
Received 23 June 2024, accepted 8 July 2024, date of publication 11 July 2024, date of current version 22 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3426605

Efficient Optimization of MS Office
2013+ Password Cracking and
PBKDF2-HMAC-SHA2 on GPUs
DONGCHEON KIM , (Student Member, IEEE), AND SEOG CHUNG SEO , (Member, IEEE)
Department of Financial Information Security, Kookmin University, Seoul 02707, South Korea

Corresponding author: Seog Chung Seo (scseo@kookmin.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by Korean Government
[Ministry of Science and Information & Communications Technology (MSIT)] under Grant 2022R1C1C1013368.

ABSTRACT The increasing sensitivity of personal information has led to the widespread adoption of
encryption technology for unstructured files and various applications. However, this presents significant
challenges for law enforcement agencies tasked with gathering evidence for crime investigations and
prosecutions. The use of encryption to impede forensic efforts poses difficulties, as passwords to encrypted
files cannot be easily obtained. Consequently, there is a pressing need to develop high-speed techniques
for cracking encrypted files to access critical evidence. To address this challenge, our research focused on
optimizing the PBKDF2-HMAC-SHA2 algorithm, commonly used for password protection, and enhancing
methods for cracking MS Office 2013+ files, a widely used office suite. We implemented optimizations
at both the algorithmic and architectural levels. Algorithmically, we concentrated on reducing memory
accesses and eliminating redundant computations within SHA2 and HMAC. Architecturally, we optimized
memory access patterns, utilized specialized memory, and improved thread placement to enhance throughput
performance. As a result, we achieved significant performance improvements. For PBKDF2-HMAC-SHA2,
we saw a 29% improvement on the RTX3090 and a 33% improvement on the RTX4090 compared to Hashcat,
the most popular open-source password recovery tool. For cracking MS Office 2013+ files, we achieved
performance gains of up to 15% on the RTX3090 and up to 9% on the RTX4090 compared to commercial
software like Passware and Elcomsoft. Since our software is open source, it can be used to accelerate
password cracking efforts involving HMAC and hash functions. Moreover, its architecture can serve as a
reference for developing parallel password-cracking tools.

INDEX TERMS HMAC, SHA2, PBKDF2,MSOffice 2013+, password cracking, efficient implementation,
software optimization, parallel computing, GPU, CUDA.

I. INTRODUCTION
With the recent advancements in data privacy laws, the
application of encryption to personal information has become
mandatory, and guidelines for encryption have been widely
disseminated among individuals, leading to a broad adop-
tion of encryption technologies across society [1], [2].
Additionally, as sensitivity regarding personal information
increases, law enforcement agencies are unable to com-
pel the disclosure of passwords for encrypted files. This
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inability can be exploited for criminal purposes, causing
significant obstacles in crime profit recovery and response,
as well as societal issues like undermining public safety
and weakening social security, resulting in substantial social
harm [3]. Consequently, in situations where cooperation
from individuals under investigation is unlikely, and without
violating data protection laws, research into high-speed
cryptographic decryption methods for legitimately accessing
criminal evidence is urgently needed.

Cracking methods for encrypted files can essentially be
divided into brute force cracking (or exhaustive key search)
and table-based methods such as dictionary cracking and
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rainbow table cracking [4]. In many applications, the strength
of a password is gauged by the time it takes to crack it, which
is influenced by the incorporation of special characters, the
mixture of upper and lowercase letters, and the length of
the password [5]. However, cracking a password that uses
a combination of various character types with a dictionary
or table becomes challenging. If a password’s strength is
high, the time to create such a table could be as long as
the time required for a brute force attack. Additionally, it is
impossible to find every random password as a hash in the
table. Therefore, to search the entire possible password space,
accelerating brute force cracking is necessary [6].
In the field of password cracking research, high-

performance parallel computing capabilities, particularly
GPUs (Graphic Processing Unit), are primarily employed to
simultaneously search through large volumes of passwords.
As a result, password hashing functions are designed to
require significant time and memory expenses to thwart
cracking attempts that leverage specialized hardware capable
of efficient parallel operations, such as GPUs [7], [8].
File encryption ensures security through a combination
of various cryptographic algorithms and iterations. There-
fore, to achieve efficient cracking, optimization of the
cryptographic algorithms is necessary. Additionally, each
GPU comes with its own set of architectural constraints
that can degrade performance, necessitating optimized
implementations for better performance even within identical
environments. The performance of these methods depends
on the cipher design and the optimizations of the imple-
menters [9]. Consequently, there has been limited research
on optimizing for an efficient exhaustive search of passwords
for encrypted files.

Therefore, to apply efficient brute force cracking in
a parallel processing environment, optimization must be
applied both to the algorithm itself and by leveraging
the characteristics of GPUs. Additionally, research into
distributed password cracking that utilizes the parallel
processing capabilities of GPUs has been conducted. In this
manner, to perform exhaustive searches, there is a need for
optimized algorithms and flexible cracking libraries that uti-
lize computing power [10]. However, commercial password
cracking tools such as Passware [11] and Elcomsoft [12]
offer their services for a fee and do not disclose their
internal cracking methods or the structure of their algorithms,
presenting challenges for further research.

Therefore, this paper aims to analyze unstructured files
MS Office 2013+ (versions of Microsoft Office after 2013)
and the hash algorithm PBKDF2-HMAC-SHA2 (Password-
Based Key Derivation Function 2, Hash-based Message
Authentication Code, Secure Hash Algorithm 2), presenting
an optimized brute force cracking methodology through
high-speed implementation techniques based on CPU (Cen-
tral Processing Unit)/GPU, and to establish performance
benchmarks for it. Moreover, to overcome the limitations
of existing commercial cracking tools, it discloses code that
applies optimization strategies enabling the invocation of

each algorithm in the desired environment. Althoughmultiple
algorithms can be employed in file encryption, the security of
most file encryptions is based on repeated hash functions. Our
optimization method has the advantage of being applicable
even if different algorithms are used. The ultimate goal of
our research is the cracking of encrypted unstructured files.
We address the optimizationmethodologies for cryptographic
algorithms and cracking processes in GPU environments to
handle this efficiently. By not only parallelizing the cracking
process itself but also accelerating the cryptographic opera-
tions used in file encryption, we can significantly enhance
the overall cracking speed. Furthermore, the core research
of this study, the high-speed implementation technology
for GPU-based cryptographic algorithms, can be applied
as a strategy for high-speed/parallelization of algorithms in
information security products for cloud security, network
security, ransomware recovery, and can be utilized in various
security application technologies.

• Optimization of PBKDF2-HMAC-SHA2 on GPUsWe
describe an optimizationmethodology at the algorithmic
(SHA2, HMAC) level for PBKDF2, an algorithm
for increasing the security of user-entered passwords.
In addition, we implemented the algorithm in a GPU
environment to parallelize the input of many pass-
words, and performed implementation optimizations on
PBKDF2 from a memory and computation perspective
to achieve the highest efficiency. This resulted in
performance improvements of up to 29% on RTX 3090
(Ray Tracing Texel eXtreme 3090) and up to 33% on
RTX 4090 compared to Hashcat, the world’s leading
password recovery software.

• Optimization Strategies for CrackingMSOffice 2013+
on GPUs To undertake cracking research on the
encrypted structures of Microsoft Office files, which
are among the most extensively used worldwide, this
study analyzed the file encryption structure of these
documents and incorporated optimization research on
the utilized hashing algorithms. Furthermore, the paral-
lel computing capabilities of GPUs were harnessed for
exhaustive password searches, and a structure for key
generation and verification was designed to efficiently
use GPU resources. The methodology also presents
a way to conduct exhaustive searches for passwords
of variable lengths. Our optimization methods are
applicable to all versions of MS Office 2013 and
beyond, allowing for the customization of the algorithm
and iteration counts to create the desired password
cracking tool. Our research achieved a performance
improvement of up to 15% on RTX 3090 and 9%
on RTX 4090 environments compared to existing
commercial cracking software (Passware, Elcomsoft).

Furthermore, the key GPU-based cryptographic algorithm
acceleration techniques highlighted in this study can be
applied as algorithms for high-speed/parallelization in infor-
mation security products for cloud security, network security,
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FIGURE 1. Overall computational structure of SHA512.

ransomware recovery, and various other security applica-
tions [13], [14], [15]. As previously explained, in order to
overcome the limitations of existing research and contribute
to the advancement of related studies, wewill release the code
as open-source at ‘https://github.com/kindongsy/Access-
Cracking_GPU’ to allow others to utilize our research.
Organization: The rest of this article is structured as

follows: Section II explains SHA2 and PBKDF2 for under-
standing the main algorithms. Section III introduces the
PBKDF2 algorithm. Section IV describes the file encryption
structure of MS Office 2013+. Section V introduces the
architecture of GPU where our research is conducted.
Building on the earlier explanations, Section VI describes
optimization methodologies commonly applied, focusing on
GPU environment optimization techniques and optimization
of SHA2. Section VII explains optimization of PBKDF2-
HMAC-SHA2 on GPUs. Section VIII proposes optimization
strategies for cracking MS office 2013+ on GPUs. After-
wards, Section VIII-B provides a performance analysis of
PBKDF2-HMAC-SHA2 and MS Office 2013+ cracking,
while Section X concludes the paper.

II. PRELIMINARIES
In this section, we explain SHA2, a commonly used algorithm
internally, and SHA2-based HMAC, which serves as the
PRF (Pseudo-Random Function) of PBKDF2, to provide an
understanding of PBKDF2-HMAC-SHA2 and MS Office
2013+.

A. SHA2
SHA is a cryptographic hash function adopted as a standard
by NIST (National Institute of Standards and Technol-
ogy) [16]. It began with SHA-0 in 1993 under FIPS PUB
180 (Federal Information Processing Standard Publication),
but due to cryptographic vulnerabilities, it evolved over

FIGURE 2. Overview of HMAC.

time, leading to the current SHA3 specified in FIPS PUB
202 [17]. Among them, SHA-2 refers to SHA-224, SHA-
256, SHA-384, SHA-512/224, and SHA-512/256, and it is
widely used in various fields such as integrity verification,
message authentication codes, key exchange and generation
algorithms, and key derivation functions. SHA-2 is a function
based on the Merkle-Damgard structure, which applies a
compression function repeatedly to input message blocks
to produce a fixed-size output, known as a digest. It is
broadly divided into two stages: Preprocessing and Hash
Computation [18]. The preprocessing stage involves message
padding, parsing of the padded message, and setup of initial-
ization values. Then, Hash Computation involves generating
a message schedule from the padded message, followed by
iterative hashing using constant and word operations through
a compression function to produce a fixed hash value. The
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FIGURE 3. Overall computational structure of PBKDF2.

overall computational structure of SHA2 is illustrated in the
Figure 1.

B. HMAC
MAC (Message Authentication Code) provides integrity
verification for information exchanged between two parties
sharing a secret key for authentication [19]. Differing from
hash functions, MACs employ a secret key to verify message
integrity and prevent third-party impersonation. HMAC is an
algorithm that constructs MACs using a hash function, with
its structure illustrated in Figure 2.

III. PBKDF2-HMAC-SHA2
Password systems are crucial in numerous applications for
protecting users’ personal information [20]. These systems
ensure access permissions by matching the data entered by
the user with the stored password. However, due to the low
entropy and randomness of most user-generated passwords,
they are ill-suited for use as direct cryptographic keys.
Addressing this, key derivation cryptographic algorithms
like the Password-Based Key Derivation Function (PBKDF)
have been developed, which leverage the user’s secret key,
key length, salt, iteration count, and a PRF to produce
cryptographic keys [21]. Originally, PBKDF1, employing
PRFs such as SHA-1 to generate fixed-size (160 bits) outputs,
prompted security concerns. Consequently, PBKDF2, which
uses a more sophisticated level of PRF, was recommended.
In this research, the HMAC algorithm based on SHA2 is
selected as the PRF [22], [23]. The comprehensive structure
of PBKDF2 is depicted in Figure 3, demonstrating our
selection of the SHA2-based HMAC as the PRF for enhanced
security.

TABLE 1. MS Office version and configuration algorithms.

IV. MS OFFICE 2013+

Microsoft Office, developed by Microsoft Corporation,
stands as the most renowned office software suite, encom-
passing applications like Word, Excel, and PowerPoint [24].
The termMSOffice 2013+ encompassesMSOffice 2013 and
all subsequent versions, including the contemporary MS
Office 365.

For encryption applications and the protection of files
in non-structured formats, as outlined in Table 1, there
has been a shift from AES-128 to AES-256 (Advanced
Encryption Standard) in block cipher algorithms, which
effectively doubles the key length. Additionally, there’s an
increase in both the output length of hash functions and
the number of iterations. The complexity of the encryption
system’s internal structure and the user password input
interfaces have significantly advanced, potentially enhancing
security by up to 2256 times. The imperative to secure data
within feasible investigation periods necessitates high-speed
decryption and computational capabilities. This requirement
motivated our research into cracking optimization, focusing
on the consistent file encryption structure in MS Office
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FIGURE 4. MS office 2013+ password encryption mechanism.

FIGURE 5. Encryption information of MS office 365.

versions from 2013, includingMSOffice 2016 andMSOffice
365.

The password encryption structure for MS Office 2013+
documents is outlined in [25]. This can be illustrated as
shown in Figure 4. Following this configuration, renaming

a MS Office 2013+ document file with a.zip extension and
decompressing it yields EncryptionInfo and EncryptedPack-
age files. The EncryptionInfo file, in particular, allows for the
inspection of encryption information.

Figure 5 displays information extracted from an actual MS
Office 365 Word document, using the previously mentioned
methods. The data, highlighted in red, shows the encryption
and hash algorithm’s configuration for MS Office 2013+
documents. Additionally, indicated in blue, the input and
output values of the encryption and hash algorithm can be
examined. This examination confirms that MS Office 365
(and versions from MS Office 2013 onwards) uses AES-256
as the encryption algorithm and performs 100,000 iterations
of the SHA-512 hash function.

The detailed password encryption and decryption process
of actual MS Office 2013+ is as follows. First, the initial
hash function is performed by concatenating the saltValue
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FIGURE 6. Memory structure of NVIDIA GPUs [26].

(sV) extracted from the encryption information with the
user-inputted ASCII (American Standard Code for Informa-
tion Interchange) form of the Password (Pw). This value
is then repeatedly hashed 100,000 times by concatenating
it with the increasing index value and the result of the
previous hash. In the subsequent verification process, the
key and block key1 (Bk1) are concatenated and hashed to
calculate key1. Based on this key1, the AES Key Expansion is
performed to generate Round key1 (Rk1). Then, the sV is used
to create the IV (initialization Vector) for AES CBC (Cipher
Block Chaining mode) Decryption. AES CBC Decryption is
then performed on the encryptedVerifierHashInput (eVHI) to
obtain the decryptedVerifierHashInput (dVHI). This dVHI is
then hashed to compute the Derived Hash. A similar process
is followed for the encryptedVerifierHashValue (eVHV), but
the final hash step is omitted. If theDerived Hashmatches the
Expected Hash (dVHV), it is considered a correct password.

V. GPU
Originally, GPUs were architectures designed for high
quality graphical processing and design tasks through parallel
processing based on a large number of threads. As the
performance of GPUs continues to evolve, General Purpose
Graphic Processing Unit (GPGPU) technology has been
developed to harness the computing power of GPUs for
general purpose data operations. NVIDIA has developed
and provided CUDA (Compute Unified Device Architec-
ture) [27], a development framework for GPU computing,
to enable ordinary users to make versatile use of GPU com-
puting technology. With this in mind, research into the use of
GPUs as cryptographic accelerators in server environments is
actively underway [28], [29]. Taking advantage of the highly
parallelizable computational capabilities of GPUs, research
on cracking encrypted data is also being conducted in various
environments, including this one.

• Memory Structure of NVIDIA GPUs
The GPU memory architecture, shown in Figure 6,
is organised into on-chip and off-chip memory, corre-
sponding to the GPU’s Streaming Multiprocessor (SM).
On-Chip memory, located within the processor, consists

of shared memory and registers, providing fast access
speeds but with limitations on access methods and
storage capacity. Conversely, off-chip memory, located
outside the processor, includes global, constant and
local memory types. This external memory offers more
flexible access at the cost of slower speeds compared to
on-chip memory.

• Computational Structure of NVIDIA GPUs
First, the CPU passes the data to be processed on
the GPU through kernel functions, and then the SM
performs operations on the received data at the warp
level, which is the basic computational unit of the GPU.
These warps typically consist of 32 threads in most GPU
architectures, and the threads within a warp follow the
Single Instruction Multiple Thread (SIMT) structure,
where they all perform the same operation.

VI. COMMON OPTIMIZATION METHOD
In this section, we explain optimisation methods that exploit
the characteristics of the NVIDIA GPU [30], which are com-
monly used in the PBKDF2-HMAC-SHA2 and MS Office
2013+ cracking algorithms. We also discuss approaches to
algorithmic optimisation of SHA2, which is commonly used
in both algorithms.

A. OPTIMIZATION STRATEGIES IN GPU ENVIRONMENTS
1) COALESCED MEMORY ACCESS PATTERN
When the GPU receives data from the CPU, it typically uses
global memory as its main memory. Global memory has a
large capacity, but suffers from slow memory access speeds.
Therefore, when threads running at warp level need to access
required data, accessing data serially results in accessing
a limited amount of data per cache line, as shown in the
upper part of Figure 7. However, by reorganising the data
as shown in the lower part of the Figure 7, more data can
be accessed per cache line. This memory access technique
is called Coalesced Memory Access Pattern, which is a
prominent memory access optimisation technique in GPUs.

2) SHARED MEMORY
Shared memory is memory that can be allocated per block,
which is a logical grouping of threads, and is on-chipmemory,
which means it has limited capacity but provides low latency
when accessing data. In addition, threads within an allocated
block can communicate efficiently through shared memory,
and they can read from and write to shared memory within
kernel functions. Therefore, to take advantage of the fast
access speed of shared memory, optimization from a memory
perspective can be achieved within the GPU by fetching and
ordering data from global memory or by storing frequently
accessed data in shared memory during computation.

To achieve high bandwidth, shared memory is divided
into modules called ‘Banks’, each of which is of the
same size (32-bit), allowing simultaneous access by threads
within a warp (hence banks are typically composed of
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FIGURE 7. GPU coalesced memory access pattern.

FIGURE 8. Approaches to resolve bank conflicts in shared memory.

32 modules). However, if two or more memory requests
map to the same memory bank, a bank conflict occurs,
resulting in serialization of access to that bank and a
reduction in throughput proportional to the number of bank
accesses. Therefore, minimizing bank conflicts is essential to
achieve maximum performance when using shared memory.
To eliminate such bank conflicts, we have partitioned the data
accessing shared memory into 32-bit units and adjusted the
padding with garbage values to ensure that different threads
within the same warp do not access the same bank, as shown
in Figure 8.

3) CONSTANT MEMORY
Constants are a small amount of off-chip memory per GPU,
typically 64KB in total, that is accessible to all threads within
the device. However, it is read-only; once data is copied from
the CPU to the GPU, it cannot be modified within GPU
functions. Nevertheless, constant memory behaves like cache
memory, allowing fast access when all threads within a given
warp are accessing the same memory address.

4) WARP DIVERGENCE
GPU, a hardware based on SIMT architecture, executes
a single instruction across all threads within a warp for
efficient computation. For optimal operation, all 32 threads
within a warp should follow the same execution path. When
threads within a warp diverge due to branching instructions,
certain threads become idle, resulting in serialization of
operations. This phenomenon is known as warp divergence,
and it is therefore more efficient from a parallel processing
perspective to avoid branching instructions to ensure that
threads within the same warp execute the same operations.

5) LOCAL MEMORY
When a kernel exceeds the hardware limit on the number
of registers it can use, the data corresponding to the excess
registers spills over into local memory. This register spilling
degrades performance because accessing local memory is
just as expensive as accessing global memory. Although each
thread can have amaximum of 255 32-bit registers, regardless
of the GPU architecture’s computational capability, the
maximum usage can vary depending on the maximum
number of registers per thread block. Therefore, efficient
management of block and thread configurations and register
usage is required.

6) OCCUPANCY
Occupancy is the ratio of the number of active warps per
multiprocessor to the maximum number of active warps
possible. Higher occupancy does not always equate to
higher performance-there is a point beyond which additional
occupancy does not improve performance. However, low
occupancy always degrades the ability to hide memory
latency, resulting in performance degradation. Factors that
affect this occupancy include warps per SM, blocks per SM,
registers per SM, and shared memory per SM. Therefore,
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FIGURE 9. Parallel structure of PBKDF2.

TABLE 2. Block Operation Process in SHA256 [34].

achieving optimal computational efficiency in GPU environ-
ments requires consideration of the above computational and
memory characteristics.

B. OPTIMIZATION OF SHA2
Most hash functions have a chaining operation structure [31],
[32], [33], which makes it difficult to parallelize internal
operations. Therefore, in SHA2 optimization research, the
Block Operation (BO) and Zero-Based Optimization (ZB)
methods used in [34] have been applied.
The BO technique is an optimization method that reduces

unnecessary memory accesses during internal block opera-
tions of SHA2. When applied, it can reduce the 32 memory
allocations of 4 rounds to 8 memory allocations based on
SHA256 as shown in Table 2. Therefore, when applied to
64 rounds, it can be processed with 16 memory allocation
operations. This optimization method is suitable not only for
CPU environments, but also for GPUs, where memory access
overhead is relatively high. In addition, it can reduce register
usage per thread, making it a beneficial approach from the

perspective of occupancy and thread/block heuristics.

Wt =


M (i)
t 0 ≤ t ≤ 15

σ
{256}
1 (Wt−2) +Wt−7 + σ

{256}
0 (Wt−15) +Wt−16

16 ≤ t ≤ 63
(1)

The ZB technique is an optimization method for the
message scheduling part of SHA2 operations. In this method,
if the calculated W [t] is zero during the word expansion
process, as shown in equation 1, the corresponding operation
is skipped to reduce the computational load. While this
approach may not significantly reduce computation for
typical data, it can result in a reduction in computation
proportional to the fixed length of zeros when applied to
scenarios involving one-zero padding.

VII. OPTIMIZATION OF PBKDF2-HMAC-SHA2 ON GPUS
In this section, we present the optimization techniques used
to achieve the highest throughput performance for PBKDF2-
HMAC-SHA2. The PBKDF2 algorithm is characterized by
the iterative computation of the PRF and its input-output,
which makes internal parallelization impossible. Therefore,
from the perspective of throughput, research has been
conducted by performing one PBKDF2 operation per GPU
thread, as shown in Figure 9.

A. OPTIMIZATION OF HMAC
Furthermore, since the PRF chosen for this study, the HMAC
algorithm, is based on SHA2, not only the optimization
methods for SHA2 described earlier can be applied, but also
the HMAC optimization methods proposed in [34]. The first
method proposed in that paper is Block-Reduction (BR),
which takes advantage of the fact that the password, a primary

VOLUME 12, 2024 96443



D. Kim, S. C. Seo: Efficient Optimization of Password Cracking and PBKDF2-HMAC-SHA2

FIGURE 10. Block operation reduce method for PBKDF2-HMAC [35].

input of PBKDF2, remains unchanged during computation,
thereby reducing the computational burden.

Looking at the first input block in HMAC, as shown in
Figure 10, Password is XORed with IPAD or OPAD. Since
Password remains unchanged after being entered by the user,
it is possible to precompute this part, which can then be reused
in all PRF operations. Therefore, instead of performing
the operations for each iteration over the existing 4 blocks
(4 × iteration count), the workload can be reduced to the
operations for precomputing the 2 blocks plus the operations
for the 2 blocks for the iteration count (2+2×iteration count).
The second optimization method concerns the input size

(IS), as shown in Figure 10. Each hash function, as shown,
processes two block operations. The second block contains
the message length information and padding. Due to the
characteristics of the hash function during this process,
the message length information and padding become fixed,
eliminating the need for block division and message length
verification for this data. Therefore, this optimization method
eliminates the aforementioned verification. Furthermore,
building on this, we have eliminated branching instructions
and block division based on length information within the
hash function to further improve performance.

B. OPTIMIZATION USING GPU MEMORY
CHARACTERISTICS
For PBKDF2, it takes iteration count, password, and salt as
inputs. For the salt, since it’s initial value remains unchanged
and is only used as the first input during the HMAC-SHA2
process, we used constant memory, which shows fast speeds
when accessed by all threads simultaneously. As for the
password, after it is entered into the hash function, it is
iteratively updated according to the number of iterations. This
results in a computational overhead that is proportional to
the number of iterations. To solve this problem, we used BO.
Since password access and updates occur mainly during hash
function iterations, we first fixed the password length and
applied coalesced memory access patterns during memory
copying between CPU and GPU. Later, we transferred
intermediate data positions during these operations to shared

memory to further improve access speeds. To avoid potential
bank conflicts during this process, we applied padding
techniques.

C. NVIDIA NSIGHT COMPUTE
In addition, for detailed analysis, we examined our PBKDF2-
HMAC-SHA2 algorithm using NVIDIA Nsight Compute
(version 2023.3.1) [36], an interactive profiler provided
by NVIDIA. With a compute SM throughput of 93.15%,
we achieved high throughput (compute throughput over
80%), demonstrating significant processing efficiency in
our implementation. By applying optimization strategies
to the hash functions, our workload analysis showed that
the SM Busy, which indicates the pipeline used for the
ALU (Arithmetic Logic Unit), reached 95.34%. In addition,
we achieved a Theoretical Occupancy of 22.25%, which is
close to the upper bound represented by Occupancy, which
is 25%. This indicates that our implementation is highly
optimized from an occupancy perspective as well.

VIII. OPTIMIZATION STRATEGIES FOR CRACKING MS
OFFICE 2013+ ON GPUS
In this section, we present the optimization strategies used
for efficient implementation of MS Office 2013+ cracking.
Similar to PBKDF2, the MS Office 2013+ algorithm
relies on a high-iteration hash function to ensure security.
Therefore, we designed a structure to perform exhaustive
search by cracking one password per thread, as shown
in Figure 11. Since the password length in MS Office
2013+ files is not fixed, we applied a structure to cover
all possible lengths for exhaustive search. After that, the
MS Office 2013+ cracking process is divided into key
generation and verification stages. Among them, the key
generation stage, which involves iterative computation of
the hash function, imposes the largest computational burden.
Therefore, we focus on optimizing this stage to improve
the overall performance. Our cracking method, as shown in
Table 1, can be applied to crack all encrypted files starting
from MS Office 2013. In addition, our optimization method
allows you to include the desired algorithms, making it usable
as the desired password cracking tool.

A. APPROACHES FOR EXHAUSTIVE PASSWORD SEARCH
ON GPUS
We considered how to efficiently perform exhaustive pass-
word search for password cracking. Since not all threads used
in cracking need to work on the same password, we declared
an array in the kernel for the password length and used
blockIdx, which is the CUDA-specific index of the thread
block, and threadIdx within a thread block to perform an
exhaustive search for all possible characters (96 characters
excluding control characters) represented in ASCII, as shown
in Figure 11. However, with this approach, it was only
possible to examine passwords up to two characters in length
using the thread block and thread index. So we extended
it to three characters using CUDA Streams. Originally,
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FIGURE 11. Proposed structure for parallel cracking of MS Office 2013+.

FIGURE 12. Password update methodology.

CUDA streams are used to asynchronously execute logic
on a stream-by-stream basis for memory copies and kernel
operations to reduce data copy and operation times. However,
by using the index of CUDA streams along with blockIdx
and threadIdx, we can increase the password length to three
characters and perform calculations within a single kernel.
Therefore, we perform an exhaustive search for passwords of

length three using blockIdx, threadIdx, and the stream index,
as shown in Figure 12.

B. OPTIMIZATION USING GPU MEMORY
CHARACTERISTICS
After cracking three-character passwords using the approach
described above, we used constant memory for passwords of
four or more characters. Once the cracking for three-character
passwords is complete (if the password is not three characters
long), the value of the next array (with an index of
3 or greater) is incremented outside the kernel. Then, this
incremented value (count) is passed to constant memory
and another kernel call is made to continue the cracking
process.We chose this approach to take advantage of constant
memory. Since constant memory is read-only, its values
cannot be changed within the kernel. However, it has similar
characteristics to cache memory, making it highly efficient
when accessed repeatedly by all threads. Therefore, constant
memory was chosen as the memory for entering operand
values into the structure, where the incremented count value
is applied uniformly.

For the calculation of hash values for passwords and
the verification process to check if the correct password is
found, certain values that are used repeatedly but remain
fixed are also stored in constant memory. These fixed values
include salts and encryptedVerifierHashInput parsed from
encryption information for password cracking, as well as salts
from the actual encrypted files for verification and encrypt-
edVerifierHashValue used for AES CBC mode decryption.
In the key generation part, which is the most computationally
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TABLE 3. PBKDF2-HMAC-SHA2 Performance Analysis (Unit: hash/s, performance improvement rate(%)).

TABLE 4. Performance Measurement Environment.

intensive, we took advantage of shared memory and existing
optimization research on the SHA2 series [34]. Specifically,
for the input and output used when the hash function is called
over 100,000 times, there is a significant amount of memory
access during the hash function call and internal operations.
Therefore, we transferred this data to shared memory to
improve memory access speed and padded garbage values
in the input data to prevent potential bank conflicts that may
occur during shared memory usage.

IX. PERFORMANCE ANALYSIS
In this study, we conducted a performance analysis by com-
paring PBKDF2-HMAC-SHA2 with the world-renowned
cracking software Hashcat (version 6.2.6) from a throughput
perspective. For cracking MS Office 2013+ documents,
we compared performance using tools provided by Passware
(version 2023.3.1) and Elcomsoft (version 2023.4.50), both
of which are widely available services. In the case of
coin mining, which uses repetitive hash functions similar
to file cracking, current GPU architectures are not as
efficient in terms of cost and power consumption compared
to their mining performance. As a result, coin mining
has predominantly shifted to ASIC (Application Specific
Integrated Circuit) implementations, and there has been
little development in efficient software implementations
for mining using GPUs. Therefore, to the best of our
knowledge, Hashcat, which optimizes hash functions for
cracking, has achieved the world’s best performance in
CPU/GPU environments. Consequently, we selected Hashcat
as our benchmark for comparison. The detailed performance

TABLE 5. GPU Architecture specifications [37].

measurement environment is outlined in Table 4. In addition,
Table 5 provides the specifications of the main architectures
used in our study, namely the RTX 3090 and RTX 4090.
Furthermore, we would like to point out that the performance
evaluation of our PBKDF2-HMAC-SHA2 and MS Office
2013+ cracking has received official certification through
an assessment conducted by the Korea Security Evaluation
Laboratory (KSEL).

In the case of PBKDF2-HMAC-SHA2, security can be
adjusted through the iteration count. Therefore, performance
measurements were performed by setting iteration counts
suitable for different environments. In addition, performance
analysis was performed up to the PBKDF2-HMAC-SHA2
iteration counts recommended by theOpenWorldwideAppli-
cation Security Project (OWASP), which are 600,000 itera-
tions for SHA256 and 210,000 iterations for SHA512. For
PBKDF2-HMAC-SHA256, themost significant performance
improvement was observed at about 100,000 iterations.
Compared to Hashcat, there was a maximum improvement of
29% and 6% in the RTX 3090 and RTX 4090 environments,
respectively. In the case of the RTX 4090, the performance
improvement was slightly lower than that of the RTX 3090,
likely due to the improvement in core performance and
memory access speed. For PBKDF2-HMAC-SHA512, the
most significant performance improvement was achieved
at 210,000 iterations, with 20% and 33% performance
improvements in the RTX 3090 and RTX 4090 environments,
respectively. Since the SHA512 iteration, which is the most
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TABLE 6. MS Office 2013+ Cracking Performance Analysis (Unit:
Performance(pass/s), Percentage(%)).

intensive, requires more than twice as much computation as
SHA256, it is judged that the optimization efficiency is better
reflected even in the RTX 4090 environment. Furthermore,
based on the Table 3 above, it can be speculated that the
range of 100,000 to 200,000 iterations is the most efficient
compared to Hashcat. Beyond this range, as the number
of iterations increases, the load on internal hash function
operations becomes significant, leading to less significant
performance improvements.

Performance measurements were conducted using
Microsoft Office 365’s Word as the target for MS Office
2013+ cracking. As shown in Figure 5, the number of
hash function iterations for cracking MS Office 2013+
files is determined by the encryption information of the
encrypted file and is set according to MS Office’s security
policy. Therefore, in the case of MS Office 2013+, cracking
was performed through 100,000 hash function iterations,
as shown in Table 1. Performance was measured by
running Passware’s and Elcomsoft’s cracking tools, achieving
approximately 15% and 9% performance improvements
on RTX 3090 and RTX 4090 environments, respectively,
as shown in Table 6.

One of the advantages of our research is the ability to
perform computations on arbitrary inputs, allowing each
GPU in a multi-GPU environment to process different
arbitrary inputs. Through additional research, we confirmed
that our method functions correctly in a multi-GPU setup,
accommodating user inputs appropriately. When utilizing
multiple GPUs, considering the Compute Capability of the
micro-architecture within each GPU, it is possible to achieve
proportional performance improvements as presented in our
performance analysis. This means that the performance
scales linearly with the number of GPUs, yielding the same
performance per GPU as with a single GPU.

Consequently, the performance improvement achieved
through our research has the following practical significance.
By saving up to 16% of the time, we can reduce the actual
cost of cracking by 16%. For example, if it takes 10 hours
to crack a particular encrypted file, a 16% performance
improvement might not seem substantial. However, if it takes
100 days, reducing 16 days is a significant enhancement.
As the password length increases, the shortened execution
time for these computations will provide even greater ben-
efits. Additionally, since GPUs are high-cost architectures,
these time savings translate into tangible material benefits.
Furthermore, our research enables computations for arbitrary
user inputs in both single and multi-GPU environments,

consistently delivering performance close to the maximum
in password search. This amplifies the aforementioned
advantages. Moreover, the existing cracking products we
referenced in our paper (Hashcat, Passware, Elcomsoft) are
all designed based on GPU architectures. Therefore, the 16%
(or 9%) performance improvement we achieved in the same
GPU environment is by no means insignificant.

X. CONCLUSION
In conclusion, our research focuses on efficient cracking
of encrypted unstructured files, addressing optimization
methodologies for cryptographic algorithms and cracking
processes in GPU environments. Compared to the world’s
leading cracking software (Hashcat, Passware, Elcomsoft),
we achieved remarkable performance improvements of up to
29% and 15% for PBKDF2-HMAC-SHA2 and MS Office
2013+, respectively, on the RTX 3090, and up to 33%
and 9% on the RTX 4090. This demonstrates significant
advancements in high-speed encryption cracking techniques,
not only through parallel processing of the cracking itself
but also by accelerating the cryptographic operations used
in file encryption. These findings highlight the potential of
our approach to provide substantial time and cost savings
as the duration of file cracking increases, contributing to
criminal investigations by enabling faster access to encrypted
data. Furthermore, by providing open access to our proposed
optimization methods and open-source implementations,
our research allows for further improvements through
subsequent public research. Our optimization techniques
are also applicable to other algorithms, offering versatility
and broader applicability. This, in turn, lays a foundation
for implementing high-speed and parallelized encryption
algorithms in various information security applications, such
as cloud security, network security, and ransomware recovery.
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