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ABSTRACT Recent state-of-the-art semi-supervised Video Object Segmentation (VOS) methods have
shown significant improvements in target object segmentation accuracy when information from preceding
frames is used in segmenting the current frame. In particular, such memory-based approaches can help
a model to more effectively handle appearance changes (representation drift) or occlusions. Ideally, for
maximum performance, Online VOS methods would need all or most of the preceding frames (or their
extracted information) to be stored in memory and be used for online learning in later frames. Such a solution
is not feasible for long videos, as the required memory size grows without bound, and such methods can fail
when memory is limited and a target object experiences repeated representation drifts over time. We propose
two novel techniques to reduce the memory requirement of Online VOS methods while improving modeling
accuracy and generalization on long videos. Motivated by the success of continual learning techniques in
preserving previously-learned knowledge, here we propose Gated-Regularizer Continual Learning (GRCL),
which improves the performance of any Online VOS subject to limited memory, and a Reconstruction-based
Memory Selection Continual Learning (RMSCL), which empowers Online VOS methods to efficiently
benefit from stored information in memory. We also analyze the performance of a hybrid combination of
the two proposed methods. Experimental results show that the proposed methods are able to improve the
performance of Online VOS models by more than 8%, with improved robustness on long-video datasets
while maintaining comparable performance on short-video datasets such as DAVIS16, DAVIS17, and
YouTube-VOS18.

INDEX TERMS Video object segmentation, continual learning, regularization-based solutions, replay-based
methods.

I. INTRODUCTION
Video object segmentation (VOS) aims to extract an accurate
pixel-wise object mask in each frame of a given video.
Broadly, existing VOS algorithms can be divided into two
different streams: i) semi-supervised or one-shot VOS, when
the ground truth masks of the target objects are provided in at
least one frame at inference time, and ii) unsupervised VOS,
when no information about the objects is provided. The focus
of this paper is on the former, that of semi-supervised VOS.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

The classic and initial solution for a semi-supervised VOS
problem is to fine-tune the trained VOS model on the given
information (i.e., the given object mask), separately for each
test video. This ideal is not feasible, due to the limited training
samples, the VOS model size, and the time-consuming
fine-tuning process. In practice, online learning-based VOS
approaches [1], [2], [3], [4] address these challenges by
introducing efficient training (fine-tuning) mechanisms and
keeping some amount of information in memory to augment
the training set for model fine-tuning.

These approaches proceed on the assumption that suffi-
cient memory is available at inference time, and that there
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are no limitations in storing and exploiting information. It is
also assumed that an object representation is not undergoing
significant shifts between frames, such that the information
stored in the memory is somehow representative of the target
object in the query frame. In practice, these assumptions
hold poorly, at best, and particularly in long videos it is
common to experience a significant representation drift of
the target object. Such a drift can lead to drastic drops
in performance, particularly when there is a limitation on
the memory available to store past object representations.
A second bottleneck of Online VOS is its limitation to learn
useful information from memory. As more training data
(more frames of video) become available in the memory,
Online VOS methods have difficulty to extract and learn
discriminative information [5], due to their limited online
model size and training process, since Online VOS prefers
training small models on limited memory over few epochs.
Clearly these issues become increasingly problematic on long
video sequences, which are the focus of this paper.

We reformulate semi-supervised VOS as online continual
learning [6], which benefits from two disjunctive solutions
with a small fixed working memory to process long video
sequences:

• In Section III-B, a Gated-Regularizer Continual Learn-
ing (GRCL) is proposed to improve the performance
of Online VOS by preserving and consolidating the
acquired knowledge from the target objects in preceding
frames while limiting the required memory.

• A very different approach is developed in Section III-C,
where we propose a Reconstruction-based Memory
Selection Continual Learning (RMSCL) method which
is able to augment any Online VOS framework and
improve its performance, particularly on long videos.

The GRCL is inspired from prior-based continual learn-
ing [7], [8], whereas the latter RMSCL is motivated by
rehearsal methods in continual learning [9], [10], [11],
[12]. We apply the proposed methods to two state-of-the-
art Online VOS algorithms, LWL [4] and Joint [3], both
subject to a fixed memory. Our experimental results show
an improvement of both LWL and Joint, particularly on long
video sequences.

II. RELATED WORK
The primary objective of our work is to address online
video object segmentation, specifically when dealing with
long video sequences. Our objective particularly relates to
the instances which are preserved in a memory for future
selection and usage in the continuation of the learning
process. We begin by overviewing baselines, state-of-the-
art memory-based approaches, and methods proposed in
continual learning.

We present feature selection methods with a wide range
of applications in domains such as machine learning, data
mining and computer vision, which can potentially be used
as memory selection for VOS. Finally, we introduce several

solutions available in the literature addressing the learning
challenges of long video sequences.

A. MEMORY-BASED APPROACHES
Memory-based approaches [1], [2], [3], [4], [5], [13], [14],
[15], [16], [17] try to address semi-supervisedVOS by storing
representations and predicted output masks of preceding
frames in a memory, and then to use them to evaluate the
current frame.

Within this strategy there are different approaches to
retrieve information from the dynamic model’s memory. One
solution is to update (fine-tune) a small model proposed by
online learning methods [2], [4], [18], [19], [20]. A second
solution is to propagate the information of the most recent
predicted object masks [21] or featurerepresentation of
preceding frames [22], [23]. A third solution is to send a
query to retrieve information of visited frames and their
representation stored in the memory [1], [5], [13], [16], [24],
[25], [26], [27], [28], [29], [30].

The approach proposed in this paper stems from the online
learning methods, and will be compared to state-of-the-art
query-based methods.

1) QUERY-BASED METHODS
Among query-based methods is STM [1], which uses a sim-
ilarity matching algorithm to retrieve encoded information
from the memory and pass it through a decoder to produce
an output.

STM performs global matching between the query and
memory frames; however, in VOS, a valid assumption is
to consider the locality of the target object’s appearance.
Therefore, RMNet [25] developed a local-to-local matching
algorithm that considers the local area where the target
objects appeared in previous frames.

By limiting the potential correspondences between two
consecutive frames to a local window and providing kernel
guidance to the non-local memory matching, HMMN [13]
offers kernel-based memory matching as a means of achiev-
ing temporal smoothness. HMMN uses tracking of the most
likely relationship between a memory pixel and a query
pixel to match distant frames. Unlike STM, which generates
a specified memory bank for each object in the video,
STCN [26] constructs a model that uses an affinity matrix
based on RGB relations to learn all object relations beyond
just the labeled ones. An object goes through the same affinity
matrix for feature transfer when querying.

LCM [24] suggests using a memory strategy to recover
pixels globally and to learn pixel position consistency for
more accurate segmentation in order to deal with appearance
changes and deformation.

In order to leverage the fine-grained features of instance
segmentation (IS), ISVOS [16] suggest a two-branch net-
work: a VOS branch performs spatial-temporal object level
matching with the memory bank, while the proposed IS
branch explores the instance details of the objects in the
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current frame. They include instance-specific information
into the query key using well-learned object queries from
the IS branch, and then perform matching. A recent unified
VOS framework, Joint-Former [17], represents the three char-
acteristics of feature, correspondence, and dense memory.
Cutie [15] benefits from a query-based object transformer
that interacts with bottom-up pixel features, an object-level
memory, and a small number of object queries that are
continuously generated. While high-resolution feature maps
are kept for exact segmentation, object queries offer an
overview of the target item.

2) ONLINE LEARNING-BASED METHODS
Online learning-basedmethods learn a new object appearance
within an online learning-based approach [3], [4], [31]
simultaneously at inference time. In this scenario, instead
of using a query-based (matching-based) algorithm on each
frame, a small latent model network (the so-called target
model) is updated every 1C frames, which is eventu-
ally used to produce the updated information about each
video frame.

The target models proposed by FRTM [2], LWL [4]
and the induction branch of JOINT [3] are formulated
as a small convolutional neural network, which performs
online learning on the available training data in the memory.
As such, these methods can provide an efficient yet effective
dynamic update process for VOS frameworks.

While target model-based approaches improve the per-
formance of VOS, the effectiveness of online learning
algorithms is highly dependent on their memory capacity and
usage. In other words, to obtain the best performance, these
models require storing all preceding output masks and the
encoded features in memory, increasing the generalization
of the updated model. The resulting memory limitation leads
to facing similar challenges already known in the domain of
continual learning (below).

In this paper, we hypothesize that these issues can be
mitigated, specifically motivated by the success of continual
learning algorithms in preserving learned knowledge while
limiting required memory.

B. CONTINUAL LEARNING
Continual learning [32], [33], [34], [35] is a process of
sequential learning, where the sequence of data may stem
from different domains and tasks; that is, a model is learning
from data in which an abrupt or gradual concept drift [36]
may take place.

Similarly, in Online VOS methods a concept drift can
easily happenwith regards to the appearance of target objects.
In such situations the distribution of the available data in
the memory may significantly change with every update
step. The primary challenge in this situation is known as
catastrophic forgetting, a term which was first defined in the
context of neural networks [37], [38], although it is a common
problem in machine learning [39].

1) CATASTROPHIC FORGETTING
Catastrophic forgetting [40] commonly takes place in
machine learning problems such as few shot learning [41],
[42], graph neural networks [43], [44] knowledge distilla-
tion [45] and Bayesian inference frameworks [8].
Catastrophic forgetting occurs when a machine learning

model is trained on a sequence of tasks, but at any point in
time it has access to the training data of only the current task.
Consequently, the learning has a tendency to update model
parameters to be dominated by data from this task, resulting
in a degree of forgetting previously-learned tasks.

In particular, a long video will typically have subsets in
which a given object is seen from different view points,
varying lighting, different object appearances, occlusion, and
missing objects, all of which lead to a continual learning
problem.

For an Online VOS approach, each section of a long video
in the memory can be considered as a ‘‘task’’, thus forgetting
the previously-learned tasks (earlier parts of the video), which
can be problematic in practice since the number of tasks
increases with the length of the video [46]. In this article we
focus on developing continual learning-based solutions.

There are three broad approaches to catastrophic forget-
ting: prior-focused (regularization-based) [7], [8], likelihood-
focused (rehearsal-based) [9], [10], [11], [12], and hybrid
(ensemble) approaches [47], [48].

In GPM [49], a neural network model takes gradient
steps in the opposite direction of the gradient subspace
considered relevant for previous tasks in order to learn
new tasks. GPM determines the basis of these subspaces
by evaluating network representations via a Singular Value
Decomposition (SVD) after learning each task. To specify
a unique constraint imposed for each layer in a fine-grained
fine-tuning regularization, TPGM [50] proposes an automatic
constraint learning method known as trainable projected
gradients.

In this paper, a regularized (GRCL) solution and a
rehearsal-based based (RMSCL) solution are proposed to
generalize the applicability of Online VOS on long video
sequences.

C. FEATURE SELECTION
Memory reading is an important step in query-based VOS
methods, as they typically employ similarity metrics to
retrieve and merge partial information from memory for their
decoder component. For instance, STCN [26] employs L2
similarity and STM [1] utilizes a dot product in their memory
reading. This paper aims to enhance Online VOS methods
that incorporate online training for a specific component
of the model. Therefore, in order to maximize memory
usefulness, it is beneficial to employ a simple efficient
memory selection technique, because there is no requirement
to partially select and merge samples from memory, as is
typically done in memory reading methods. In other words,
we are searching for memory selection strategies that are
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FIGURE 1. An Online VOS pipeline: The target model Ct is initialized based on the given ground truth mask Yg and its associated feature Xg. The
dashed orange line shows how the target model Ct is updated based on memory Mt every 1C frames. The blue dotted arrow illustrates how the
memory Mt is updated every 1M frames. The methods proposed in this paper are mainly engaged with the target model component of the pipeline.

covered in feature selection, rather than memory reading in
query-based VOS methods.

For data or feature analytics, dealingwith high-dimensional
features greatly increases the need for memory and
processing power. Additionally, the presence of duplicated,
irrelevant, and noisy features raises the likelihood that learn-
ing algorithms may loose generalization ability, reducing
efficiency and performance.

Feature selection for high-dimensional data are divided
into supervised [51], [52], [53] and unsupervised [54], [55],
[56] learning approaches. Supervised algorithms assume
access to the discriminative information in the class labels,
but real-world data are typically unlabeled since annotation
is commonly prohibitively costly. Therefore, unsupervised
feature selection techniques use several metrics, such as data
similarity, density information, and data reconstruction error,
to determine the quality of features.

Reconstruction based methods approximate the origi-
nal data by performing a reconstruction on selected fea-
tures [57], [58], [59], [60]. In this article we propose a
Reconstruction-based Memory Selection Continual Learning
(RMSCL) to improve Online VOS on long video sequences.

D. LONG VIDEO SEQUENCES
Long video sequences containing multiple concepts are
challenging to learn, since such a model requires a memory
having a large capacity in order to store information from
previous frames.

In order to overcome the memory and training time con-
straints, AFB-URR [61] use an exponential moving average
technique to store or merge new memory components. When
the memory’s capacity hits a set limit, the model eliminates
any features that are not being used.

Global context modules [62] are another approach to
limitations of long video; the model calculates a mean of

the entire memory components and applies it as a single
representation.

In any eventy, segmentation accuracy is compromised by
both approaches since they use a compact representation of
memory. In contrast, XMem [5] achieves significantly greater
accuracy in both short- and long-term predictions by avoiding
compression via the use of a multi-store feature memory.

III. PROPOSED APPROACH
In this section we develop two proposed methods (GRCL
and RMSCL) in depth. It is important to understand that the
proposed methods specifically apply to Online VOS. It needs
emphasizing that thesemethods are not limited to one specific
framework, rather they can be extended to any regular Online
VOS architecture. The significance of this generality is that
Online VOS frameworks are preferred against query-based
methods in practical applications, since query-based archi-
tectures (such as XMem [5]) lead to memory requirements
which grow with video length, whereas Online VOSmethods
assume a fixed memory size.

We begin with the general structure of Online VOS
in Section III-A, followed by the formulation of the
proposed gated-regularizer (GRCL) in Section III-B, and the
reconstruction-based memory selection continual learning
(RMSCL) in Section III-C. We conclude this section by
proposing a GRCL / RMSCL hybrid.

A. ONLINE VOS
Online VOS [2], [3], [4], as overviewed in Figure 1, typically
comprises the following pieces:

1) A pretrained encoder, extracting features from each
frame;

2) A memory Mt , storing features and their associated
labels / mask;
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3) A target model Ct , which is trained on the memory at
updating time t , providing information to the decoder;

4) A label encoder network E [4], which generates
sub-mask labels from each Y , guiding the target model
in terms of what Ct should learn from Y .

5) A Pretrained decoder network, D, which obtains
temporal information from the target model alongside
the encoder’s output, generating a fine-grained output
mask Yt+1 from the current frame Ft+1.

The target model Ct is usually a small convolutional neural
network, for reasons of efficiency. The target model is
updated every 1C frames throughout the video, repeatedly
trained on the complete set of featuresX ∈ X and the encoded
labels E(Y ) of stored decoder outputs Y ∈ Y from preceding
frames. Both X and Y are stored in memoryMt , constrained
to some maximum size N , as shown in Figure 1 for N = 3.
Y is provided to E and we seek Ct to learn what E specifies
from Y . That is, the target model acts like a dynamic attention
model to generate a set of score maps E

(
Yi

)
in order for the

target model Ct to learn to focus on important parts of mask
Yi. Thus E is only used in training the target model Ct and is
not used during inference. During inference, the target model
Ct is trained on the memoryMt , with a goal of learning how
to segment each stored image, basesd on loss function

L(2t ,Mt )

=

N∑
n=1

∥∥∥dnWn

(
E(Yn) − Ct (Xn)

)∥∥∥2
2
+

K∑
k=1

λ||θ tk
2
||, (1)

Here the first term of (1) pushes the target model to learn to
produce the output of label encoder E, usually with a focus on
recent frames, as controlled by weight dn. The second term
is a weight decay regularization. Depending on the overall
architecture, E could be an offline / pre-trained label encoder
network, as in [4], or just a pass-through identity function,
as in [2]. Spatial pixel weightWn balances the importance of
the target and background pixels in each frame, whereas dn
defines the temporal importance of sample n in the memory,
typically emphasizing more recent frames.

Online VOS methods suffer from three main limitations,
particularly on long videos:

1) Memory Size:Tomaximize performance, Online VOS
would need to store in memory all or most of the
extracted information from all preceding frames. For
videos of arbitrary length this requires an unlimited
memory size, which is infeasible.

2) Target Model Updating: Even with an unlimited
memory size, updating the target model Ct on an arbi-
trarily large memory is computationally problematic.

3) Hyperparameter Sensitivity: The sensitivity to the
target model’s configuration andmemory updating step
size affects both speed and accuracy.

The proposed GRCL and RMSCL aim to mitigate these
limitations by incorporating simple yet effective methods
applied to the target model Ct and memoryMt .

Since video frame information is provided consecutively
into the Online VOS framework, there is a high possibility
of drift in the object’s appearance, especially in long-video
sequences. As such, the conventional approach of passing all
of the information, as a whole, to the model to decide which
to use, is not effective.

Instead, inspired by continual learning [32], we seek to
regularize the parameters, 2t , of the target model Ct in each
online learning step t , with a goal of preserving the model
knowledge, acquired from those earlier frames which are
no longer present in the memory. That is, we have three
fundamental questions:

1) How do we constrain or regularize the model parame-
ters? This question is explored in the gated-regularizer
continual learning (GRCL) method of Section III-B.
The proposed GRCL is inspired by Memory Aware
Synapses (MAS) continual learning [63], allowing the
memory size to be reduced while maintaining model
performance, also increasing the robustness of the
target model against the updating step size 1C.

2) How do we decide explicitly what to keep in the
memory, or which subset of the memory to use in
learning? This question is addressed in the context
of reconstruction-based memory selection continual
learning (RMSCL) of Section III-C, inspired by
reconstruction-based feature selection methods, mak-
ing it possible that updating Ct can efficiently benefit
from information stored in memory.

3) What would be the performance of a solution based
on both RMSCL and GRCL? Such a hybrid method is
introduced in Section III-D.

B. REGULARIZATION-BASED CONTINUAL LEARNING
SOLUTIONS
Parameter regularization seeks to preserve important parame-
ters2, particularly those which were learned or significantly
modified in preceding update steps. The MAS algorithm [63]
is formulated such that at update step t the importance of
each parameter θ tk is associated with its gradient magnitudes
{ulk}

t−1
l=1 during preceding update steps. Therefore, during

each online learning step we update the parameter weights
ωtk based on the gradient magnitudes,

ωtk = ωt−1
k + utk (2)

To apply a regularization-based continual learning solution,
such as MAS, on Online-VOS with features X , output masks
Y , memoryMt , and target model Ct with K parameters 2t ,
the regularized loss function LR is defined as

LR(2t ,Mt ) = L(2t ,Mt ) + γ

K∑
k=1

ωt−1
k

∥∥θ tk − θ t−1
k

∥∥2
2, (3)

where L(2t ,Mt ) is as described in (1). The latter term is
a regularization, controlled by γ , where t counts the model
update steps.
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FIGURE 2. The proposed Online VOS framework, with adopted Gated-Regularized Continual Learning (GRCL): At time t , the overall gated-regularizer
map Gt−1 is calculated using the stored gated maps in the gated-regularizer memory Mt−1

G and regularizes the process of updating Ct . Finally,
Mt−1

G is updated and forms Mt
G using the calculated Gt .

The goal of all regularization-based continual learning
solutions, such as MAS, is that the loss LR allows the
target model to be updated while preserving the important
previously-learned knowledge. Clearly for a method such as
MAS, the effectiveness of the loss function LR deteriorates
over time as �t

= {ωtk}
K
k=1 loses its effectiveness in

regularization, since most parameters become important as
the number of update steps t increases. This is because
MAS only keeps a single ωtk for each parameter and
accumulates the importance of newly-calculated parameters
to the previous ones, as shown in (2). Other memory-based
solutions, such as Elastic Weight Consolidation (EWC) [40],
keep the set of gradient magnitudes {ulk}

t−1
l=1 for each

parameter, which is not memory efficient. Our proposed
GRCL tries to remove these constraints and broaden the
concept to Online VOS.

GATED-REGULARIZER CONTINUAL LEARNING
We wish to formulate GRCL such that, instead of accumulat-
ing the importance parameters in �t , it stores a maximum of
P binarized importance maps {Gj}Pj=1 in a dynamically-sized
gated-regularizer memoryMt

G, whose size is far smaller than
that of the memoryMt .
Thus, at each update step t , the overall gated-regularized

map Gt−1 is defined as

Gt−1
=

J∨
j=1

Gj , J =

∣∣∣Mt−1
G

∣∣∣ (4)

Here
∨

is the ‘‘Logical Or’’ operator and
∣∣∣Mt−1

G

∣∣∣ is the

dynamic size of Mt−1
G . The gated-regularized loss function

LG can be formulated as

LG(2t ,Mt ) = L(2t ,Mt ) + γ

K∑
k=1

gt−1
k

∥∥θ tk − θ t−1
k

∥∥2
2 (5)

where gt−1
k ∈ Gt−1, such that with a sufficiently large

coefficient γ ∼= ∞, the latter term acts as a gating function
that allows some parameters to be updated and others to be
frozen. After updating the target model Ct , a new gated-map
(Gt ) and memoryMt−1

G is are updated.
To this end, after accumulating the magnitude of the

gradient in U t
= {utk}

K
k=1, a binary gated-regularizer g

t
k ∈ Gt

will be defined as

gtk =

 1 if
utk

maxk (U t )
> h

0 else
(6)

where 0 < h < 1 is a threshold, which is determined based
on the distribution of the gradients in U t. The larger the value
of h, the sparser the resulting gated-regularized map Gt .

Figure 2 shows the flow-diagram of an Online VOS
framework at time t when the target model Ct is regularized
by the proposed GRCL. One of the main advantages of
formulating the loss function of the Online VOS framework
as LG is to store an efficient set of binary maps {Gj}Pj=1 in
Mt

G, much smaller in size compared to the sets of features X
and masks Y stored inMt , since P ≪ N .
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1) DYNAMIC GATED-REGULARIZER MEMORY
The gated-regularizer memory Mt

G has a fixed size; as
a result, as the number of stored gated-regularized maps
increases, the remaining degrees of freedom for the target
model will decrease, which could have negative effects on
model performance. To address this, amechanism is proposed
to dynamically reduce the gated-regularizer memory size.
When the overall gated-regularized map Gt−1 is calculated,
the number of ones in Gt−1 determines the number of
regularized parameters of the target model, and if it is smaller
than a certain threshold ηl = ξl × K , GRCL tends to
expand Mt

G. On the other hand, if the number of ones in
Gt−1 is greater than threshold ηu = ξu × K , Gt−1 will be
shrunk, and the oldest stored gated-regularized maps in the
memory Mt−1

G will be removed. The parameter thresholds
are proportionate to the number of target model parameters
K , so that the actual values to learn, ξu and ξl , are unit-less
ratios, less problem-dependent, and will be found via cross-
validation.

The GRCL strategy does not need to change an Online
VOS method in order to be applied, and is therefore appli-
cable to a wide range of proposed Online VOS techniques.
GRCL only needs to regularize the loss function used to
update the target model C . The only GRCL hyper-parameters
that need tuning are h, that is used to binarize the gated maps
(G), and ratios (ξl and ξu), which determine the bounds on
parameter counts.

While several other techniques for continual learning have
been described in the literature [64], [65], [66], none of them
are as broadly applicable to Online VOS methods as GRCL,
with its dynamic gated regularizer memory. It is worth noting
that the encoder, decoder and network E in the proposed
architecture are trained offline, and we use the same trained
models in all experiments. The memory is initialized by the
encoded features of the given frame Fg with the provided
ground-truth mask Yg, as defined in semi-supervised VOS
frameworks.

C. RECONSTRUCTION-BASED MEMORY SELECTION
CONTINUAL LEARNING
Given the forgetting behaviour of Online VOS due to the
appearance drift of objects, a trivial solution for mitigating
this problem is simply to have an unlimited memory size.
However, it is difficult for a limited-size target model
to extract generalized discriminating information from a
considerably larger memoryMt . As such, the effectiveness
of updating the target model Ct becomes dramatically
deteriorated on long videos.

To solve this limitation, we propose a dynamic working
memoryMt

W , a subset ofMt , and update the target model
using this new (smaller) memory instead of the (larger)
memoryMt . This new approach addresses three problems:

1) Allowing a limited size target model to benefit from a
large memory.

2) The update step becomes significantly more efficient,
since it is training on a smaller working memoryMt

W .
3) The samples in the memory can have a weight in the

training loss function independent of their temporal
weight dn.

The proposed RMSCL approach adapts a methodology
similar to those of likelihood-based (rehearsal) approaches
in continual learning, where selected observations from
preceding tasks are preserved to mitigate the catastrophic
forgetting of the target model on proceeding tasks.

As such,Mt
W needs to be a small, diverse memory which

contains the required features X and masks Y of preceding
evaluated frames. The goal of the proposed RMSCL is to
select q samples from memory Mt and to place them in
Mt

W for target model updating. This memory selection is
performed on Mt every update step 1C since the goal of
creatingMt

W is to update the target model C. The selection
of samples from memory is formulated as a LASSO [67]
optimization problem: To update the target model Ct−1, the
optimal linear reconstruction of the stored features X ∈ Mt

for the next feature Xt+1 is identified via a L1 constraint on a
randomly initialized vector of coefficients 9 by minimizing

9 t
= argmin

9

LRMSCL(9,Mt ,Xt+1)

= argmin
9

(
1
2

∥∥Xt+1 −9X
∥∥2
2 + λ∥9∥1

)
. (7)

It is worth noting that updating the target model Ct−1 to create
Ct will take place before segmenting the object in frame Ft+1
and predicting Yt+1. Moreover, X contains

∣∣Mt
∣∣ features

(X = {Xl}
|Mt |
l=1 ), similarly 9 consists of

∣∣Mt
∣∣ coefficients

(9 = {ψl}
|Mt |
l=1 ) weighting each feature Xl in reconstructing

Xt+1. In other words, we want to have the best sparse linear
reconstruction of newly received frame Xt+1 using the stored
featuresX in memoryMt . The LRMSCL loss leads to a sparse
set of coefficients because of L1-norm in (7) [68], meaning
that only a small number of coefficients 9 are non-zero after
the optimization process, and the positive coefficients ψ and
their associated features X are selected and are placed in
Mt

W for updating the target model. It is important to mention
that the deterministic temporal weight dn is not involved in
the loss function in (7) and instead RMSCL re-weights the
selected samples in Mt

W by the coefficient 9 calculated
in (7). This re-weighting enables RMSCL to include the
significance of selected samples in the current update phase.
Thus, dn is replaced with ψn in (1) as

L(2t ,Mt
W )

=

∣∣Mt
W

∣∣∑
n=1

∥∥∥ψnWn

(
E(Yn) − Ct (Xn)

)∥∥∥2
2
+

K∑
k=1

λ θ tk
2
. (8)

The only problemwith the LASSOminimization of (7) is that
its computational complexity depends on the dimensionality
of feature X , such that a gigantic feature size can lead the
LASSO optimization to become the bottleneck of Online
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FIGURE 3. The proposed Online VOS framework with augmented Reconstruction-based Memory Selection Continual Learning (RMSCL). At the current
time t , three samples associated to three positive ψ are selected using a reconstruction based (Lasso) optimization.

VOS. In order to handle this problem, a channel based max
pooling function is applied on each feature X , such that (7)
becomes

9 t
= argmin

9

LRMSCL(9,Mt ,Xt+1)

=≃ argmin
9

(1
2

∥∥pool(Xt+1) −9pool(X )
∥∥2
2 + λ∥9∥1

s.t. 9 ≥ 0
)
. (9)

The pooling function reduces feature X from dimensions
C × W × H to 1 × W × H by pooling over channels C ,
a dimensionality reduction by a factor of C . It is worth noting
that the pooling function is only performed for estimating the
coefficient set 9; it is still the actual features X which are
used for creating the working memoryMt

W and updating the
target model.

D. HYBRID METHOD
Hybridmethods usually benefit from three different continual
learning solutions: regularization-based, replay-based, and
structural-based [69]. Here, structural-based solutions of
continual learning are not used since those models try to
expand the model (increasing the parameters of the model)

while keeping other important parameters fixed. For an
Online VOS solution, expanding the model size over time is
not a realistic option, since the computational bottleneck of
Online VOS is the target model.
Here, we propose a hybrid approach that takes into account

the contributions of both GRCL and RMSCL. In other words,
we will evaluate a Hybrid method that has both working
memory and gated-regularizer memory in its structure. The
loss function LH that we propose is

LH (2t ,Mt
W ,G

t−1)

= L(2t ,Mt
W ) + γ

K∑
k=1

gt−1
k

∥∥θ tk − θ t−1
k

∥∥2
2. (10)

The next section evaluates the proposed methods.

IV. RESULTS
The effectiveness of the proposed methods to improve the
performance of Online VOS frameworks is evaluated by
augmenting state-of-the-art Online VOS algorithms. The
proposed GRCL, RMSCL, and Hybrid approaches can
augment any given Online VOS framework. It is worth
noting that the proposed methods can not be added to
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matching-based methods, such as XMem [5], since they do
not have online learning as part of their structure.

We test two well-known and state-of-the-art Online VOS
frameworks: LWL [4] and JOINT [3]. LWL is an extension
of the well-known FRTM [2] framework, benefiting from a
label encoder network E which tells the target model what to
learn [4]. JOINT approaches the VOS problem by using an
online learning induction branch, jointly with a transduction
branch which benefits from a lightweight transformer for
providing temporal and spatial attention to its decoder. JOINT
has reported the state-of-the-art performance for the problem
of Online VOS in terms of accuracy.

A. DATASETS
We compared the proposed methods in the context of both
short and long video sequences. The Long Video Dataset [61]
contains objects with a long trajectory subject to multiple
distribution drifts; the short videos are from the standard
DAVIS16 [70], DAVIS17 [70], and YouTube-VOS18 [71]
datasets, where the target objects are being tracked over
a short period of time and usually without significant
changes in appearance. Evaluating the competing methods
on both short and long-video datasets demonstrates algorithm
robustness to different environments.

For long video evaluation, in which target objects
exhibit appearance changes which lead to significant rep-
resentation drifts, three datasets are evaluated: LVOS [72],
CLVOS23 [46], and our primary evaluation, the Long Video
Dataset [61], which contains three videos with a single object
which is recorded for more than 7000 frames. Each video in
the dataset has 21 labelled frames for evaluation. Building
on the Long Videos dataset, CLVOS23 has 9 videos with
13362 frames. The validation set of LVOS has 50 videos and
a total of 31208 frames, but with less severe distribution drift
than in the other two datasets.

With regards to short-video datasets, the DAVIS16 [70]
validation set has 20 videos, each of which has a single object
for segmentation; the validation set of DAVIS17 [70] contains
30 video sequences with multiple objects to be segmented
in each frame. The validation set of YouTube-VOS18 has
474 video sequences of 65 seen (which are present in the
training set) and 26 unseen object classes. The target objects
in these datasets are mostly with a short trajectory, with
modest changes in object appearance.

B. EXPERIMENTAL SETUP
We use a fixed parameter setup for the baselines, with
maximummemory sizes of N = 32 for LWL and N = 20 for
JOINT, as is suggested by their authors. For all experiments,
the target model Ct is updated for three epochs in each
updating step to have a fair comparison with baselines. The
target model is updated every time the memory is updated,
following the proposed setup in [5]. The memory Mt is
initialized based on the given (ground truth) frame Fg.

FIGURE 4. GPU memory usage of XMem, LWL and JOINT when processing
the 2416 frames of the blueboy video in the Long Video Dataset [61].
As shown, the GPU memory usage of XMem increases significantly over
time, whereas LWL and JOINT have a far more constrained GPU memory
usage.

TABLE 1. Results on the Long Videos dataset [61], comparing Online VOS
baseline methods, their augmented versions with GRCL, RMSCL, Hybrid,
and four matching-based VOS methods. The evaluation metric J is
related to the Intersection over Union (IoU) of an estimated object mask
and the ground truth, and F assesses boundary accuracy.

In all experiments, as suggested in the semi-supervised
Online VOS baselines (LWL and JOINT), the information in
Fg is preserved and is used throughout the whole video. For
GRCL, we keep the gated-regularizer map G0 related to the
training of C0 inMt

G. For RMSCL, the feature Xg and mask
Yg are always placed in working memory with a minimum
weight ψg as shown in Figure 3. We use the same available
pre-trained decoder and encoder models for all experiments
of LWL and JOINT. To measure the effectiveness of the
competing methods, consistent with the standard DAVIS
protocol [70], the mean Jaccard J index, mean boundary F
scores, and the average of J&F are reported. For YouTube-
VOS18, the reported results are found using the YouTube-
VOS18 official evaluation server [71]. The overall score
G of seen and unseen object classes is also reported. The
speed of each method is reported on DAVIS16 [2] in units
of Frames Per Second (FPS) when 1C = 1M = 1.
All experiments were performed using a single NVIDIA
V100 GPU.
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FIGURE 5. Performance comparison of competing methods as a function of memory and target model update step sizes, (1C = 1M), on the Long
Videos dataset [61]. The left panel shows the average J &F on LWL and the right panel on JOINT. The green line shows the performance of LWL and
JOINT without updating their target model on the memory.

TABLE 2. Performance analysis of LWL [4], proposed methods on LWL and XMem [5] against the validation sets of LVOS [72] and CLVOS23 [46]. The mean
and standard deviation of six runs with different memory and target model update step sizes (1C = 1M = {1,2,4,6,8,10}) are reported.

C. EXPERIMENTAL RESULTS
1) LONG VIDEO EVALUATION
Figure 4 shows the GPU memory usage of LWL, JOINT
and XMem on the ‘‘blueboy’’ video sequence from the Long
Video Dataset. Online VOS methods (LWL and JOINT)
require only a fixed GPU memory size, which enables them
to be used on smaller devices with more modest GPUs.
This section will show that the proposed methods do not
further increase the GPU memory requirement while they do
improve the performance of Online VOS methods.

The effectiveness of the proposed GRCL and RMSCL
is evaluated by augmenting two state-of-the-art Online
VOS frameworks, LWL and JOINT, however our proposed
methods can be extended to any Online VOS method
having a periodically-updated target model network, as in
Figure 1.

Table 1 shows the results of the selected baselines (LWL
and JOINT), each augmented by the proposed GRCL,
RMSCL and Hybrid methods, evaluated on the Long Video
Dataset. For LWL-GRCL and JOINT-GRCL, the threshold h
is dynamically set to the 99.5th percentile of the distribution
of normalized U t in (6). Additionally, h is limited (0.1 <

h < 0.55) for LWL-GRCL and (0.1 < h < 0.6)
for JOINT-GRCL. Bounding the threshold h prevents the

model from extremes in over- or under-regularization. The
hyper-parameters related to h were selected by cross-
validation. The chosen ratios of GRCL (ξl and ξu) are
0.07 and 0.15, respectively. These ratios are defined for the
target model C, and are therefore identical for LWL and
JOINT.

For the frameworks in RMSCL, the parameter λ defines
the sparsity of 9 in (9). To select the best λ, the Akaike
Information Criterion (AIC) [73], [74] is used for model
selection, automatically selecting λ and the number of
positive non-zero coefficients 9 t , which defines the size of
the working memory Mt

W . Thus, for each update step t ,
in principleMt

W could have a different size in comparison to
Mt , depending upon the selected λ, the current feature Xt+1,
and the set of features X inMt .
It is worth noting that the selected hyper-parameters for the

Hybrid solution are the same as those for GRCL and RMSCL,
learned for each dataset.

We conducted six experiments with six different memory
and target model update steps s ∈ {1, 2, 4, 6, 8, 10}, where
the target model Ct was updated after each memory update.
The performance of RMSCL fluctuates with update step size
1C, because of the differing distributions which are formed
in the memory as a function of sampling frequency. For
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FIGURE 6. Qualitative comparison of the competing frameworks in the context of the long-video dataset. The associated frame number for each
image is shown along the bottom. The leftmost column shows the given mask Yg, which is the same for all methods. The results show that the
proposed GRCL, when augmenting the baseline frameworks (LWL and JOINT), can lead to better performance against representation drift.
Additionally, the frameworks based on RMSCL (LWL-RMSCL, JOINT-RMCSL) are less vulnerable to the distribution changes which take place in long
video sequences. LWL-Hybrid clearly has the best performance among the compared methods.

reference, the means and standard deviations of all competing
methods are reported in Table 1.

In [5], authors also compare the performance of different
methods by taking the average of five runs, however, they did
not report the five update steps which they used. Comparing
the standard deviations of JOINT in Table 1 with those
reported in [5], we see that our six selected memory update
steps are close to those in [5].

The long videos tested in Table 1 are subject to trajectories
with sudden representation drifts. It is therefore gratifying to

see the proposed methods improving the performance of both
Online VOS models, with J&F in LWL-Hybrid improving
by more than 4% over LWL, and JOINT-RMSCL improving
by a stunning 8% over JOINT.

The proposedmethods in Table 1 improve the robustness of
LWL with regards to the choice of memory and target model
update step sizes, since the standard deviations in Table 1
are taken over the six experiments with different step sizes.
It is worth mentioning that JOINT has a parallel transduction
branch in its structure, which benefits from a transformer
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TABLE 3. Performance analysis of the evaluated methods against the validation sets of DAVIS16, DAVIS17, and YT-VOS18. The first and second best results
are highlighted in each section of the table, demonstrating that the proposed method performs similarly, if not better, on short-video datasets in
comparison to the baseline methods (LWL and Joint).

model that acts like a matching-based method. Although
the transduction branch of JOINT can boost the positive or
even negative effects of the proposed solutions, the average
performance J&F of JOINT is improved significantly.

For a more comprehensive comparison, the proposed
methods and the baseline Online VOS frameworks are
compared with four matching-based methods including
RMNet [25], STM [1], STCN [26], and the current long
VOS state-of-the-art XMem [5]. The reported results of the
matching-based methods on short-video datasets are taken
from [5]. STM is a query-based VOS baseline upon which
RMNet, STCN and XMem are built. RMNet and STCN try to
improve the memory functionality of STM by having a better
memory encoding and memory reading methods; XMem is
specifically designed to work on long video sequences.

Figure 5 lists the average performance J&F of six runs
over different memory and target model update step sizes
for the first eight methods of Table 1. On LWL, GRCL
outperforms RMSCL in most cases, whereas on JOINT,
RMSCL is better than GRCL, because of the effect of
working memory on both branches of JOINT. It is worth
noting that GRCL can impact only the induction branch
(online learning part) of JOINT.

Figure 6 shows the qualitative results of the proposed
methods (GRCL, RMSCL, and Hybrid) and baselines (LWL
and JOINT) on seven selected frames of the ‘‘dressage’’
video sequence from the Long Videos dataset. The results
in are produced by applying the evaluated methods to the
Long Videos dataset when 1C = 1M = 1. LWL-
Hybrid has the best performance on the Long Videos dataset.
The results show how RMSCL improves the performance
of LWL and JOINT, and how GRCL improves LWL. The
challenge of GRCL with respect to JOINT is with regards
to the correctness of the prior information (which is the case
with LWL). In general, baseline methods are vulnerable to
the distribution drift of target objects, which are explained,
discussed and formulated in [46].
In addition to the Long Video Dataset, we evaluate LWL

and its augmentations by GRCL, RMSCL, and Hybrid
against the strongest baseline, XMem, on two other long-

video datasets, CLVOS23 [46] and LVOS [72] for a range of
update step sizes (1C = 1M = {1, 2, 4, 6, 8, 10}). We used
the same setup and hyper-parameters as in the Long Video
Dataset. As shown in Table 2, LWL produces comparable
results to XMem on long videos. The proposed methods
improve LWL performance on CLVOS23, but not on LVOS,
which stems from the fact that continual learning challenges
are carefully designed into CLVOS23 and are present in the
Long Video Dataset, such that each video contains numerous
abrupt appearance changes or distribution drifts, but not so
much in LVOS, where videos have some rapid but not sudden
appearance changes, and only in a small subset of validation
videos.

2) SHORT VIDEO EVALUATION
Table 3 demonstrates performance on short-video datasets
(DAVIS16, DAVIS17, and YouTube-VOS18). The same
hyper-parameters are used for short and long videos, meaning
that the models have no prior knowledge of video length.
Objects in short-video datasets have a short trajectory and
their representations are mostly kept intact or only gradually
changing. From Table 3, augmenting by GRCL performs the
same as the baseline, and the proposed regularizer not only
does not affect the performance of the baseline method when
there is no representation drift on objects in videos, but also
LWL-GRCL performs slightly better compared to LWL on
YouTube-VOS18.

Table 3 uses parameters as suggested by the baseline
models for reporting J , F and FPS. For JOINT, Mt

is updated every three frames; for LWL Mt is updated
every frame; XMem updates its so called working memory
every five frames. The proposed RMSCL improves the
performance of JOINT on DAVIS16 but it slightly degrades
the performance of JOINT on DAVIS17 and YouTube-
VOS18. In general, the degredations are modest, and in any
event the short-video results are shown for completeness,
however the methods are designed to particularly address
the distributional changes encountered, in practice, in nearly
all videos, but not in the short-video datasets. The baselines
perform slightly better than GRCL in terms of FPS, since
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FIGURE 7. The qualitative comparison of the evaluated methods on a short video from DAVIS16 [70]reflecting the quantitative results of Table 3. The
proposed GRCL and RMSCL can improve the performance of JOINT while having no or only modest negative impacts on LWL. The red-highlighted
frames emphasize how the proposed approach outperforms the JOINT baseline.

FIGURE 8. Run-time evaluation: The proposed methods’ run-times are
compared against the LWL baseline. LWL-RMSCL reports higher Frame Per
Second (FPS) when the memory size N is increased.

GRCL needs to calculate a new Gt after every updating step
t , however for a small target model this FPS degradation is
not significant.

Figure 7 offers a qualitative comparison of the proposed
methods and baselines on the ‘‘soapbox’’ video sequence of

DAVIS16, one of the longest video sequences in DAVIS16
at 99 frames. The proposed methods offer positive improve-
ments on JOINT, with slight changes on LWL, in agreement
with the reported results in Table 3.

On long video sequences it is not feasible to store all of
the previously evaluated frames in memory M, as such it
is important consider the effect of memory size N , tested at
N ∈ {8, 16, 32, 64, 128} on the Long Videos dataset, with
the target model and memory update step 1M = 1C = 4.
In general, and not surprising, increasing the memory size
improves performance (Figure 9) but increases computational
complexity (Figure 8). Increasing the memory size does not
have a significant effect on LWL-RMSCL, since it does not
have any hyper-parameters that are affected by the memory
size, however the hyper-parameter tuning (P, h, ξl, ξu) of
LWL-GRCL and consequently LWL-Hybrid is implicitly
affected by the size of the memory. RMSCL, on the other
hand, provides a small set of diverse data with newweights9
in its dynamic working memoryMt

W , which improves both
accuracy and speed of the baseline methods on long videos.

Figure 8 illustrates the impact of memory size N on speed,
measured in FPS on DAVIS16, for memory and target model
update steps set to1M = 1C = 1. Since LWL-RMSCL uses
a smaller workingmemoryMt

W for training the target model,
it is faster than LWL and LWL-GRCL when the memory size
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FIGURE 9. The effect of different memory size N against the proposed
methods compared to the baselines on the Long Video Dataset [61].
Observe how the LWL baseline fluctuates significantly, in contrast to
improved performance and reduced fluctuations associated with the
proposed methods. The target model and memory update step are
1M = 1C = 4.

FIGURE 10. Quantitative evaluation of the proposed GRCL with
conventional continual learning (MAS) [63] on the Long Video
Dataset [61]. MAS [63] is less effective than the proposed GRCL when
adding onto LWL.

is increased. It is worth mentioning that minimizing (9) in
RMSCL is affected by the memory size N , and consequently
it affects the FPS of LWL-RMSCL as well. LWL-Hybrid has
the lowest FPS among the proposed approaches since it has
the computational complexity of both GRCL and RMSCL.

3) CONVENTIONAL CONTINUAL LEARNING
One important aspect of the proposed continual learning
approaches to augment Online VOS frameworks is that
they are designed especially for this purpose. To illus-
trate, Figure 10 compares the performance of proposed
LWL-GRCL against LWL augmented by standard MAS
continual learning [63] as a regularizer for updating the target

FIGURE 11. The effect of regularized-gated memory size P on the
LWL-GRCL framework with a fixed size gated memory Mt

G. For this
experiment, memory size Mt is fixed (N = 8) in order to properly analyze
the impact of GRCL. By setting P to a large number, the target model Ct

will not have enough free parameters to be updated on memory Mt .

model, tested on the Long Video Dataset. As shown in the
figure, LWL-GRCL reported higher average performance
of J&F compared to LWL-MAS, for two reasons: i) The
overall gated-regularized map Gt−1 described in Figure 3
preserves the efficiency of GRCL, whereas the MAS
regularizer loses its efficiency as update steps are increased.
MAS benefits highly from �t , however the efficiency of �t

is degraded as more and more target model gradients are
processed, accumulated, and stored over time, causing all of
the parameters to become important as the number of updates
increases. In contrast LWL-GRCL, with its dynamic memory
size, guarantees that the target model Ct has enough free
parameters to learn new tasks. ii) For a small number of
training epochs, in each updating step of Ct the binarized
(hard) regularizer Gt−1 is more effective than MAS with a
soft regularizer �t .

4) MEMORY EFFICIENCY
To compare the memory efficiency of GRCL against the
baseline, we can compare each unit of memoryM of LWL
and of LWL-GRCL. In LWL, each sample in the memory
M consists of the preceding estimated object masks Y and
its related extracted features X . Each feature X ∈ X has
a dimension of 512 × 30 × 52 floats (64 bits). In contrast,
each binary regularized-gated map (G) has a dimension of
512 × 16 × 3 × 3 bits. Moreover, each unit ofM also has a
binary mask of the target model C. As a result, each unit of
Mt

G is almost 700 times smaller than each unit ofM. Thus,
having a large gated-regularizer memory Mt

G is much less
expensive than having a large memoryM.

D. ABLATION STUDY
In this section, we evaluate the effect of key parameters of
the proposed methods on the performance of both LWL and
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FIGURE 12. The number of regularized target model parameters when
incorporated into LWL-GRCL, as a function of regularized-gated memory
sizes (P = {20,32,80,128}). The result are based on 1416 frames of the
rat video sequence of the Long Video Dataset [61]. Ct is updated every
frame and the memory size is set to eight (N = 8).

FIGURE 13. The effect of target model update step size 1C: The
competing methods are evaluated via the Long Video Dataset [61]. The
results show that the proposed LWL-RMSCL is more robust to target
model update step size 1C.

JOINT, based on the Long Video Dataset [61], to clearly
illustrate the impacts of the proposed approaches. In general
the gated-regularizer memory Mt

G has a dynamic size,
controlled by (ξl, ξu), however a fixed gated-regularizer
memory size P allows a more systematic study of memory
size dependence. Figure 11 shows the performance of
LWL-GRCLwith memory sizes P ∈ {4, 20, 32, 64, 80, 128}.
Increasing P improves the performance of LWL-GRCL until
the number of regularized parameters do not degrade target
model learning; the best value for P will depend on N ,
however for N = 8 LWL-GRCL has its best performance
for P = 32.

The number of regularized parameters in Ct is an important
factor related to the ability of the target model to learn new
information. As seen in Figure 12, the number of regularized
parameters increases while the gated-regularizer memory
MG is growing, evaluating new frames. This growth is
clearly dependent on P, so for P = 128, almost all of
the parameters of C are regularized, and in this case Ct

does not have any free parameters to be trained, and even
removing or replacing one gated-regularization map Gj from
MG would not free enough parameters to allow Ct to be
updated. In contrast, when the gated-regularizer memoryMG
reaches its maximum capacity, the oldest G in memory is
replaced by the next gated-regularizer map, typically freeing
up parameters, which can clearly be seen in Figure 12 for P =

80. To address the issue discussed issue regarding GRCL-
Fixed, a mechanism is proposed that makesMG dynamic in
size.

To demonstrate the effect of target model update step
size, an ablation study compares the performance of LWL-
GRCL, LWL-RMSCL, LWL-Hybrid, and LWL. Thememory
update step size is set to 1M = 1, whereas the target
model update step size varies 1C ∈ {2, 4, 6, 8, 10, 12, 14}.
The memory M and Ct were updated sequentially at the
same time index (1C = 1M). The memory capacity is
set to N = 4, making the situation difficult for all of
the evaluated approaches. Figure 13 shows that LWL has
the lowest performance when compared to LWL-GRCL and
LWL-RMSCL. The proposed methods reduce the degree of
LWL performance degradation, except for LWL-GRCL at
1C = 4, a case which demonstrates a limitation when the
model concentrates on an incorrect prior, which is maintained
and amplified during the evaluation of future frames.

V. CONCLUSION AND FUTURE WORKS
In this paper, we proposed two novel modules, Gated-
Regularizer Continual Learning (GRCL) andReconstruction-
based Memory Selection Continual Learning (RMSCL),
which can be integrated with any Online VOS algorithm
to improve their memory limitations, improving their per-
formance on long videos with the distribution drift, and
preserving their performance accuracy on short videos. The
offline trained parts — the encoder, decoder D, and label
encoder E — do not need to be re-trained for the proposed
methods, making it possible to apply the proposed methods
on any Online VOS consistent with Figure 1 without any
further fine-tuning.

We showed that the proposed Hybrid method (a combi-
nation of two proposed methods) in many cases increases
the performance of the augmented baselines, although further
refined combinations of GRCL and RMSCL would be
desirable. The proposed methods improve the performance
of Online VOS in a variety of different scenarios and
aspects such as speed, accuracy and robustness. The proposed
regularization-based GRCL, although designed for long
videos having distributional shifts, maintains baseline per-
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formance even on short-video datasets (DAVIS16, DAVIS17,
and YouTube-VOS18).

The main limitation of GRCL is that if the prior knowl-
edge learned during the previous update time is incorrect,
GRCL insists on remembering the incorrect prior (learned
information) for the next update steps, causing the model to
lose the correct target object and being unable to recover from
the incorrect information in memory. This paper proposes
future work that uses heuristic data to establish a quality
metric for the available data in memory, thereby bypassing
certain target model update steps. It is worth mentioning
that there is no message passing between RMSCL and
GRCL in the proposed Hybrid method, so their effects
may be similar or contradictory. For future work, we can
consider an interactive relationship between RMSCL and
GRCL to improve the Hybrid method. In semi-supervised
VOS, the given information may become less important as
we approach the end of a long video; thus, incorporating the
self-supervision method [75] and fusing it with the current
method could be one future work. Finally, we could apply
the proposed methods to other areas of video processing,
specifically object tracking, whichmay encounter issues such
as memory constraints and distribution drift during the online
learning process.
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