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ABSTRACT Automated decision support systems are computational tools that have been applied in clinical
practice and have many benefits in processes, such as the diagnosis of diseases. Scientific and technological
advancements in this area have led to the development of systems for other decision-making processes
including medical prescriptions. In this study, we aimed to automate medical prescription making by
designing a computer-aided system based on the experience of clinicians. In this case study, we automated
the prescription of therapies for ankle fractures in a physical rehabilitation program. The database of the
computer-aided prescription systems comprised a set of clinical records, from which the input variables
were signs and symptoms related to ankle fracture rehabilitation, and the output variables represented
rehabilitation therapies that may be prescribed by clinicians. The system was clinically validated, and
its performance was quantified using confusion matrix metrics: 97.4% accuracy, 98.7% precision, 96.6%
recall, 98.4% specificity, and 97.6% F-score. Therefore, the proposed system could be a useful tool in
decision-making processes as prescription therapies that could contribute to the later motivation regarding
traditional physical rehabilitation programs which is the optimization of resources for both patients and
physical rehabilitation centers, while rehabilitation objectives are achieved.

INDEX TERMS Computer-aided prescription, decision support systems, computer-aided diagnosis, physical
rehabilitation, ankle fracture.

I. INTRODUCTION
More than 20% of lower limb injuries are ankle fractures [1],
[2], representing the highest rate of incidents related to
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fractures in emergency departments [3]. After emergency
care, each fracture case is referred to a trauma specialist
for appropriate treatment. Owing to the high incidence rate
of ankle fractures, they represent a high percentage of the
workload of these specialists [4]. Commonly, treatments
recommended by trauma specialists to treat ankle fractures
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include a physical rehabilitation program (PRP) to recover
motor function [3]. Traditional PRPs comprise a set of
therapies that must be executed over a certain period of
time. The objective of PRPs is to regain the motor skills
lost because of fractures. In general, PRP therapies have
two modalities: (i) mobility and strength exercises, and
(ii) physical means. The objective of mobility and strength
exercises is to recover the optimal range of motion (ROM)
of the injured joint and muscle strength through passive
exercises, in which the patient requires the help of a
physiotherapist, or active exercises in which the patient must
perform the exercises on their own. There are also active
assisted exercises, in which the patient requires partial help
from a physiotherapist. In contrast, the objective of physical
means is to relieve pain and reduce edema of the affected
area through the application of lasers, ultrasound, thermal
changes, and interferential therapy [5]. Traditional PRPs are
illustrated in Figure 1.

FIGURE 1. Two modalities of therapies executed in traditional PRPs:
mobility and strength exercises and physical means. The first modality
(left side) includes passive exercises and active or active-assisted
exercises. The second modality (right side) includes the application of
laser, ultrasound, thermal changes, and interferential therapy. These
therapies are recommended to patients to regain motor skills after an
ankle fracture [5].

In clinical practice, PRP is part of the rehabilitation cycle
recommended by trauma specialists to regain motor skills [6].
This is an iterative process of executing therapies based
on clinical assessments to achieve the rehabilitation goals.
At each iteration, the decision to continue or complete PRP
depends on the progress assessment of the patient’s functional
abilities. For traditional PRPs, such assessments are evaluated
using objective and quantitative criteria, including the
clinician’s judgment to rate the patient’s performance [7]. If a
decision is made to continue PRP, clinicians usually prescribe
a specific selection of therapies based on the progress of
the patient. These recommendations are made according
to available clinical guidelines, such as the Massachusetts
General Hospital protocol for rehabilitation of ankle fractures
with ORIF [8], or in accordance with the clinical practices of
a particular health center. These characteristics of traditional
PRPs lead to the question of whether this decision can be
made automatically. To address this question, we propose
a computer-aided system for automated prescription of
specific therapies required by patients enrolled in PRP.
The aim was to develop a computational methodology to
process data from the clinical records of patients and to

represent the clinical acknowledgment of physicians, which
is the basis of automated prescription. A later motivation
regarding traditional PRPs is that automation can promote
the optimization of resources for both patients and physical
rehabilitation centers while rehabilitation objectives are
achieved.

II. RELATED WORK OF MEDICAL DECISION SUPPORT
SYSTEMS
There are a wide variety of computational tools for automated
decision making by clinicians, which are known as decision
support systems. Based on their functions, these systems
are classified into two areas: computer-aided diagnosis and
computer-based treatment. Computer-aided diagnosis deals
with the automated classification of the health status of a
patient based on the recording and processing of information
related to signs and symptoms that form the basis of disease
diagnosis, whereas computer-based treatment deals with
two main stages: the clinical prescription and execution of
prescribed therapies.

Computer-aided diagnosis is the most advanced [9], and
many studies have been conducted to diagnose diseases
such as different types of cancer, including lung and
colorectal [10], breast [11], and prostate cancer [12]; different
types of tumors [13], [14], [15]; diabetic complications such
as diabetic foot [16] and retinopathy [17], [18]; and cardiac
pathologies such as atrial fibrillation and visual diseases such
as glaucoma [19], coronary artery disease [20], and diagnosis
of Covid-19 [21].

Regarding treatment, in specific cases of physical reha-
bilitation, some systems have been reported to automate
the clinician’s decision. For example, Maddison et al. [22]
reported an automated program to deliver prescriptions for
regular exercise, technical support, and behavioral strategies
(goal setting, exercise scheduling, and overcoming barri-
ers) based on the American College of Sports Medicine
guidelines, focusing on cardiac rehabilitation. Although
the article reported the results of applying their program,
it did not report information on the computational method-
ology that managed the clinician’s knowledge. Similarly,
Klein et al. [23] reported a study on rehabilitation for anxiety
disorders and claimed full automation of treatment programs,
including a computer-aided diagnosis system called e-PASS,
evaluation using a set of questionnaires, and five fully
automated self-help cognitive behavior e-therapy programs,
depending on the anxiety disorder and its symptoms. This
program included automatic delivery of e-mail alerts to
follow the prescribed program. Nevertheless, as in the case
of Maddison et al. [22], algorithms for automated clinician
knowledge have not yet been reported. Gross et al. reported
a clinical decision support tool based on a machine learning
algorithm to prescribe interventions for patients with mus-
culoskeletal disorders [24]; in fact recently, they applied this
methodology in clinical trials, showing that the accuracy of
the algorithm for selecting successful rehabilitation programs
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was less accurate than human clinical recommendations [25].
This revision of the state-of-the-art shows us that research on
computer-aided prescription systems is an early field, with
several scientific and technological challenges regarding both
development and clinical validation.

With respect to evaluation, automated measurement of
exercise execution in rehabilitation programs, as well
as the supervision and remote feedback of clinicians,
has become popular in recent years. For example,
Moral-Munoz et al. [26] presented a review in which the
most common studies focused on stroke, cardiac disease,
balance impairment, and joint/limb rehabilitation. This
study reviewed smartphone-based software to facilitate
patient caregiver communication, progress management,
easy interaction, and clinical tests. Another review of
software for mobile applications by Nussbaum et al. [27]
included a large set of injuries and diseases, such as
musculoskeletal, spinal cord injury, traumatic brain injury,
pulmonary and neurological diseases, cancer, pain, non-
specific issues, and general rehabilitation programs. There
are algorithms for evaluating the performance of exercises
based on metrics established by clinicians. Liao et al. [7]
presented a comprehensive review focusing on machine
learning algorithms that automatically evaluate a patient’s
performance and can be useful in supporting traditional
rehabilitation assessments performed by trained clinicians
and in promoting home-based rehabilitation. Figure 2
shows the main applications of decision-support systems in
medicine.

In the specific case of PRPs for ankle fractures, the
treatment involves two stages. In the first stage, patients visit
the clinical center for physical assessment, and the clinician
prescribes a set of therapies (mobility and strength exercises
and physical means) that they must perform to restore func-
tional abilities. The second stage is the performance of these
prescribed therapies by the patient, according to the schedule
provided by the clinician. In traditional PRPs, the first
stage is a subjective decision that depends on the clinician’s
experience and skills. In the second stage, the performance
of therapies is limited to hospital facilities and home-based
performance is conducted at the patient’s home without the
supervision of a therapist. Thus, it is challenging to develop
automated decision support systems in both stages of PRPs to
improve the selection of therapies and assess the performance
of exercise execution. Currently, most automation research
in rehabilitation is concentrated in the second stage, mainly
on the automatic measurement of movement variables and
evaluation of the performance of prescribed exercises [28].
For this reason, there is also an interest in developing decision
support systems to automate the determination of which
therapies a patient must perform at each iteration of the reha-
bilitation program to restore functional abilities. Thus, in this
study, we propose a computer-aided prescription system to
automate the clinician knowledge based on patient data and
prescriptions based on medical guidelines of the injury or
disease.

III. METHODOLOGY
The proposed computer-aided prescription system is based
on the execution of traditional PRP for ankle fractures and
is composed of clinical records and a set of therapies,
meanwhile, the rules are based on the clinician’s knowledge.
Figure 3 illustrates the proposed system, and the following
subsections describe it in detail, including the traditional PRP
for ankle fractures represented as an iterative process to be
automated.

FIGURE 2. Decision support systems have two main applications in
medicine: diagnosis (computer-aided diagnosis) and treatment
(computer-aided treatment). Computer-aided diagnosis is the most
mature area (dark-gray box), whereas for treatment, most research has
been focused on automating the execution of therapies (dark gray box).
The automation of prescriptions is an early research field (light gray box).

FIGURE 3. Block diagram of the proposed computer-aided prescription
system. The database includes the clinical records (the input variables) of
patients suffering from an ankle fracture and the set of therapies
prescribed (the output variables). The rules of the systems are defined by
the experience and knowledge of clinicians. The system provides the
prescribed therapies, which belong to a subset of the full set of therapies.

A. TRADITIONAL PRPS FOR ANKLE FRACTURE
In traumatology, the conventional treatment for ankle frac-
tures includes two approaches. (i) Conservative treatment
consists of a cast immobilizer (other materials can also be
used) covering the foot and shank just below the knee, or if
required, other external tools can be used. (ii) Treatment
based on surgery consisting of open reduction and internal
fixation with osteosynthetic materials. Regardless of the
selected approach, treatment of the fracture is followed by a
period of leg immobilization to allow bone healing. Immo-
bilization has short-term consequences such as muscular
atrophy, deep vein thrombosis, joint stiffness, and edema as
well as long-term consequences such as gait abnormalities,
persistent leg weakness, and a permanent deficit in joint
abilities that the patient had before the fracture [4], [29].

The process of regaining biomechanical capabilities after
a fracture is as follows: Trauma specialists evaluate the
biomechanical capabilities of the patient; if such capabilities
are not optimal, the patient must attend the PRP. At the
beginning of PRP, the patients’ clinical records were assessed
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FIGURE 4. Flux diagram of a conventional treatment to recover
biomechanical capabilities after an ankle fracture. The gray box highlights
the process of a traditional PRP.

by clinicians at the rehabilitation center. Subsequently,
muscular and joint functions are estimated or measured, and
if such functions are not optimal, clinicians prescribe a set
of rehabilitation therapies [5]. The prescription includes the
time period of execution (e.g., 10 or 15 days) and the number
of series or repetitions that the patient must execute daily for
each therapy. After the execution period, the patient returns
to the trauma specialist for reassessment of the biomechanical
capabilities; if these are in the optimal range, then the patient
is discharged. Otherwise, the patient returned to PRP. Thus,
PRPs are iterative processes that end when patients regain
biomechanical capabilities. Figure 4 depicts the main steps of
the traditional treatment of ankle fractures, and the specific
steps followed during PRP are shown in the gray box.
According to Figure 4, themain elements of the iterative cycle
of a PRP are clinical prescription, execution of therapies, and
assessment of biomechanical capabilities; being the first one
the element of interest to be automated in this work.

B. COMPUTER-AIDED PRESCRIPTION SYSTEM
A system dealing with this challenge requires the automatic
acquisition of data on the biomechanical capabilities of the
patient, management of the clinician’s knowledge, and a
computational method to integrate these elements. With this
in mind, the proposed computer-aided prescription system
has a database based on the clinical records of patients
who suffered an ankle fracture and the set of therapies
prescribed for the clinician. Clinicians’ knowledge is based

on the medical conventions for ankle fracture rehabilitation
reported in the medical literature, as well as their experience
as specialists in physical rehabilitation. These elements are
described as follows.

1) DATABASE
The database of the computer-aided prescription system,
designed to automate the clinical prescription of PRP, was
formed using two sets of data. The first dataset contained
clinical records reporting the patient’s condition. The second
dataset contained the therapies that the clinician must
prescribe to patients according to the condition registered in
the clinical records. Next, we describe the two sets in detail.

Conventionally, the clinical records of patients with ankle
fractures contain data from trauma and rehabilitation centers.
This record was updated at each PRP iteration until the
desired biomechanical capabilities were achieved. Clinical
records contain quantitative and qualitative data. The quan-
titative variables were the main joint movements, including
dorsiflexion, plantarflexion, inversion, and eversion; these
variables are measured in degrees (o) and it is desirable
that their values are into the optimal ROM. The remaining
variables are qualitative. The first qualitative variable was
muscular strength, defined using the Lovett and Daniels
scale, which registers six levels of strength: none, poor,
deficient, regular, good, and normal. The second variable
was movement limitation, which was estimated in two states:
with and without limitation. The third variable was the
pain condition, estimated using the visual analog scale in
four levels: no pain, mild pain, moderate pain, and severe
pain. The fourth variable was edema, which was recorded
using the Godet technique at four levels: no edema, mild,
moderate, and severe. The fifth variable was contracture,
which was estimated in two states: the occurrence or absence
of contracture in the patient’s ankle. The sixth variable was
the wound, indicating adherence to the deep planes of the
skin. The seventh variable was trophic change, which was
estimated in two states: with or without trophic changes. The
eighth variable was sensitivity, which indicate the presence of
sensitivity. The ninth variable was gait, which considered two
types of patterns: the desired pattern (called eubasic) and a
pattern that is not desired (called dysbasic). The 10th variable
was joint stability, which was estimated in two states, whether
or not there was stability. The last qualitative variable was
bone healing, which was estimated in two states: presence
or absence of bone healing. The ranges and scales of these
variables were estimated according to standardized scales
reported in the medical literature [5]. Table 1 summarizes the
clinical records of patients with ankle fractures.

Mobility exercises, which are dorsiflexion, plantarflexion,
inversion, and eversion, are the most relevant therapies for
regaining the ROM of joint movements. Depending on the
patient’s development, these exercises can be passive, active,
or assistive. As joint movements recover, it is important
to promote muscular strengthening by executing isometric,
isotonic, stretching, and proprioception exercises. Once a
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TABLE 1. Description of variables registered in the real clinical records of
patients who have suffered an ankle fracture. The states, values, or scales
correspond to medical conventions reported in the literature [5].

patient can walk, walking exercises are prescribed for gait
re-education and to improve equilibrium. If necessary, and if
pain is not present, a set of massages could be prescribed,
such as anti-adherent massage for the scar, anti-edema
massage, and relieving massage. Physical means also support
mobility exercises to return ROM to the joints; for example,
the application of ultrasound or thermal exchange therapy,
which consists of the alternate application of cold and heat.
Interferential therapy is recommended for: pain, edema,
and bone healing. In summary, Table 2 shows 14 therapies
organized by type, including their conventional prescription,
nine therapies for mobility and strength, while five therapies
for physical means. Data from the clinical records and
therapies summarized in Tables 1 1 and 2, respectively, are the
two sets of information required to determine the prescription
of PRP. Next, we discuss the conventional agreement to
prescribe therapies for PRP based on the clinical records of
patients.

TABLE 2. Set of therapies for PRPs in ankle fracture rehabilitation. There
are two modalities of therapy: mobility and strength exercises, and
physical means. The conventional prescription for each therapy is in
accordance with medical conventions [5]. Reps, repetitions.

2) CLINICIAN’S KNOWLEDGE
As shown in Figure 4, in traditional PRPs, the prescription
of rehabilitation therapies is determined by clinicians.
This decision is based on the biomechanical capabilities
registered in the clinical records, functional assessment of
the patient, and experience and knowledge of the clinicians.
If some biomechanical capabilities are not in the desired
range, then therapies are prescribed; otherwise, the desired
outcomes are achieved, and the patient is discharged. Thus,
because the decision-making process for the prescription
of PRP therapies involves conditional rationale, the direct
method to automate this process is based on IF THEN
rules that relate input and output variables are described
in Tables 1 and 2, respectively. The elements and structure
of each rule depend on the clinician’s knowledge; these
elements are listed in Table 2. The input variables are related
to the outputs and the structure is defined by functions
that represent the rationale of the clinician. The different
states that an input variable can take (third column of
Table 1) determines the possible combination defined by the
rule.
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IV. RESULTS
To illustrate the proposed methodology, we consider PRP for
ankle fracture rehabilitation as a case study. This procedure
was prescribed by clinicians at the Department of Sports
Medicine and Rehabilitation, hospital ‘‘Dr. José Eluterio
González’’, University of Nuevo León, Monterrey, Nuevo
León, Mexico.

A. DATA COLLECTION
To populate the database, a retrospective longitudinal study
was conducted to collect input and output data from patients
who had been enrolled in PRP at this hospital between
2017 and 2019. According to the clinical practice of the
hospital, a full set of therapies was prescribed to patients
at each assessment appointment during the rehabilitation
process. At each appointment, an observation sheet was
generated about the patient’s condition (input and output
variables) and with the prescription made by the physician.
These data were registered at each patient appointment
to assess the recovery of the biomechanical capabilities.
Because this relationship between the input and output
variables prescribed according to the physician’s knowledge
and experience is of interest to automate, the observation
sheet that is generated when a patient attends an appointment
is called a real clinical record. The inclusion criterion to
consider a real clinical record eligible was as follows: each
record must be from an adult patient of either sex with an
ankle fracture. The type of fracture could be Weber types A,
B, or C. The exclusion criterion was the use of lower limb
prostheses.

In this study, 34 real clinical records met the inclusion
and exclusion criteria and were collected from 10 patients
with different numbers of appointments (mean age, 39.4 yrs;
standard deviation, 10.9 years) who suffered an ankle fracture
(four categorized as Weber B, three as Weber C, and
three as not specified). The selected clinical records were
analyzed by a collaborative team of clinicians specializing
in physical rehabilitation. Relevant information of the real
clinical records was extracted corresponding to the clinical
conditions defined in Table 1 and the clinical prescriptions
described in Table 2. An example of the information
extracted from the four real clinical records is presented
in Table 3.

Each series of input variables consists of the 12 variables
described in Table 1 and is represented by the vector xxx =

[x1 . . . x12]T , where each element of xxx is a binary variable
defined as follows: x1 represents joint movements, x2 is
strength, x3 is movement limitation, x4 is pain, x5 is edema,
x6 is contracture, x7 is wound, x8 is trophic changes, x9 is
sensitivity, x10 is gait, x11 is stability, and x12 is bound
healing. From the values and scales reported in Table 1,
the registration of the input variables in the clinical record
depends on the medical rationale. For example, x1 has a
scale for each of the four angular joints. Nevertheless, when
a clinician performs a joint movement, they only consider

TABLE 3. Example of information extracted from four real clinical records
of the database of this study. The clinical conditions were registered
according to the scales and values reported in Table 1.

whether the ROM is complete. In practice, x1 represents
two states: the patient has achieved ROM of the four joint
movements. This implies that x1 is a dichotomous variable,
and thus, x1 ∈ {0, 1}. Regarding x2, this variable takes
values from 0 to 5 according to the scale reported in Table 1;
however, conventionally, the scale is discretized to represent
four states, that is, x2 ∈ {00, 01, 10, 11}. Double zero (00)
represents level 0, 01 represents the range from 1 to 3,
10 represents 4, and 11 represents level 5 on the strength
scale; thus, x2 is a binary polytomic variable. x4 is also a
polytomic variable, that is, x4 ∈ {00, 01, 10, 11}. This is
reported to be between 0 and 10 according to the Lovett
and Daniels scale, but the scale is conventionally grouped
by clinicians into four states; that is, the scale is discretized
representing 00 for the 0 level of the scale, 01 for the
1-3 level, 10 the for 4-7, and 11 for the 8-10 level. x5 is
also a polytomic variable representing four states on the
Godet scale: x5 ∈ {00, 01, 10, 11}, where 00 represents
no edema, 01 represents the x level, 10 represents xx, and
11 represents xxx. The remaining variables, x3, x6, . . . , x12,
are dichotomous, according to the possible values they
represent as reported in Table 1. Table 4 summarizes the
types, numbers of bits, and possible combinations that
can be used to represent the different clinical conditions,
scales, and values reported in Table 1. The definition of the
type and states of variables is in accordance with medical
rationale, in which the input variables are registered as
binary data. An example of binarization of the input variables
corresponding to the clinical records reported in Table 3 is
presented in Table 5.
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TABLE 4. Discretization of input variables.

The computer-aided system provides a clinical prescription
that depends on the input variables registered in clinical
records. Thus, the output variables of this system were the

TABLE 5. Example of discretization of input variables reported in the
clinical records analyzed in Table 3.

14 therapies reported in Table 2, and each output variable
was defined as follows: y1 represents mobility exercises
(full set including dorsiflexion, plantarflexion, inversion,
and eversion), y2 isometric exercises, y3 isotonic exercises,
y4 stretching exercises, y5 proprioception exercises, y6 walk-
ing exercises, y7 anti-adherent massage, y8 anti-edema
massage, y9 relieving massage, y10 shallow-depth ultrasound,
y11 thermal therapy, y12 interferential therapy for edema,
y13 interferential therapy for pain, and y14 interferential
therapy for bone healing. In the conventional rationale for
clinical rehabilitation, depending on the values of the 12 input
variables, the clinicians recommend therapy; therefore the
output variables y1 to y14 are binary and dichotomous,
assigning 0 for not executing the therapy and 1 for executing
the therapy. Thus, the output variable of the computer-aided
prescription system is the vector yyy = [y1 · · · y14]T , where
each yi, for i = 1, . . . , 14 can be 0 or 1. In summary,
the result of the data collection process is the database
of the computer-aided prescription system, which includes
input and output data xxx and yyy respectively. Both variables
are binary and can be used to relate the clinical condition
of the patient and the prescriptions of therapies based on
the clinician’s knowledge, represented by the relationships
described in the next subsection.

B. REPRESENTATION OF THE CLINICIAN’S KNOWLEDGE
As described in Section II, a computer-aided prescription
systemwas proposed to automate the prescription of therapies
in PRP for ankle fractures. The mathematical representation
of a clinician’s knowledge comprises a set of functions. This
representation was selected for two reasons: (i) the binary
nature of the database, and (ii) the rationale for clinicians
to decide on prescriptions based on the clinical condition of
the patient. Because the prescription is represented by yyy, its
14 components are functions that depend on the components
of the input variable xxx; thus, the clinician’s knowledge is
represented by 14 functions.

• Mobility exercises (y1). This therapy includes a set
of four exercises to recover ROM in dorsiflexion,
plantarflexion, inversion, and eversion. y1 is prescribed
if the joint movements (x1) are incomplete, (x1 = 1)
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OR (+) if the movement limitation (x3) is present
(x3 = 1). Thus, the decision is represented by the
following equation.

y1 = x1 + x3. (1)

• Isometric exercises (y2). This therapy is recommended
when clinical assessment indicates that joint strength
(x2) is limited. D0 is defined as the least significant bit
(LSB) and D1 is the most significant bit (MSB) of a
binary variable. Therapy is prescribed when x ′

2D1 =

1ORx ′

2D0 = 1, where (′) represents theNOT operator of
a variable. Thus, according to Table 4, the prescription
is as follows.

y2 = x ′

2D1 + x ′

2D0. (2)

• Isotonic exercises (y3). This therapy also depends on x2,
and this condition is prescribed when the joint strength
is reported to be normal. Then, according to Table 4, the
condition is prescribed when x2D1 = 1AND (·) x2D0 =

1; thus, the function is as follows:

y3 = x2D1 · x2D0. (3)

• Stretching exercises (y4). This therapy is prescribed
if joint movements (x1) are incomplete, or if both
movement limitation (x3) and contracture (x6) are
present.

y4 = x1 + x3 + x6. (4)

• Proprioception exercises (y5). This therapy is prescribed
if clinical assessment reports movement limitations,
altered sensitivity, dysbasic gait, or instability. This
relationship is as follows:

y5 = x3 + x9 + x10 + x11. (5)

• Gait exercises (y6). These exercises are prescribed when
dysbasic gait is reported in the clinical records. This
function is expressed as follows:

y6 = x10. (6)

• Anti-adherent massage (y7). If the clinical assessment
reports that the wound of the affected joint is adherent,
this therapy is prescribed. The corresponding functions
are as follows.

y7 = x7. (7)

• Anti-edema massage (y8). This therapy depends on
two polytomic variables: pain (x4) and edema (x5), the
discretization of which is shown in Table 4. The therapy
was prescribed only if there was no pain or very mild
pain and if edema was moderate or severe. Considering
all possible combinations of x4 and x5, the function
representing y8 is defined, and a simplified version of the
function that satisfies the above conditions is as follows:

y8 = x ′

4D1 · x5D1, (8)

where x ′

4 represents the opposite condition of the
discrete variable x4.

• Relieving massage (y9). This therapy depends on the
polytomic variable x4 and dichotomous variable x6,
the discretization of which is shown in Table 4. It is
recommended if there is no pain or mild pain and if
there is contracture. The simplified expression for this
function is as follows:

y9 = x ′

4D1 · x6. (9)

• Shallow-depth ultrasound (y10). This therapy is pre-
scribed if moderate or severe pain is reported in the
clinical assessment, considering the discretization of
x4 in Table 4.

y10 = x4D1. (10)

• Thermal changes (y11). This therapy is prescribed if any
state of pain, edema, or trophic change is present in the
clinical assessment. Based on the discretization of x4 and
x5 in Table 4, the function is as follows:

y11 = x4D1 + x4D0 + x5D1 + x5D0 + x8. (11)

• Interferential therapy for edema (y12). This therapy was
prescribed for any level of edema (see discretization of
x5 in Table 4).

y12 = x5D1 + x5D0. (12)

• Interferential therapy for pain (y13). This therapy is
prescribed when pain is registered asmoderate or severe,
which has over five labels in clinical practice. According
to the discretization of x4 in Table 4, the function can be
expressed as follows:

y13 = x4D1 · x4D0. (13)

• Interferential therapy for bone healing (y14). This
therapy was prescribed when bone healing (x12) is not
present. Thus, the relationship is expressed as follows:

y14 = x12. (14)

The set ofmathematical functions given by (1)-(14) defines
the core of the proposed computer-aided prescription system.

C. NUMERICAL IMPLEMENTATION
The computer-aided prescription system defined in (1)-(14)
was implemented in MATLAB 2021a. Algorithm 1 was
tested using a database collected at the hospital, as described
in section III-A. Figure 5 shows the results of the evaluation
of the system for all the collected clinical records. The first
column includes the total number of clinical records, and
the remaining columns illustrate the clinical prescriptions
recommended by the system. Each therapy (yi for i =

1, . . . , 14) is represented by a cell, which is colored dark gray
if the computer-aided system recommends the prescription of
therapy (yi = 1); otherwise, the cell remains white (yi = 0).
To analyze the recurrence of the prescribed therapies,
Figure 6 presents a histogram of the prescription frequency
for each therapy.
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Algorithm 1 Computer-Aided System to Automate
Prescription of PRP Therapies

Begin: Input data representing clinical condition of patient.
1: xxx = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12]T .
Declaration of input variables:
2: X (1) = x1; X (2) = x2D1; X (3) = x2D0; X (4) = x3;
X (5) = x4D1; X (6) = x4D0; X (7) = x5D1; X (8) = x5D0;
X (9) = x6; X (10) = x7; X (11) = x8; X (12) = x9;
X (13) = x10; X (14) = x11; X (15) = x12;
Prescription functions:
3: y1 = X (4) OR X (1);
4: y2 = X (2)′ OR X (3)′;
5: y3 = X (2) AND X (3);
6: y4 = X (1) OR X (4) OR X (9);
7: y5 = X (4) OR X (12) OR X (13) OR X (14);
8: y6 = X (13);
9: y7 = X (10);
10: y8 = X (5)′ AND X (7);
11: y9 = X (5)′ AND X (9);
12: y10 = X (5);
13: y11 = X (5) OR X (6) OR X (7) OR X (8) OR X (11);
14: y12 = X (7) OR X (8);
15: y13 = X (5) AND X (6);
16: y14 = X (15);
Return:Output data representing the prescribed therapies.
17: yyy = [y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14]T .

FIGURE 5. Evaluation of the computer-aided prescription system defined
by (1)-(14). The system is tested using input data the clinical records (first
column). In the remaining columns, the cell of each therapy is colored in
dark gray if the computer-aided prescription system recommends
prescribing the therapy (yi = 1); otherwise, the cell remains white (yi = 0).

D. VIRTUAL CLINICAL RECORDS
The database was supplemented with a set of virtual
clinical records to validate the performance of the proposed

FIGURE 6. Frequency of prescription of therapies for 34 clinical records
evaluated with the computer-aided prescription system.

FIGURE 7. Procedure to generate virtual clinical records. Virtual clinical
records were generated from: (i) the dataset of real clinical records, (ii)
using the bootstrap method to obtain a resampled population, (iii) a
random data generator defined in (15), and (iv) a binarization process
considering the threshold for each component of xv according to Table 4.

computer-aided prescription system. The goal was to gen-
erate 90 virtual clinical records sharing statistical features
with the 34 real clinical records selected according to the
procedure described in the data collection subsection. The
procedure used to generate virtual clinical records was as
follows:

The set of 34 real clinical records is used as starting
data and forms a skewed distribution, and each element
of this set is represented by (xxxs). The aim was to gen-
erate virtual input variables (xxxv) sharing the mean and
standard deviation with the set of real clinical records.
The bootstrap method [30] is used to resample a set of
real clinical records with replacement to obtain a set of
random variables with a normal distribution. In this case,
a population of 10,000 random variables (xxxr) with a normal
distribution was generated, and the method provided the
mean (xm) and standard deviation (σx) for the new set
which includes the real xxxs. Using these statistics, new virtual
data (xxxn) are generated from xxxr according to the following
expression:

xxxn = xxxrσx + xm. (15)

As previously mentioned, the real input variable xxxs is
binary; thus, xxxn from (15) must be binarized. The binary
threshold for each component xv,i for i = 1, . . . , 12 depends
on the scales defined in Table 4 as illustrated in Figure 7.
Thus, 90 virtual variables xxxv were selected in a random
manner to form a set of virtual clinical records. Then, for
validation purposes, a database consisting of 10 real clinical
records and 90 virtual records generated using the previous
methodology was considered, with a total of 100 clinical
records.
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TABLE 6. Validation of a virtual clinical record. The value ‘‘Incomplete’’ of
xv1 in the third column was changed to ‘‘Complete’’ to maintain
congruence with the typical clinical condition of a patient.

V. CLINICAL VALIDATION
A. VALIDATION OF VIRTUAL CLINICAL RECORDS
The virtual clinical records generated by the procedure
depicted in Figure 7 were validated by a clinician at the
Department of Sports Medicine and Rehabilitation, hospital
‘‘Dr. José Eluterio González’’, University of Nuevo León,
at Monterrey, Nuevo León, México. The clinician analyzed
the input variables xxxv for each virtual clinical record.
When there was inconsistency (i.e., differences between the
data generated by the virtual method and the clinician’s
knowledge), the clinician recommended adjustments to
the non-congruent data. An example of this procedure is
presented in Table 6. It presents data from a virtual clinical
record, where the value of xv1 represents incomplete joint
movement. This value was revised by a clinician who
reported no congruence with the eubasic gait and movement
limitations. In this case, the clinician’s suggestion was to
change the value of xv1 from incomplete joint movements to
complete joint movement, to be congruent with the clinical
record.

From the full set of clinical records, only 15 (16.6%) were
inconsistent. Inconsistencies were observed in xv1, xv3, xv9,
xv10, and xv11. The frequency of the inconsistencies per virtual
input variable is shown in Figure 8.

FIGURE 8. Virtual input variables presenting inconsistencies in the
validation process of the virtual clinical records.

B. VALIDATION OF THE COMPUTER-AIDED
PRESCRIPTION SYSTEM
The validation of the proposed system consisted of comparing
data from medical prescriptions made by a clinician with

the automated prescription computed by the system. In both
cases, the input data comprised the full set of clinical records.
Clinical prescriptions were administered by one clinician
for three months. Prescriptions were collected in sessions
duringwhich the clinician accessed the database and prepared
prescriptions as a function of the data registered in each
clinical record. The full database was shown to the clinician
using single-referenceless randomized selection. Automated
prescriptions were computed using Algorithm 1, which was
fed using the same input database provided to the clinician.

The computer-aided prescription system was validated
using a confusion matrix (C.M.), which is commonly used
to measure the accuracy of an algorithm. To complement
these metrics, we included the F-score. The C.M. is an
error table that serves as a statistical tool for analyzing
observation pairs [31], and the F-score is a metric for
evaluating the accuracy of a binary classification model [32].
This includes the calculation of the metrics for accuracy,
precision, sensitivity, and specificity [33]. The elements
of C.M. were computed from the results of the clinical
and automated prescriptions. Considering the full set of
clinical records (100) in the database and the 14 different
therapies to be prescribed (yyy = [y1 . . . y14]T ), a total
of 1400 prescriptions were made by the clinicians, and
the same number of prescriptions were computed by the
computer-aided prescription system. The total number of
cases for each element of the C.M. is listed in Table 7,
which includes 759 true positives (TPs), 10 false positives
(FPs), 27 false negatives (FNs), and 604 true negatives
(TNs). From this data, we used conventional metrics to
validate the computer-aided prescription system [34], with
the following results: 97.4% accuracy, 98.7% precision,
96.6% recall (sensitivity), 98.4% specificity, and 97.6% F-
score. The data are summarized in Table 8.

TABLE 7. Cross-referencing of automated and clinical prescriptions.

TABLE 8. Metrics to validate the computer-aided prescription system.

The reliability index of the computer-aided prescription
system was also included in validation. It was computed by
considering the number of agreements and inconsistencies
between pairs of clinical and automated prescriptions.
Figure 9 shows the number of inconsistencies between the
clinical and automated prescriptions for each therapy, where
y2, y3, y5, y6, y7, y11, y12, and y14 had no inconsistencies.
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FIGURE 9. Number of inconsistencies between automated and clinical
prescriptions considering the full dataset of clinical records.

The remaining prescriptions accumulated 32 inconsistencies,
accounting for 2.29% of 1400 prescriptions. Thus, the
reliability index of the computer-aided prescription system
is 97.71%.

VI. DISCUSSION
As discussed in Section II, there is a current challenge in
the development of computer-aided prescription systems.
Therefore, this study seeks to contribute to the systemati-
zation and quantification of the decision-making process
of clinicians in rehabilitation programs for ankle fractures.
The contributions of this work are as follows: (1) The
analysis of retrospective data from the clinical records of
patients enrolled in an ankle fracture rehabilitation program.
(2) Quantitative representation of clinicians knowledge
regarding the prescription of therapies. (3) Development of a
computational methodology that synthesizes the information
from previous points to automate the prescription. These
three points are illustrated in the block diagram in Figure 3.
The above provides a general computational methodology,
which could be useful in the design of computer-aided
prescription systems for therapies in different types of
conditions, with the appropriate definition and quantification
of input and output variables, as well as the definition of
rules based on clinician’ knowledge. In the case study, the
database was obtained from the analysis of the clinical
records, and it provided the input and output variables xxx,
yyy (Tables 1 and 2). The quantification of the clinician’s
acknowledgment resulted in the relationships defined by the
functions in (1)-(14). Algorithm 1 presents the proposed
computational methodology. The results of the algorithm
evaluation allowed us to calculate the prescription frequency
of each therapy (Figure 6) showing that some therapies are
less frequently prescribed; for example, isotonic exercises
(y3) and reliving massage (y9) were prescribed in 21% of the
clinical records; anti-edema massage (y8) and interferential
therapy for pain (y13) were prescribed 6% of the time; and
inferential therapy for bone healing (y14) was prescribed in
just 3% of cases. This demonstrates a difference between
the clinical prescription and computer-aided prescription,
which gives us the opportunity to identify key elements of
the process to optimize it and could help plan the use of
resources at a rehabilitation center in terms of equipment and
specialized personnel availability.

To validate the computer-aided prescription system, virtual
clinical records were proposed and validated by a clinician
to confirm their agreement with the real records might look
like. 75 virtual clinical records (83.4%) were congruent
with real patient conditions. The remaining 15 clinical
records presented inconsistencies in specific variables, which
are summarized in Figure 8, where gait (xv10) was the
variable that most often presented inconsistencies during
clinical validation. Using the full database, we validated
the performance of the computerized prescription system.
Inconsistencies between automated and clinical prescriptions
were quantified for each therapy, as illustrated in Figure 9.
The largest number of inconsistencies were observed for
anti-edema massage (y8), relieving massage (y9), and ultra-
sound (y10); this is because these therapies depend on the
input variable pain (x4), in clinical practice, pain levels
are highly subjective, which increases the variability in the
prescription. By summarizing the full set of prescriptions
and quantifying the agreements and inconsistencies between
automated and clinical prescriptions, we found that the
computer-aided prescription system was 97.71% reliable.

Additionally, C.M. was used to quantify the accuracy
(97.4%), precision (98.7%), sensitivity (96.6%), specificity
(98.4%), and F-score (97.6%) of the computer-aided pre-
scription system. The results of the computer-aided prescrip-
tion system proposed herein are consistent with previously
reported computer-aided systems in medical applications.
For example, Polat et al. presented a computer-aided system
for diagnose diabetes which had a 89.47% accuracy [35].
Other studies have reported computer-aided systems to
diagnose breast cancer with 97% specificity and 76%
sensitivity [36], coronary artery disease with 93.3% accuracy,
93.3% specificity, and 93.2% recall [33], thyroid disease
with 89% accuracy [37], leukemia with 94% accuracy,
and musculoskeletal disorders with 86.7% accuracy [38].
Therefore, previous works mainly reported the accuracy of
computer-aided systems, and the value of our approach is
in these reported accuracy ranges. Specificity and sensitivity
were reported in only two studies [33], [36], and their values
were comparable with the results of the computer-aided
prescription system reported in this work.

VII. CONCLUSION
The consolidation of computer-aided diagnosis has led to
the development of computer-aided systems in other areas of
decision making in clinical practice, such as the prescription
of therapies and treatments. In the case of PRP, identifying the
structure and elements of the prescription process, including
sources of information and the rationale of clinicians, allowed
us to propose a computer-aided prescription system to auto-
matically prescribe rehabilitation therapies. This prescription
is based on data on the biomechanical conditions of patients
registered in clinical records.

The scope of this study was to synthesize the procedure of
a physical rehabilitation program as an iterative process and
define the elements of a computer-aided prescription system
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that can be used as a computational tool to support medical
decisions. Our system has an acceptable performance accord-
ing to themetrics reported in the literature for computer-aided
systems in other medical applications for decision-making.
This case study could be the basis of a system for automatic
learning that specifies and improves clinical prescriptions
based on information provided by clinicians. As stated
in the discussion section, the system was validated with
virtual clinical records; thus, the next challenge of this
research could be the study of the system’s performance in
actual clinical trials, including inpatient/outpatient tests, with
patients starting their physical rehabilitation programs.
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