting. Limited by computational resources, the model’s
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TABLE 2. Ablation experiments of feature extraction components.

complexity and resolution may not adequately capture the
delicate patterns in the data, which may affect the accuracy
of the medium- and long-term forecasts.

C. ABLATION EXPERIMENTS OF FEATURE EXTRACTION
COMPONENTS (RQ3)
To investigate the effectiveness of the intra-periodic and inter-
periodic features we extracted, we will conduct three sets
of variant experiments in this section to demonstrate that all
these features positively impact the accuracy of SST time-
series predictions. The component x ∈ {T̂in, T̂Between} is
provided, where T̂in and T̂Between represents intra-periodic and
periodic features, respectively. Two ablation variant exper-
iments were conducted based on the South China Sea and
East China Sea datasets, indicating the control group exper-
iments without embedding the corresponding components.
The experimental results are shown in Table 2, where the
prediction steps are set to 1 day, 5 day, 6 day, and 14 day.

As shown in Table 2, in the East China Sea SST
dataset, the RMSE and MAE are 0.377 and 0.371 when
the intra-periodic features are missing. In contrast, they
are 0.396 and 0.389 when the inter-periodic features are
missing. Thus, it can be found that the inter-periodic fea-
tures play an essential role in the SST prediction task.
In contrast, intra-periodic features perform poorly when
used alone for SST prediction. One potential reason is
that the convolutional kernel in the inter-periodic feature
extraction module has some intra-periodic feature extraction
capability.

Nevertheless, the feature extraction effect is insignificant
in the face of the complex and variable sea area dataset.
In contrast, the cross-period feature extraction module of the
OTCFM model makes up for the lack of prediction perfor-
mance. Combining these two modules can effectively realize
medium- and long-term prediction.

D. ANALYSIS OF VISUALIZATION RESULTS FOR SEA
SURFACE TEMPERATURE PREDICTION MODELS (RQ4)
Experimental Description. To intuitively demonstrate the
model’s prediction performance, this paper visualizes the
SST forecast results from June 1, 2023, to June 7, 2023.
During this period, the ENSO cycle ultimately transi-
tioned to an El Niño state, significantly impacting sea
surface temperature and making SST predictions more
challenging.

Visualization Results in the South China Sea. Figure 3
presents the spatial distribution of RMSE for long-term pre-
dictions of SST in the South China Sea test set using LSTM,
TCN, ConvLSTM, 3D U-Net, and OTCFM models. In the
figure, darker blue indicates more minor prediction errors,
while darker red indicates more significant ones.

Figure 3 shows the entire SST plot, divided into 35 sub-
plots. Each column represents the error values of different
modes in the current prediction step. Each subplot consists
of 24 × 24 grids representing the prediction performance
of each algorithm at various latitudes and longitudes. It can
be seen that the five modeling methods have the most
significant prediction errors at almost the exact locations,
which may be since SST exhibits non-stationarity at these
locations, resulting in changes in the spatial distribution
pattern, while the LSTM and 3D U-Net are most affected
in the LSTM and 3D U-Net, with more light-colored
regions.

Due to the relatively stable temperature evolution process
in the South China Sea, the RMSEs of the prediction results
at most grid points are near 0, indicating that the prediction
errors are minor. The RMSE values of all models gradu-
ally increase with the increase of the forecast step. Among
them, the light-colored area in the TCN prediction results
decreases, indicating that the error of TCN rises the fastest,
which is strongly influenced by the cycle length. The com-
plexity of the geophysical system leads to the challenging
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FIGURE 3. Comparison of daily RMSE errors of different models for medium and long-term forecasts in the East China Sea
from June 1, 2023, to June 7, 2023.

FIGURE 4. Comparison of daily RMSE errors of different models for medium and long-term forecasts in the South China Sea
from June 1, 2023, to June 7, 2023.

prediction of the SST evolution pattern, and the previous
methods do not consider capturing the changes in the spatial
distribution pattern of SST data over different periods. The
OTCFM proposed in this paper provides a new definition
of the period, which can effectively capture the interactions
between periods and the distribution law characteristics in
different periods and improves the accuracy of the long-term
prediction of SST. On 7 day, the RMSE value of the 3D
U-Net is 0.742, while the RMSE value of the OTCFMmodel

is 0.643, with almost no red zone, which is 13.3% higher than
3D U-Net.

Visualization Results in the East China Sea. Figure 4 shows
the RMSE spatial distribution visualization of long-term and
medium-term predictions on the East China Sea SST test
set using LSTM, TCN, ConvLSTM, 3D U-Net, and OTCFM
models.

By observing Figures 3 and 4, we find that the prediction
performance of all models is better in the South China Sea
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than in the East China Sea. However, the OTCFM method
performs well in both sea areas, adapting well to different
prediction scenarios.

V. CONCLUSION
In this paper, we proposed a novel deep learning method
named OTCFM, in which the Ocean Unit uses a residual
connection approach to achieve SST prediction. The article
first introduces a strategy for dividing the SST time series
into periods. Then, it presents the feature extraction modules
within and between periods and the adaptive fusion mod-
ule, describing the entire SST prediction process in detail.
We conducted repeated experiments on actual datasets and
comprehensively compared OTCFM with other models. The
experimental results indicate that OTCFM performs well
in SST prediction tasks, particularly excelling in medium-
to long-term SST forecasting compared to existing meth-
ods. Additionally, we visualized the experimental results,
providing insights and guidance for future research in SST
prediction tasks.

In future work, we plan to incorporate multiple oceanic
factors (such as precipitation, sea level, etc.) to assist in
predicting SST. Considering the complex physical environ-
ment of the Earth system, we will explore the combination
of traditional physical equations and advanced deep learn-
ing techniques to gain a more comprehensive understanding
and prediction of SST variations within the Earth sys-
tem, thereby enhancing the ability to respond to climate
change.
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