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ABSTRACT U-network is a comprehensive convolutional neural network that is widely utilized in medical
image segmentation domain. However, it is not accurate enough in detail segmentation and resulting in
unsatisfactory segmentation results. To solve this problem, this paper proposes an enhanced U-network
that combines an improved Pyramid Pooling Module (PPM) and a modified Convolutional Block Attention
Module (CBAM). Its whole network is U-Net architecture, where the PPM is improved by reducing the
number of bin species and increasing the pooling connection multiples. It is used in the downsampling part
of the network, which can extract input image features of various dimensions. And the CBAM is modified by
using 1×1 convolutional layers instead of the original fully connected layers. It is used in the upsampling part
of the network, which can combine convolution and attention mechanism. This pays attention to the image
from two aspects of space and channel. Besides, the network is trained with novel RGB training to further
improve the segmentation ability of the network. Experimental results show that our network outperforms
traditional U-shaped segmentation networks by 30% to 40% in metrics Dice, IoU, MAE, and BFscore
respectively. What‘s more, it is better than U-Net ++, U2-Net, ResU-Net, ResU-Net++, and UNeXt in
terms of segmentation effect and training time.

INDEX TERMS U-Net, pyramid pooling module, convolutional block attention module, RGB train.

I. INTRODUCTION
With the development of medical imaging technology,
medical image segmentation has become an important
research direction in the field of medical image processing.
Fig. 1 shows medical images of three different modalities,
namely Skin mirror images, Endoscopic images, and X-ray
images. The purpose of medical image segmentation is to
segment different organ tissues or lesion areas in the image,
so that doctors can diagnose and treat patients’ diseases.
Traditional medical image segmentation methods rely mainly
on image processing techniques, such as thresholding [1],
[2], [3], region growing [4], [5], region merging and
splitting [4], clustering [6], and edge detection [7], [8].
Nevertheless, these methods have obvious shortcomings:
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First, they are difficult to deal with complex background
and noise, so the segmentation effect is not good. Second,
their algorithms are difficult to deal with irregularly shaped
objects, so the segmentation accuracy is limited. Third,
the segmentation results require more manual participation,
which is time-consuming and labor-intensive. Fourth, they
are difficult to process massive image data due to slow
computation.

In recent years, many researchers were turned their
attention to deep learning. It has shown great potential in
advancing research on medical image segmentation, such
as AlexNet [9], VGGNet [10], GoogleNet [11], Faster-
RCNN [12], and extensions on top of these basic network
models. In terms of network structure, FCNs [13] are better
than the most advanced segmentation methods by using a
fully convolutional network structure that enables end-to-end,
pixel-to-pixel training. In terms of tricks, resnet [14] is a
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FIGURE 1. Medical images and segmentation results.

residual network that solves the problem of decreased effect
when the network depth is deepened in deep learning.

As time demands increase, the general trend leans towards
a network structure that is both simple and efficient.
U-Net [15] network structure is a type of convolutional neural
network that is widely used in medical image segmentation
applications, as well as a variety of other image processing
tasks. This type of network is characterized by its simplicity,
as it consists of two main parts: the encoder and decoder.
The encoder part of the network is to extracting feature maps
from the input image and compressing the spatial size of the
feature maps, with each layer of max pooling being applied
to improve resolution. This involves dividing the image into
smaller blocks, and extracting features of different sizes in
order to capture the image’s fine details and textures. The
decoder part of the network is responsible for recovering the
spatial resolution of the feature maps that are compressed by
the encoder, thereby allowing for a seamless and high-quality
reconstruction of the original image. More importantly, the
decoder can use the feature maps in the contract path to grab
the context information of the required resolution, which is
crucial for accurately segmenting the object’s boundaries and

fine details. The efficiency and efficacy of U-Net in object
segmentation has been validated by its ability to effectively
represent complex structural and boundary details of objects.
However, it has certain limitations as its structure is relatively
simple and only a small number of layers are utilized to
extract multi-level features, which leads to the segmentation
results often being slightly fuzzy. Therefore, it is difficult
to accurately restore the boundary contour of the object.
This makes it challenging to accurately segment intricate
objects with fine structures, as shown in Fig. 1b, which
are the segmentation results of U-Net on the Kvasir-SEG
dataset [16].

To solve these problems, some studies have been proposed
for improving U-Net. In particular, U-Net++ [17] utilizes
full scale skip connections and deep supervision. U2Net [18]
embeds a U-Net structure in each sub module of the U-Net
structure. ResUNet [19] combines the strengths of residual
learning and U-Net. ResUNet++ [20] is an improved
ResUNet architecture that combines the characteristics of U-
Net++and ResUNet. UneXt [21] designs a tokenized MLP
block to effectively label and project convolutional features.
However, because of complex structures, these networks
require long training time. This is difficult to accept for
those non-cell levelmedical segmentation tasks. Accordingly,
a simple structure and the ability of detail segmentation is
required for medical segmentation networks.

This paper proposes an enhanced U-network by
combining PPM (pyramid pooling module [22]) and
CBAM(convolutional block attention module [23]) for
medical image segmentation. For feature extraction, the
basic U-Net uses a simple convolutional pooling structure
to lift features, which may result in the feature extraction
of samples being incomplete. We enhance the PPM model
to extract more comprehensive image features from various
perspectives. For feature synthesis, the basic U-Net employs
a straightforward convolution and pooling structure to
reconstruct features, which may result in loss of crucial
information. We modify the CBAM to provide better
reconstruction of extracted features from both spatial and
channel dimensions.

The primary contributions can be summarized as follows.

• We improve PPM by reducing the number of bin species
and increasing the pooling connectionmultiples, and use
it in the upsampling part of U-Net to improve network
feature extraction ability, which is more suitable for
medical image segmentation tasks.

• We modify CBAM by using 1 × 1 convolutional layers
instead of the original fully connected layers, and use
it in the downsampling part of U-Net, which focuses
on both channel and spatial dimensions to improve the
prediction accuracy.

• We use the RGB training that trains the network sepa-
rately with information from the three color channels of
the sample red, green, and blue. This training method
can increase the model’s understanding and utilization
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of the feature information of different color channels of
samples.

The rest of this article is structured as follows. Section II
presents a review of the relevant research. Section III delves
into the intricate design of the proposed network. Section IV
provides a detailed breakdown of the data used and the
resulting experimental results. Lastly, Section V provides a
comprehensive summary of the conclusions.

II. RELATED WORK
Traditional image segmentation techniques can be broadly
classified into five categories:

A. THRESHOLDING
Thresholding approaches are a simple and effective method
for image segmentation [1], [2], [3]. Its basic idea is to divide
the image into different regions by setting a threshold to
classify the pixels.

B. REGION GROWING
It is an algorithm based on neighborhood pixel comparison.
It segments object regions in the image by selecting seed
points and expanding pixel domains with similar properties
based on connectivity gradients [5].

C. REGION SPLIT AND MERGE APPROACH
Region segmentation first divides the image into multiple
non overlapping regions. Then, region merging is based
on the measurement of pixel similarity between regions,
iteratively merging adjacent regions that meet certain condi-
tions to obtain the segmentation results of the image target
region [24].

D. CLUSTERING
Clustering is the process of grouping data that share similar
characteristics together, based on certain criteria that compare
and analyze the data. The FCM algorithm is a clustering
method based on fuzzy theory. It allows a sample point to
belong tomultiple classes and provides metrics for the classes
it belongs to. FCM achieves fuzzy clustering of data samples
to various centers by iteratively optimizing the membership
of class centers and the categories to which each sample point
belongs [6].

E. EDGE DETECTION
Edge detection, a traditional methodology, is utilized to
identify irregularities in an image. The Canny detector,
an effective edge enhancement technique, uses a gradient
extent threshold to identify potential edges [8]. It stifles
them through the system of non-maximal suppression and
hysteresis thresholding [25].

Compared with traditional segmentation methods that are
often based on pixel-by-pixel processing, model based meth-
ods offer a more comprehensive network result that can be
used to segment targets more accurately and efficiently [26],

[27], [28], [29]. In the field of medical image segmentation,
Dong et al. [30] proposed a new mesh network (MNet)
for anisotropic medical image segmentation. The authors
highlight the limitations of vanilla 2D/3D convolutional
neural networks (CNNS) in representing sparse inter-slice
information and dense intra-slice information in a balanced
manner. The latent fusion of representation processes in
MNet allows flexible selection of representation processes to
balance inter-slice and intra-slice information.

Liu et al. [31] introduced a hybrid architecture named
PHTrans, specifically designed for medical image segmenta-
tion. PHTrans efficiently combines the capabilities of CNNs
and transformers to produce hierarchical representations that
are rich in both global and local features. The architecture
follows a U-shaped encoder-decoder design and introduces
parallel hybrid modules in deep stages. These modules
consist of convolution blocks and modified 3D Swin
transformers that learn local features and global dependencies
separately. The outputs of these modules are then aggregated
using a sequence-to-volume operation.

Cheng et al. [32] proposed a Learnable Oriented-Deriva-
tive Network (LOD-Net) for polyp segmentation. This
network utilizes the representation capacity of eight oriented
derivatives at each pixel to determine a candidate border
region for a polyp. This step involves the selection of pixels
with large derivative values. The network then refines the
border prediction by fusing features from the border region
with high-level semantic features. Overall, LOD-Net has
demonstrated superior performance in polyp segmentation
by utilizing the representation ability of oriented derivatives
for border region searching. The above networks utilize
complex network structures to improve the segmentation
ability.

Solanki et al. [33], [34], [35] presented an extensive survey
on brain tumor classification and segmentation methods
based on MRI images. They construct a model to detect brain
tumors from 2D magnetic resonance images of the brain
using hybrid deep learning techniques. Then, this method is
combined with traditional classification techniques and deep
learning methods. The application of this concept in clinical
settings is the ultimate goal.

Patel and Kashyap [36] proposed a two-dimensional Flex-
ible analytical wavelet transform (FAWT) based on a novel
technique. This method is decomposed pre-processed images
into sub-bands. Then statistical-based relevant features are
extracted, and principal component analysis (PCA) is used
to identify robust features. After that, robust features are
ranked with the help of the Student’s t-value algorithm.
Finally, features are applied to Least Square-SVM (RBF) for
classification.

Saxena et al. [37] proposed a chaotic algorithm based
on Marine Predator Algorithm (MPA) named as Marine
Predator Chaotic Algorithm (MPCA). A normalized fusion
of chaotic function-is first proposed. Based on this function,
position update mechanism is developed for improving the
performance of the original MPA. The COVID-19 dataset
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FIGURE 2. Our network architecture (PPM is improved and used in the last downsampling layer of the network and CBAM
is modified and used in each upsampling layer of the network).

has been employed for judging the efficacy of the proposed
algorithms.

There has also been a great development of deep
learning-based models in other image segmentation fields.
Liu et al. [38] proposed a network called SimpleNet
for image anomaly detection and localization. SimpleNet
consists of four components: a pre-trained feature extractor,
a shallow feature adapter, a simple anomaly feature generator,
and a binary anomaly discriminator. Network structure
relies on the intuition that altering pre-trained features to
be target-oriented can alleviate domain bias. Additionally,
generating synthetic anomalies within the feature space is
more efficient. It has been found that a straightforward
discriminator is more practical and efficient. SimpleNet
outperforms previous methods in terms of accuracy and
efficiency on the MVTec AD benchmark. It also shows
improvements in performance on the One-Class Novelty
Detection task.

Compared to existing work, our network is model based
and resolves the problem of insufficient segmentation ability
of U-Net. It is designed for medical image segmentation
that combines improved PPM and CBAM modules with new
training methods.

III. PROPOSED NETWORK
In this section, we provide a comprehensive explanation
of the proposed network (i.e., PCU-Net). Table 1 lists the
abbreviations used in this paper. As depicted in Fig. 2, this
network is composed of an encoder and a decoder. All the
constituent modules are thoroughly explained in order.

A. ENCODER
The encoder structure is a popular model structure within
the field of deep learning. It is designed to extract complex
feature representations from input data. It is frequently
employed in image processing, audio, text processing, and
other areas. In this paper, we incorporate a convolutional
neural network-based encoder to capture the local features

TABLE 1. The abbreviations used in this paper.

of an input image. As previously referenced in [15], the
structure of our encoder consists of four primary modules,
each of which includes two repetitions of a 3×3 convolutional
layer. The convolutional operation is applied with a step size
of 1 and the output feature map size is maintained through
a padding of 1, facilitating a seamless connection with the
decoder section.

Before performing the convolution operation, we first need
to adjust the distribution of the input data by performing
batch normalization. This ensures that the data distribution
remains relatively consistent before and after convolution,
which is beneficial for the training process and helps prevent
the data from overfitting. Specifically, batch normalization
adjusts the mean and variance of the input data to make the
distribution more uniform, thereby improving the effective-
ness of the subsequent convolution operation. Additionally,
batch normalization can effectively address the problem of
low efficiency gradient descent due to gradient disappearance
or dense gradient change. This ensures that the algorithm can
optimize and learn effectively from the data. Our encoder
structure is based on the typical convolutional neural network
architecture. The repeated use of convolutional and pooling
operations allows us to layer by layer extract the local features
of the input image, which are then fed to the decoder part
to perform higher level feature reduction and reconstruction.
This process generates high-level image features and improve
the accuracy of the generated image.

In addition, each submodule employs the 2×2Max pooling
operation for downsampling to reduce the spatial size of
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FIGURE 3. Improved PPM in the proposed network.

the feature map and change the number of feature channels,
thereby extracting richer feature information. It helps to
improve the overall efficiency and accuracy of the network.
This method aims to extract specific features that are most
relevant and useful to the task at hand, while reducing
computational complexity. It is particularly effective in
ensuring the stability of the network and its ability to
more accurately process and interpret complex, diverse,
and constantly changing data. Specifically, the number of
feature channels in each sub-module is doubled (except the
last one) to accommodate higher level feature expression
requirements. By following this strategy, the network is able
to progressively learn and represent increasingly complex
features at each layer, resulting in enhanced performance
across a wide range of tasks.

In the final step of our encoder architecture, a module
named PPM is utilized to further extract global feature
information from the input image. The detailed structure of
this module can be seen in Fig. 3. This module employs
a pyramid-shaped multi-scale pooling strategy, which is
a proven technique to enhance the global context of the
input image, thereby improving the segmentation effect. The
algorithm utilized in this module is based on the well-known
Atrous Spatial Pyramid Pooling (ASPP) method [39], which
has been shown to preserve the global context better than
simple pooling strategies. The general concept behind this
module is to extract global feature information from different
scales of the input image while maintaining local features
that are crucial for object detection and segmentation. This is
achieved by employing a pyramid-shapedmulti-scale pooling
strategy, which involves three different pooling operations,
each with a different window size. The first pooling operation
involves a 1 × 1 window size, the second pooling operation
has a 2 × 2 window size, and the third pooling operation
utilizes a 3×3window size. Each pooling operation is applied
to a distinct layer of the input image, thereby capturing
global feature information from different scales. The output
of the pyramid pooling module is then passed to the decoder
network for subsequent processing steps. In summary, the
pyramid pooling module is an integral part of our encoder
architecture that enhances the global context of the input
image and ultimately improves the overall segmentation
performance.

To effectively and simultaneously utilize the different
features from different scales of an image, we create a

three-pool connection method. This method is designed
to connect the pooled results from three image scales.
Specifically, we pool the results from themaximum,medium,
andminimum scales to capture the diversity of features within
an image. With this advanced pooling method, the model’s
feature extraction ability can be significantly improved, and
its segmentation performance is enhanced correspondingly.
Therefore, the pyramid pool module plays a crucial role
in the model’s encoder structure as it is responsible for
extracting and emphasizing the global feature information in
the input image, ultimately boosting the segmentation ability
of our model. The output size of PPM is calculated using the
following formula:

Cout = Cin + (P× N ), (1)

where Cout is the output channel, Cin is the input channel,
P is multiple of pooled concatenate, and N is the number of
pyramid levels.

For example, the pooling cascade of the PPM used in our
network has a multiple of 3, with 3 pyramid layers of size
1×1, 2×2, and 3×3 respectively. The encoder part also has a
submodule, which increases the original number of channels
from 512 to 521. The purpose of this is to ensure that the
number of channels in the feature map equals the number of
channels in the output feature map of the encoder part PPM.
This helps to obtain improved segmentation results.

Different pyramid levels and the size of each level can
be employed for various feature maps. For instance, for
our general medical segmentation dataset, compared to the
feature fusion process of [22] at four pyramid scales, our three
different pyramid scales exhibit superior efficiency in feature
fusion and better segmentation ability.

B. DECODER
The decoder architecture of our model comprises four
different submodules. First, we perform an upsampling
operation to the final feature map layer, which has the lowest
resolution. Each subsequent layer in the decoder architecture
then applies an upsampling operation to the previous
layer, progressively increasing the resolution. The process
continues until the final feature layer reaches the same
resolution as the original image. An innovative technique,
skip concatenate, has also been employed, allowing themodel
to merge feature maps of the same resolution. This technique
is executed in both the encoder and decoder components of
the model, enhancing the model’s ability to capture contex-
tual information from the input image. In our architecture,
we adopt a typical convolutional neural network architecture,
each submodule including an upsampling operation and two
repeated 3 × 3 convolutional layers. These components
empower our decoder architecture to accurately decode and
upsample the input image, thereby enhancing segmentation
ability.

In the upsampling operation, a 2 × 2 transposed convolu-
tional layer is utilized to double the size of the input feature
map while halving the number of feature channels. Prior to
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the convolution operation, the batch normalization operation
is applied to the input data to ensure that the data distribution
before and after convolution remains similar, promoting the
training process. Additionally, the skip concatenate operation
is utilized to fuse feature maps with the same resolution
in the encoder section with the upsampling results in the
decoder section, thereby enhancing the diversity and richness
of feature expression.

Our network incorporates the feature mapping of the
encoder and decoder to create a new input feature mapping,
which is then employed to enhance the spatial and context
information of the input image. This new feature map-
ping incorporates comprehensive information for subsequent
processing and segmentation. We merge the feature maps
from the encoding and decoding parts along the channel
dimension to obtain a more comprehensive context of the
input image, thereby improving the segmentation accuracy.
Furthermore, the encoding part employs a 3 × 3 convolution
layer with a step of 1 and a filling operation of 1, ensuring
the input image remains unchanged, which is particularly
significant for jump cascading. This guarantees that the
network can transition smoothly between the encoding and
decoding parts. Additionally, we use a 2 × 2 upsampling
operation to expand the input feature mapping channel twice,
which is essential for higher-level feature representation
and further improves the segmentation accuracy. Ultimately,
the decoder structure uses a typical convolutional neural
network structure, enabling the network to effectively restore
the segmentation results layer by layer through upsampling
and jump connection operations. This method enables us to
achieve stronger medical image segmentation ability.

After each upsampling, CBAM is improved and used.
Given an intermediate feature map F ∈ RC×H×W as input,
CBAM sequentially infers a 1D channel attention mapMc ∈

RC×1×1 and a 2D spatial attention mapMs ∈ R1×H×W . The
overall attention process can be summarized as:

F′
= Mc(F) ⊗ F,

F′′
= Ms(F′) ⊗ F′, (2)

where ⊗ denotes element-wise multiplication. During mul-
tiplication, the attention values are broadcast (copied)
accordingly: channel attention values are broadcasted along
the spatial dimension, and vice versa. F′′ is the final
refined output. CBAM combines the channel attention
mechanism [40] and the spatial attention mechanism [41],
so that the model can adaptively select the method of feature
fusion at different scales. This improves the accuracy and
robustness of segmentation.

In the last layer of the decoder, 1 × 1 convolutions are
used to map each 64 component feature vector to the desired
number of categories.

C. RGB TRAINING
In the semantic segmentation task, we employ a unique
training mode similar to [42], the RGB training, as opposed

FIGURE 4. RGB training.

to traditional methods. This training mode exploits the
information within the red, green, and blue channels of the
training sample to train the network parameters separately,
as shown in Fig.4. In particular, we calculate the respective
loss values of the three channels separately during the
training process. This approach helps our algorithm to
accurately discern differences between channels, providing
more accurate segmentations. We subsequently take the
average of the three channel loss values to obtain the
overall loss value. The overall loss value denotes the qual-
ity of the segmentation output and a lower value sig-
nifies higher accuracy. The network with the minimum
overall loss value is then selected as the final training
results.

Compared with traditional training methods, the RGB
training method can notably enhance the performance of
semantic segmentation. This conclusion can be drawn by
scrutinizing the specific benefits of the RGB training.
First, the aberrant region of RGB color image typically
possesses a certain color channel or several color channel
information that is substantially disparate from the normal
region. Through the RGB training, we can successfully
capture and leverage this aberrant region information, which
is instrumental in augmenting the accuracy of segmentation.
Second, the RGB training can extract the features of red,
green, and blue channels respectively, and can utilize the
information of these three color channels to more precisely
delineate the shape and edge of the segmented object. Third,
the conventional training methods tend to amalgamate the
information of three colors into the channel training, which
fails to fully utilize the comprehensive information proffered
by RGB three channel images. Therefore, by employing RGB
three channels to dissect images, we can procure richer visual
features, thereby enhancing the segmentation ability. This
method can aid in segmenting the object and background
more precisely, which is conducive to the segmentation
procedure. Generally, the utilization of RGB three channel
images can provide richer visual data. The RGB training
method can learn the features of the red, green, and blue
channels separately, and then amalgamate them. This can
simulate the ability of the human eye to recognize the shape
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of objects based on color, thereby enhancing the ability of
semantic segmentation.

Algorithm 1 PCU-Net Training Pseudo-Code, Pytorch-Like
Input: F (This is input figure)

L(This is input label)
Output: N (This is save network)
1: bestLoss = inf
2: r, g, b = split(F)
3: R, G, B = split(L)
4: for r, g, b, R, G, B in trainLoader do
5: lossR = lossFuction(r,R)
6: lossG = lossFuction(g,G)
7: lossB = lossFuction(b,B)
8: loss = (lossR + lossG + lossB)/3
9: if loss < bestLoss then

10: bestLoss = loss
11: save N
12: end if
13: end for

Algorithm 1 shows the pseudo-code for our RGB training.
Line 1 defines a variable that holds the minimum loss value.
Lines 2-3 split the sample and the marked red, green, and
blue channels, respectively. Line 4 starts to calculate the loss
value in a cycle, and lines 5-8 calculate the loss value of
the three channels and calculate the average value. Lines 9-
10 hold the network model with the smallest loss. The end
of the loop completes the training. The advantage of this
training method is that it can make better use of the color
information in the color image, improve the robustness and
generalization ability of the model, and reduce the risk of
overfitting.

When the network is in predictionmode, the RGB channels
of the input predicted image are segmented and input into the
network for prediction. Then, the three predicted images are
merged into the final segmentation effect image, as shown
in Fig.5. Algorithm 2 shows the pseudo-code for our RGB
predicting. line 1 splits the red, green and blue channels
of the sample, line 3-5 predicts the results of the three
channels respectively, line 7-12 converts the prediction results
to the corresponding pixel values, and line 13 merges the
results of the three channels to obtain the segmentation
map.

As shown in Fig. 6, the results of RGB three channel
segmentation for some samples are not the same. For different
samples, the focus of each channel is different. Separating the
three channels and then fusing them can grasp the details of
all aspects and get better segmentation results.

IV. EXPERIMENTS
Our experiments are conducted on an NVIDIA Tesla V100
32G, with 100 epochs of training, batch size of 1, and learning
rate of 0.00001. The weight decay index of the RMSprop
algorithm used is 1 × 10−8, and the momentum is 0.9.

FIGURE 5. RGB predict.

Algorithm 2 PCU-Net Predicting Pseudo-Code, Pytorch-
Like
Input: F (This is input figure)
Output: S (This is output segmentation result)
1: r, g, b = split(F)
2: //Predict
3: pred-r = N(r)
4: pred-g = N(g)
5: pred-b = N(b)
6: //Converting to pixels
7: pred-r[pred-r >= 0.5] = 255
8: pred-r[pred-r < 0.5] = 0
9: pred-g[pred-g >= 0.5] = 255

10: pred-g[pred-g < 0.5] = 0
11: pred-b[pred-b >= 0.5] = 255
12: pred-b[pred-b < 0.5] = 0
13: S = merge(pred-r,pred-g,pred-b)

FIGURE 6. Segmentation results of RGB three channels.

A. DATASETS
The dataset mainly used in this paper is Kvasir-SEG.
Besides, ISIC 2018 Task 1 dataset [43], [44] and COVID-
19 Radiography Database [45], [46] are used to test the
segmentation effect of different lesion areas and tissue
organs.

Kvasir-SEG is a dataset for colorectal polyp segmentation,
developed jointly by the Norwegian University and the Nor-
wegian Institute for Health Research. The dataset contains
images, annotations, and case information to help medical
professionals and researchers in the field of computer vision
to study and apply polyp segmentation. The dataset contains
1000 images of colonoscopic examinations, which are used
as the training set. The resolution size of the images in the
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FIGURE 7. Segmentation results of our network and other networks on Kvasir-SEG (AU-Net is U-Net with CBAM and PU-Net
is U-Net with PPM).

dataset is different, and the resolution size is 150× 100 after
unified processing for the convenience of the experiment.
Each image has a corresponding binary mask, which is
used to annotate whether each pixel belongs to the polyp
region or not. The main application of this dataset is the
automatic detection and segmentation of colorectal polyps
to help medical professionals diagnose and treat patients
more accurately. In addition, the dataset can also be used
for research in the field of computer vision, such as image
segmentation and convolutional neural networks.

The ISIC 2018 dataset was published by the International
Skin Imaging Collaboration (ISIC) as a large-scale dataset
of dermoscopy images. It contains a total of 2594 images as
the training set, and 100 and 1000 images as the validation
set and test set, respectively. This dataset is used for
research on automatic detection of skin diseases based on
medical images. The COVID-19 Radiograph Database was
created by a team of researchers from Qatar University in
Doha, Qatar and Dhaka University in Bangladesh, along

with collaborators and doctors from Pakistan and Malaysia.
This database contains the chest X-ray image database
of COVID-19 positive cases, as well as normal and viral
pneumonia images.

B. EVALUATION METRICS
In this paper, there are four metrics used to evaluate the
segmentation performance: Dice coefficient, intersection
over Union (IoU) [47], mean absolute error (MAE), andmean
Boundary F1 Score (BFscore):

1) DICE COEFFICIENT
It is a measure of the accuracy of binary image segmentation,
which calculates the proportion of overlap between the
predicted segmentation results and the true label.

2) IOU COEFFICIENT
It is another widely used image segmentation performance
metric, which calculates the ratio between the intersection

VOLUME 12, 2024 107105



Z. Fu et al.: Enhanced U-Network by Combining PPM and CBAM for Medical Image Segmentation

FIGURE 8. Segmentation results on Kvasir-SEG.

and union of the predicted segmentation results and the true
label.

3) MAE COEFFICIENT
It is a measure of image segmentation error, which calculates
the average of the absolute value of the error at each pixel
between the predicted segmentation results and the true label.

4) BFSCORE COEFFICIENT
It is the harmonic mean of precision and recall, striking a
balance between the two. When both accuracy and recall are
high, the BFscore value will also be higher.

C. LOSS FUNCTION AND OPTIMIZER
In this paper, the binary cross-entropy loss function is
used [48]. It is one of the commonly used loss functions in
binary classification problems. However, PyTorch provides

a more convenient loss function called BCEWithLogitsLoss
because it combines sigmoid with BCELoss and needs
to transform the output of the model before calculating
the cross-entropy loss. The BCEWithLogitsLoss formula
decomposes as follows: Suppose there areN batches and each
batch predicts n labels, then:

Loss = {l1, . . . , lN }, ln = −[yn · log(σ (xn))

+ (1 − yn) · log(1 − σ (xn))], (3)

where σ (xn) is the Sigmoid function that maps x to the
interval (0, 1):

σ (xn) =
1

1 + exp(−x)
. (4)

The optimizer and loss function are two essential concepts
in machine learning. They serve distinct roles, yet are
interdependent. The role of the optimizer is to optimize the
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FIGURE 9. Segmentation results on ISIC 2018 Task 1 and COVID-19 Radiography Database.

model’s parameters based on the gradients calculated by the
loss function, with the objective of achieving a better fit of the
training data. The function of the loss function, on the other
hand, is to calculate the difference between the model output
and the label, thereby serving as an input to the optimizer
to guide the model’s training. In other words, the optimizer
and loss function act on different aspects of the model but
are interconnected, making them essential to the successful
optimization and training of a machine learning model.

The optimizer used in this paper is RMSprop [49]
optimizer. The main role of RMSprop is to update network
parameters according to the gradient. Rmsprop is an adaptive
learning rate method. It can adaptively adjust the learning rate
according to the size of the gradient in different parameter
update steps. It is mainly to solve the problem that the
learning rate decays too fast in the Adagrad algorithm.
Compared with Adagrad, a moving average is used when
calculating the squared gradient. It makes the decay of the
learning rate more gentle, smooth the change of the gradient,
reduce the shock of the gradient, and further improve the
stability of the model.

D. SEGMENTATION RESULTS
The segmentation results on Kvasir-SEG are shown in Fig.7.
We can find that U-Net has a good segmentation effect on
some simple samples, but it has a poor effect on complex
segmentation tasks, and even fails to segment some non-
obvious samples. The AU-Net has a certain improvement,

but the effect is still not good because of some wrong
segmentation phenomena. Our network segmentation results
are significantly better than other networks. Especially for
samples that cannot be segmented by other networks, we can
not only complete the segmentation task well, but also
achieve good results. Fig. 8 shows more segmentation results
of our network. In the case of partial occlusion of the sample,
our network still performs well for the details that are difficult
to segment.

Table 2 shows that the Dice coefficient of our network is
0.85, the IoU of our network is 0.74, the MAE of our network
is 0.0367%, and the BFscore of our network is 0.87511.
Notably, U-Net achieves Dice coefficient of 0.66, IoU of
0.54,MAE of 0.06%, andBFscore of 0.79499. Our evaluation
metrics exhibit enhancements of 28%, 38%, 39%, and
10%, correspondingly. Furthermore, AU-Net demonstrates
Dice coefficient of 0.79, IoU of 0.67, MAE of 0.042%,
and BFscore of 0.82972. Our evaluation metrics exhibit
improvements of 8%, 11%, 13%, and 5% respectively.

The segmentation results on ISIC 2018 Task 1 are shown
in Fig. 9a. Our network also has good results in lesion
segmentation on the skin surface. However, because the
abnormal boundaries of skin lesions are fuzzy, the segmen-
tation results are not detailed enough in the boundaries of
abnormal regions. Even so, it still has a good effect on
assisting skin lesion segmentation.

The segmentation results on COVID-19 Radiography
Database are shown in Fig. 9b. For the experiments in tissue
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FIGURE 10. Comparison of segmentation results for different loss function on Kvasir-SEG.

TABLE 2. Metrics comparison of segmentation results between our
network and other networks on Kvasir-SEG.

and organ segmentation, we divide the normal classification
data under the dataset into a training set and a testing set
in a 4:1 ratio. Fig. 9b shows that the proposed network also
performs well in organ segmentation.

We have the following explanation on how our improve-
ment can enhance the segmentation ability of the network.
First, the improved PPM includes pooling layers of different
specifications, allowing the network to not only better
segment overall anomalies in the samples, but also to segment
edge details more clearly. Second, the modified CBAM
enhances the network’s segmentation ability in both channel
and spatial aspects, allowing the network to achieve good
overall and detailed results [50].

E. ABLATION STUDY
1) PU-NET AND AU-NET
The network proposed in this paper has two structural
improvements compared with U-Net. In this part, the two

improvements are separated and experimented separately for
ablation. We refer to the U-Net with PPM added in the
downsampling part as PU-Net, and to the U-Net with CBAM
added in the upsampling part as AU-Net. First, Table 2 shows
the comparison between our proposed network and these two
networks in terms of metrics. Compared with AU-Net, PCU-
Net can improve Dice, IoU, MAE, and BFscore by 8%, 11%,
13%, and 5% respectively. Second, from Fig. 7, compared
with PU-Net, although PCU-Net does not show significant
improvement in metrics, it has better segmentation results
than PU-Net that has obvious shortcomings in edges.

2) LOSS FUNCTION
In comparison with the widely used MSE loss and a
simple truncated L1 loss function, the proposed loss function
presented in Section IV-C is compared and assessed in
Table 3. Our chosen cross-entropy loss function significantly
outperforms both L1 loss and MSE loss. Compared with
L1 loss, cross-entropy loss can improve Dice, IoU, MAE, and
BFscore by 1%, 1%, 5%, and 0.1% respectively. Compared
with MSE loss, cross-entropy loss can improve Dice, IoU,
MAE, and BFscore by 5%, 7%, 33%, and 6% respectively.
While Fig. 11 reveals that the convergence time of the three
loss functions is not markedly different, Fig. 10 illustrates
that L1 loss and MSE loss frequently suffer from instances of
false segmentation and missing segmentation. For example,
in samples 3 and 5, L1 loss and MSE loss fail to accurately
segment the fine details. However, the proposed loss function
precisely segments the results, demonstrating that it is a more
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FIGURE 11. Training process of PCU-Net with different loss function on
Kvasir-SEG.

TABLE 3. Metrics comparison with the segmentation results of the loss
function on Kvasir-SEG.

FIGURE 12. Training process of PCU-Net with different configurations on
Kvasir-SEG.

effective choice for image segmentation. After extensive
experimental comparison, we select the cross-entropy loss
function as our primary loss function.

3) CONFIGURATION OF PPM
We experimentally compare several different configurations
for PPM, including the number of pyramid levels, the number
of pooling connection multiples, and the size of each level.
As shown in Table 4, despite minimal differences among
each configuration, even the segmentation results may not
be distinguishable by the naked eye, it is evident from the
metrics that the three bin sizes of pooling concatenation (1×1,
2 × 2, 3 × 3), particularly those selected by us, demonstrate
superior efficiency and effectiveness. Although a study by
Zhao et al [22] found that a 4 bin size (1×1, 2×2, 3×3, 6×6)
had better performance in terms of metrics, this advantage
was outweighed by the additional complexity of the training
procedure. To evaluate these experiments, we utilize the three
bin sizes for PPM. Fig. 12 illustrates the convergence process
of PCU-Net training for each configuration. It can be seen that

TABLE 4. Experimental comparison of PPM configurations and mode of
training(-3-1 is 3 bin sizes and 1 time concatenate) on Kvasir-SEG.

TABLE 5. Comparison of training time of the network on Kvasir-SEG.

although PCU-Net-4-3 has the fastest convergence due to its
complexity. From a comprehensive perspective of time cost
and performance, the properly configuration is PCU-Net-3-
3. In conclusion, we select the configuration of PCU-Net-3-3
with three bin sizes and three layers of pooling connection.

4) TRAINING MODE
In order to comprehensively evaluate the performance and
advantages of our RGB training method, we compare it with
the traditional segmentation methods that are currently in
use. These results are summarized and presented in Table 4.
Based on the experimental data, our RGB training method
has demonstrated significant improvements in segmentation
accuracy and overall segmentation effectiveness. This can
be attributed to the unique ability of our method to
extract features from the three different channels, leading to
improved segmentation object delineation and definition.

5) TRAINING TIME
We compare the training time and segmentation results of
U-Net ++, U2-Net, ResU-Net, and ResU-Net++ on the
Kvasir-SEG dataset. The training time of our network and
others networks is shown in Table 5. In the same training
epochs of the 100 cases, the segmentation results of our
network and others are shown in Fig.13. Table 2 shows that
our network is also better in terms of metrics. In the case
of the same number of training steps, U-Net++ has some
incorrect segmentation. Due to its complex structure, U2-Net
increases training time and suffers from incomplete training
of some detail segmentation abilities. ResU-Net and ResU-
Net++ also have similar issues.

V. DISCUSSION
A. APPLICATION OF THE PROPOSED NETWORK
The above experiments demonstrate that the proposed
network has better results than some traditional U-shaped
networks on RGB images. However, because the RGB
training is only applicable to RGB images, it cannot be
applied to non RGB medical images such as CT, MRI and
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FIGURE 13. The contrast of network segmentation results on Kvasir-SEG.

X-ray. Then using the proposed network without the RGB
training, by comparing Table 2 and Table 4, we can see
that the PCU-Net-3-3-noRGB network is better than other
networks in Dice, IoU,MAE, and BFscore.Moreover, Fig. 9b
shows that the proposed network also performs well in
segmenting X-ray images. Therefore, we believe that even
if the RGB training is not used in the PCU-Net, it also has
a good segmentation effect in the abnormal segmentation of
the medical images of other modalities.

B. POSSIBLE DIRECTIONS FOR IMPROVEMENT
Compared with transformer and other lightweight CNNs,
U-Net has many extensions and applications in the field
of medical image segmentation due to its simple structure.
We also consider using model pruning technique to make the
network more efficient. However, U-Net itself is relatively
simple, and model pruning may not significantly improve
the network. Table 6 shows the parameter performance of
our proposed network during experiments on the Kvasir-SEG
dataset. However, after undergoing two pruning algorithms:
L1Unstructured and RandomUnstructured, the parameter
situation does not change. Nevertheless, it is still worth
studying other pruning techniques to achieve the effect of
simplifying the model.

TABLE 6. Parameter situation of PCU-Net.

VI. CONCLUSION
This paper proposes an enhanced U-network by combining
PPM and CBAM for medical image segmentation. The pro-
posed network compensates for the insufficient segmentation
ability of the basic U-Net architecture. PPM is improved
and used in the downsampling part of the encoder to extract
multi-scale context information from the input feature map.
It extracts features from different pyramid levels, which
provides a multi view representation of input. And CBAM
is modified and used in the upsampling part of the decoder.
It helps the network focus on the important spatial regions
and channel features of the input image.

We perform experiments on the Kvasir-SEG dataset.
Experimental results show that compared with U-Net and
AU-Net, our network improves Dice by 28% and 8%, IoU
by 38% and 11%, MAE by 39% and 11%, BFscore by
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10% and 5% respectively. Moreover, the performance of our
network on the experimental data set is also better than those
of improved versions of U-Net: U-Net++, U2-Net, ResU-
Net, ResU-Net++, and U-NeXt, with shorter training time
and stronger segmentation ability under the same training
rounds. In addition, the RGB training we use can improve
the segmentation ability of the network compared with the
ordinary training method.
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