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ABSTRACT The swift progress of 6G cellular networks responds to the urgent demand for seamlessly
integrating Internet of Things (IoT) devices on a large scale. Among various emerging technologies, grant-
free non-orthogonal multiple access (GF-NOMA) emerges as a standout, offering distinct advantages over
traditional networks in accommodating extensive connectivity needs. GF-NOMA optimizes resource usage
by reallocating each time-frequency slot to multiple devices with different power levels. Furthermore,
it reduces the coordination burden typically associated with uplink communication by broadcasting random
access channels. Nonetheless, GF-NOMA faces a significant challenge: the risk of multiple devices
inadvertently selecting the same resource and power, resulting in data loss, particularly problematic
during emergencies marked by uncoordinated communications. Additionally, the expanding deployment
of IoT devices demands a proportional increase in resources, despite advancements in network technology.
To address these challenges, this paper introduces an innovative architecture aimed at significantly boosting
spatial capacity through the establishment of autonomous social interactions among IoT devices. The
proposed SAFE-GF-NOMA aggregation scheme facilitates resource sharing in an independent and ad-hoc
trust management environment by ensuring trustworthy sharing. The proposed Social IoT (SIoT) framework
reduces uplink access by grouping devices based on trust metrics, resulting in a notable 50% reduction
in collision probability, and over a 50% increase in success probability, and a threefold capacity increase
compared to conventional systems. Additionally, our system achieves a substantial reduction in energy
consumption, cutting it from 17 J to just 5 J per device within the cluster.

INDEX TERMS Clustering, GF-NOMA, random access, social Internet of Things, uncoordinated access.

I. INTRODUCTION
The sixth generation (6G) of cellular networks aims to
revolutionize connectivity by accommodating billions of
devices in the Internet of Things (IoT) and massive
Machine Type Communications (mMTC). IMT 2030 outlines
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approving it for publication was Nan Wu .

enhanced capabilities for 6G networks, with various features
targeting significant improvements over current 5G cellular
networks [1]. It is envisioned that 6G networks will support
connection densities ranging from 106 to 108 devices per
square kilometer, while also delivering peak data rates with
less than 1 millisecond latency and high reliability [2].
While 6G networks hold great potential for enabling unprece-
dented levels of connectivity and innovation, addressing
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FIGURE 1. Power domain frequency reuse in NOMA.

the challenges associated with massive access and uplink
transmission collisions is crucial for realizing their full
potential and delivering on their promises of ultra-fast,
reliable, and ubiquitous connectivity.

The futuristic IoT network promises numerous technolog-
ical advancements, enabling autonomous connectivity and
facilitating innovative applications across various domains.
However, the massive device network also brings forth
significant challenges, particularly in terms of resource
allocation and energy consumption. Various multiple-access
technologies in the envisioned 6G wireless claim to accom-
modate a higher number of devices with minimum overhead.
Grant-Free Non-Orthogonal Multiple Access (GF-NOMA)
is a promising access scheme proposed for 6G networks,
aiming to efficiently accommodate the massive connec-
tivity demands while mitigating interference and collision
issues. Moreover, it significantly reduces the communication
overhead required for a battery-constrained device to have
successful uplink access. However, as the number of devices
increases exponentially, managing access and minimizing
collisions becomes increasingly complex. This necessitates
the development of sophisticated algorithms and protocols to
ensure efficient resource utilization and optimal performance
in 6G GF-NOMA networks.

To gain an in-depth understanding of the research chal-
lenge, note that GF-NOMA already utilizes two important
aspects of Power-domain NOMA (PD-NOMA): frequency
reuse and grant-free uplink access. PD-NOMA represents a
significant advancement in wireless communication, lever-
aging transmission power differences to decode multiple
signals, superimposed on the same frequency stream [3].
As illustrated in Figure 1, PD-NOMA allocates a frequency
block to multiple devices with varying channel gains and
transmission powers during each time slot. For instance,
if two users employ the same frequency but with different
transmission powers, the BS decodes the signal with higher
power first, treating the other as noise. Subsequently, the
decoded message is utilized to eliminate the high-power
signal from the superimposed uplink, enabling the decoding
of the low-power transmission [4]. This approach facilitates
the simultaneous access of multiple data transmissions over
the same frequency streams, thereby enhancing spectral
efficiency.

Traditional PD-NOMA typically involves multiple control
message exchanges between the BS and the requesting
device, a process termed grant-based resource allocation.

FIGURE 2. GB-NOMA vs GF-NOMA access mechanism.

In contrast, grant-free NOMA (GF-NOMA) streamlines this
process by minimizing message exchanges, as depicted
in Figure 2. GF-NOMA offers uncoordinated resources
over random channels, unlike Sparse Code Multiple Access
(SCMA). A unique take in [5] investigates advanced tech-
niques to enhance spectral efficiency in mobile commu-
nications by using NOMA schemes, specifically focusing
on SCMA in a downlink MIMO (Multiple-Input Multiple-
Output) system over frequency-selective fading channels.
In GF-NOMA, IoT devices initiate uplink data transmission
by selecting a resource block based on preambles broadcast
by the BS. This reduces the complexity and resource
overhead associated with identifying active devices and
allocating resources individually [6], [7]. However, the lack
of coordination in resource and power selection among

96086 VOLUME 12, 2024



F. H. Kumbhar et al.: SAFE-GF-NOMA for Massive IoT Uplink Access Contention

IoT devices in GF-NOMA can lead to contention and
collision of data transmissions, which results in subsequent
re-transmissions that degrade network efficiency.

Specifically, uncoordinated mass access and uplink colli-
sions are the immediate challenges in GF-NOMA for IoTs.
With the promise of providing service to the massive IoT
networks, GF-NOMA faces a major issue whereby each
IoT device independently transmits over a random access
channel, leading to contention and data loss. To address
these challenges, we propose leveraging the Social Internet
of Things (SIoT) principles for autonomous device network-
based clustering. SIoT represents the convergence of social
networks (SN) and IoT, aimed at establishing navigable,
scalable, and trustworthy autonomous IoT networks [8].
Unlike conventional social perspectives that rely on user
social ties, SIoT fosters social relationships among devices,
resulting in dynamic and trustworthy communities. These
communities are formed based on device similarities such
as common ownership or shared functionalities, facilitating
information exchange and enhancing trustworthiness. In our
approach, we utilize SIoT traits to develop an autonomous
and trustworthy clustering scheme, considering factors such
as device centrality, previous interactions, and relationships
with neighboring devices.

In this paper, we propose SAFE-GF-NOMA: Social
Autonomous Flocking to Enhance GF-NOMA, where the
IoT devices create local clusters by establishing social trust
locally .1 Our major focus is on enabling autonomous clus-
ters, where trust management ensures that the relayed data
transmissions are not exploited maliciously. Our innovative,
autonomous, and independent SIoT-based flocking requires
no communication between the device and the BS, over
the existing GF-NOMA resource allocation process. To the
best of the authors’ knowledge, there exists no research that
has utilized the full potential of autonomous SIoT and its
respective relations to reduce uplink access without imparting
additional delays. The major contribution of the paper are
given below:

1) Identification and exploration of autonomous com-
munication for clustering in GF-NOMA to facilitate
resource sharing.

2) Considering the probability of the malicious nature
in IoT devices, we discuss and analytically model
a local trust management module that establishes
social relationships between devices without a central
authority.

3) Analytical modeling of success and collision probabil-
ities for both existing and proposed schemes in GF-
NOMA.

4) Subsequently, we propose the SAFE-GF-NOMA solu-
tion that aggregates IoT devices using their social
autonomous relations. Each cluster is formed with
a certain level of trust among the devices. A novel

1Please note that the proposed solution majorly operates on the user
equipment side to reduce contention.

mechanism is designed for cluster head (CH) selection
and maintenance using trust and residual energy,
to ensure reliable and capable CH identification.

5) Extensive performance evaluation through simulation
and analytical experiments, demonstrating a significant
reduction in uplink access without incurring additional
delays.

The paper is structured as follows: In Section II, we review
the existing literature on active device detection and GF-
NOMA contention, as well as the background and relevant
works on SIoT. Section III outlines the proposed SAFE-
GF-NOMA aggregation scheme, detailing its components
and operation. Following this, in Section IV, we provide
an in-depth analysis of the aggregation scheme, discussing
its theoretical underpinnings and practical implications.
Section V presents the performance evaluation and results,
where we empirically assess the proposed scheme. Finally,
in Section VI, we offer concluding remarks and insights from
our study.

II. LITERATURE REVIEW
The problem of contention in GF-NOMA is a significant
challenge in providing widespread and massive connectivity
in 6G cellular networks. To improve access technology, there
has been substantial research on device activity detection,
barring, or collision avoidance strategies. In this context,
we highlight important research conducted in the GF-NOMA
domain and outline the latest innovations and solutions in the
SIoT domain. It is worth noting that the proposed SAFE-GF-
NOMA is the first research work that combines SIoT with
GF-NOMA to address uplink access contention.

A. UNCOORDINATED IOT ACCESS OF GF-NOMA
Two novel random access schemes are introduced in [3],
tailored for facilitating simultaneous inter and intra-cluster
transmissions among IoT devices within MIMO-NOMA
networks. The authors explicitly delineated that their scope
excluded clustering and beamforming, with their primary
focus dedicated to the design of effective random access
techniques. The authors in [4] addressed the challenge
of maximizing uplink sum rates within NOMA clustering
methods and NB-IoT systems. The article introduced an
efficient heuristic algorithm designed to tackle the joint
optimization of NOMA clustering and resource allocation
for MTC devices. The literature review provided in [7]
highlighted several key aspects of a proposed solution within
a Single Input Single Output (SISO) GF-NOMA network
context for diverse IoT devices. The authors identified three
contributions: addressing the lack of consideration for diverse
IoT traffic in GF-NOMA, introducing device-specific reward
modeling for Reinforcement Learning (RL) models, and
proposing advanced access mechanisms to accommodate
Industrial IoT (IIoT) devices with flexibility and reduced
overhead. The devices are categorized into periodic, trig-
gered, and hybrid types, and a Q-learning algorithm is
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TABLE 1. State-of-the-art solutions to reduce contention in uncoordinated GF-NOMA.

proposed for stationary mode access and an AdaUpdate-
aided Priority-based Deep Q-Network (PA-DQN) algorithm
for overload mode access. However, the study noted two
major challenges: the limitation of considering only two
IoT devices per resource block (RB), despite GF-NOMA’s
potential to accommodate multiple devices for uplink, and the
necessity for extensive training data for the Q-learningmodel,
which might not guarantee optimal solutions. Additionally,
the study considered factors such as instantaneous success
probability and long-term successful access probability in
evaluating the proposed techniques.

The primary focus of the study outlined in [9] revolved
around optimizing user pairing, Reconfigurable Intelligent
Surface (RIS) assignment, and phase shift alignment to
enhance the performance of NOMA systems with RIS
assistance. The introduction of GF-NOMA alleviated the
need for pre-scheduled time slots, thereby enhancing spectral
efficiency by allowing users to transmit data without specific
time allocations. The paper proposed strategies for effectively
pairing users in NOMA systems to maximize both system
throughput and fairness. Additionally, it delved into the
allocation of RIS elements to users and the optimization of
phase shifts within the RIS to enhance signal quality and
mitigate interference. The problem was further dissected into

two main components: User Equipment (UE) clustering and
RIS assignment subproblems, providing a comprehensive
approach to addressing the complexities of optimizing
NOMA systems with RIS assistance. Overall, the paper
contributed to the advancement of communication systems
by leveraging RIS and NOMA to enhance spectral efficiency,
system throughput, and fairness, particularly in scenarios
where grant-free communication was preferred or necessary.
In the paper, the parameters for user pairing in the context
of RIS-assisted GF-NOMA were likely to include several
factors that influenced the performance and efficiency of the
communication system.

The study in [10] delved into the intricate task of dynamic
resource configuration within GF-NOMA networks, taking
into account stringent latency and reliability requirements.
The authors aimed to maximize the long-term average
number of successfully served users while adhering to latency
constraints. One of the prominent challenges highlighted
in their work was the contention resolution at the base
station, particularly concerning random access collisions of
preambles. This contention posed a significant obstacle in
ensuring efficient resource allocation and optimal network
performance within GF-NOMA systems. Another notable
contribution outlined in [11] emphasized the significance of
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secure communications within multi-user NOMA downlink
systems, primarily attributed to the decoding nature essential
for message recovery. Recognizing the potential threat posed
by eavesdroppers, the authors concentrated on resource
allocation strategies aimed at maximizing the sum secrecy
rate while accommodating data requirements and power
constraints. The problem at handwas divided into two distinct
components: closed-form power allocation and user pairing
based on linear programming relaxation. The outcomes of the
study encompassed secrecy sum-rate metrics, shedding light
on the effectiveness of the proposed approaches in enhancing
the security of NOMA downlink systems. An interesting
strategy in [12] proposed a combined solution where they
innovated with the addition of a sleep mode to reduce
energy consumption, along with a power barring method
that reduces the uplink access. A coverage cell was divided
into multiple power layers, and a device chose to conserve
energy and/or skip uplink data with added delay. The device
received the channel broadcast and switched active mode on.
With a Pn,lt , the device participated and selected a random
resource to uplink data. The proposed scheme improved
energy consumption for devices and reduced uplink access
for the base station but with a cost of delay for the device.
Moreover, the efficient use of resources being under or
overused was not possible in an uncoordinated network. The
research conducted by Wu et al. is considered a reference
point due to its compatibility with our proposed scheme.
Similar toWu et al.’swork, we also utilizedmultiple resources
with varying power levels for uplink access in uncoordinated
GF-NOMA. Given the performance evaluation settings, [12]
serves as a better state-of-the-art benchmark compared to
other existing schemes.

The study conducted in [13] shed light on a crucial
limitation encountered in GF-NOMA networks, particularly
concerning short-packet IoT applications, where closed-loop
power control was unavailable. To address this challenge, the
authors proposed a novel approach termed ‘‘transmit power
pool’’ for open-loop power control. In this mechanism, IoT
users obtained their transmit power levels from a shared
power pool based on their respective distances from the base
station. The determination of the power pool was facilitated
by a multi-agent deep Q-network (DQN)-aided GF-NOMA
framework, wherein each user served as an agent and learned
a policy through interactions with the environment. Initially,
the base station broadcasted the power pool to all IoT users,
who subsequently randomly selected a power level from the
pool. This innovative power selection strategy significantly
reduced control overhead and communication requirements.
Moreover, the allocation of RBs was based on the distance
of users from the base station, ensuring efficient resource
utilization. However, a notable challenge arose from the
possibility of multiple users at the same distance selecting
the same RB with identical power levels. While resource
sharing occurred in both frequency and power domains,
there was no mechanism for releasing or reallocating

FIGURE 3. Social relationships in SIoT.

resources in GF-NOMA networks once they had been
shared. The study suggested further exploration of exploiting
time-division considerations in conjunction with frequency
and power-domain resource allocation, albeit requiring pre-
planned coordination. In their study, Tran et al. [14]
highlighted the critical requirements of Ultra-Reliable Low
Latency Communication (URLLC) messages, which were
characterized by their ultra-short duration and the necessity
for massive connectivity. Within the context of GF-NOMA
solutions, effective resource allocation emerged as a crucial
factor in mitigating contention in RB selection. The potential
for multiple users to select the same RB could result in
collisions and interference, ultimately undermining system
performance. To address this challenge, the authors proposed
a framework aimed at maximizing the long-term average
energy efficiency while ensuring the fulfillment of user
requirements regarding reliability and latency for URLLC-
enabled GF-NOMA systems. The paper presented a novel
approach to maximize energy efficiency, simultaneously
optimizing sum rate maximization and power consumption
minimization by utilizing DeepQLearning techniques. Three
distinct solutions were proposed: MA Dueling Double Deep
Q Network, MA Double Deep Q Network, and MA Deep Q
Network. An interesting take on non-orthogonality in [15]
proposed the unified non-orthogonal waveform (uNOW)
scheme, which integrated non-orthogonal waveforms with
NOMA to enable efficient data transmission across different
users. The authors proposed a receiver design based on
variational inference, which is a probabilistic method for
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FIGURE 4. Enabling SIoT aggregation in the GF-NOMA uncoordinated IoT network uplink access.

approximating complex posterior distributions. The proposed
equalization can successfully balance complexity and bit
error rate performance. Moreover, the authors in [16] intro-
duced an innovative resource allocation scheme designed
to enhance the energy efficiency (EE) of Pattern Division
Multiple Access (PDMA)-based Simultaneous Wireless
Information and Power Transfer (SWIPT) systems. The
approach addresses the challenge of maintaining quality of
service (QoS) while optimizing resource allocation. These
methodologies offered innovative strategies to enhance the
performance and efficiency of GF-NOMA systems while
meeting the stringent demands of URLLC communications.
We have summarized the existing literature on uncoordinated
GF-NOMA in Table 1.

B. STATE OF THE ART IN SIOT
IoT envisions providing ubiquitous computing, where smart
or non-smart objects like coffee makers, fridges, and
etc., autonomously communicate and exchange informa-
tion [17]. Subsequently, SIoT offers a navigable, scalable, and
autonomous architecture for massive IoT networks, by incor-
porating relationships between devices. Another advantage
of social relations in autonomous devices is trustworthiness,
which provides secure networking. SIoT enables devices
to identify and establish dynamic relationships with nearby

devices, and eventually to provide efficient resource and
service discovery [18], [19]. Khan et al. introduced the SIoT
structure, where relationships in devices are discussed [8].
These social relations in autonomous IoT networks are
formed using existing sociology and anthropology theories
in SNs [20], [21]. A device can establish one or more
relationships with other devices, as listed in Figure 3. These
SIoT relationships are explained below:
1. Co-Location Object Relationship (CLOR): The CLOR

relationship is established between the co-located devices,
which can communicate over capillary communication
(Bluetooth, Zigbee, etc.).
2. Parental Object Relationship (POR): A device estab-

lishes a POR with other devices if they are manufactured by
the same manufacturer. Similar products mimic a family with
the same parents.
3. Co-Work Object Relationship (CWOR): Devices work-

ing on the same project can establish a Co-Work relationship.
A multi-agent, goal-oriented project can highly benefit from
CWOR.
4. Owner Object Relationship (OOR): Multiple devices

owned by a single person can communicate and develop
an autonomous relationship that makes things easier for the
owner. A relation fostered based on the same owner similarity
is termed an owner-object relationship (OOR).
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5. Social Object Relationship (SOR): An owner might
share services (printer information, etc.) with friends, where
devices can utilize the owner’s social circle information and
establish relationships with these external devices.

Social relationships establish an autonomous SN of
devices, where interactions between device SNs and human
SNs may also exist [22]. Communication with human SNs
enables context awareness in devices, and they can also ben-
efit from efficient data acquisition and quality decisions [23].
The establishment and maintenance of social relationships in
IoT devices require various control communications, which
can be achieved using a centralized entity, i.e. an SIoT
Server [24]. However, an independent peer-to-peer (P2P)
network perfectly mimics a human SN, where devices
can directly communicate and establish social relationships
dynamically [24].

III. PROPOSED SAFE-GF-NOMA SCHEME
We introduce a distributed device network and propose
a graph theory-based clustering mechanism that ensures
trustworthiness in the CH.2 We believe that a trustworthy
cluster where devices are familiar with each other can be
utilized in several applications. GF-NOMA faces a severe
hurdle in its uncoordinated and random but massive access
to IoT networks, in the form of uplink collisions. The pro-
posed trustworthy aggregation can provide resource sharing,
leading to a substantial reduction in uplink access without
incurring any additional delays or data loss. Subsequently,
the reduced uplink access substantially reduces collisions
and contentions. Moreover, for every transmission, a large
number of IoT devices in the proposed scheme opt to
transmit via a CH which enhances the battery life and
reduces the uplink interference. The proposed SIoT-based
aggregation scheme relies on relationship establishment
and independent trust management. Figure 4 illustrates a
GF-NOMA environment where resources are shared over
a broadcast channel and the IoT devices carry out random
selection. However, the massive access contains mostly short
messages or data transmission, and the collisions due to
the same resource selection can easily degrade the overall
system performance. On the other hand, the proposed scheme
reduces the uplink access with the help of SIoT-based
aggregation, where devices share resources by establishing
trust among themselves. The proposed autonomous process
requires careful modeling and design for efficient cooperative
aggregation.

A. SYSTEM MODEL
Let a network be described as a directed graph υ =

{δ, ε}, where δ = {ρ1, ρ2, . . . , ρk} is the set of k nodes.
An edge εi,j is a representation of a physical wireless direct
communication link between devices, ρi and ρj. We propose

2The proposed scheme operates on MAC and higher layers to enable
two-hop message delivery with trustworthiness. However, the impact of
reduced uplink access also improves the physical layer metrics such as signal
strength and data rate, as demonstrated in our results.

FIGURE 5. Trust model.

an overlaying social graph υ ′
= {δ′, ε′

}, where υ ′
⊆ υ,

δ′
⊆ δ and ε′

⊆ ε. Given υ = {δ, ε}, our aggregation model
generates a social graph υ ′

= {δ′, ε′
}, where each social edge

ε′
i,j represent a trust between ρ′

i and ρ′
j . Two nodes establish

an edge ε′
i,j in the social graph if there exists a valid εi,j and a

level of trustworthiness (Ti,j), as formulated below:

υ ′
= {δ′, ε′

} | ∀ ε′
i,j ∃ εi,j and Ti,j > TThresh, (1)

where Ti,j is the trust value of ρi and TThresh is a threshold
of trustworthiness, a value to limit the amount of information
sharing with trustworthy devices.
The SIoT-based trustworthiness framework enables

autonomous trust establishment and management in IoT
devices. The trust process is initiated between two nodes by
considering similar traits or properties, e.g. Co-Owner, Co-
Work, etc. However, the trustworthiness of a device does not
depend only on the type of relationship, but it is a function
of multiple attributes. A device calculates the trustworthiness
of a neighboring device Ti,j by considering the centrality in
the network �i,j, previous experience of direct transactions
Odir, and the opinions of common devicesOind. The centrality
of a device j is defined as the ratio of connections with j to
the total number of devices, given by: �j =

N δj

N δ . A higher
�j value indicates that the device j is well-connected and
can provide access to other nearby resources. The direct
transaction experience Odir depends on the ratio of messages
sent to j to the total, expressed as Odir

=
Mi,j
Mi

. This direct
experience reflects previous messages, bug reports, software
updates, and communications. Nearby devices with higher
Odir values are considered trustworthy and reliable for future
transmissions. The neighbor opinion (Oind) is the average
of direct transaction experiences of all common neighbors

with target devices j, estimated as: Oind
=

∑CLORi
k Odir

k,j
CLORi

. This
value Oind is used in the trust calculation to avoid relying
solely on personal experience. A trustworthy device must be
well-connected and well-communicated with other nearby
devices. We consider the trustworthiness calculation as an
existing function of SIoT, where the device establishes and
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Algorithm 1 Device Periodic Trust Management
Require: δ = {ρ1, ρ2, . . . ρk}

1: for Device i in δ = {ρ1, ρ2, . . . ρk} do
2: for CLORi do
3: if Ti,j ≥ TThresh then
4: Register in TT
5: end if
6: end for
7: Participate in SAFE-GF-NOMA aggregation and

resource allocation
8: end for

maintains relationships. Figure 5 shows an example of node
ρ′

3 calculating Tρ3,ρ5 (trust value for ρ′

5), utilizing �i,j, Odir,
and Oind.

The trust value Ti,j in the range of [0, 1] is finally calculated
using a weighted sum model. The autonomous trust Ti,j can
be estimated as:

Ti,j = (1 − α − β)�i,j + αOdir
i,j + βOind

i,j , (2)

where �i,j indicates the centrality of node ρ′
j , as viewed from

ρ′
i , and previous transaction experience is represented byO

dir

and Oind.
Smart and connected IoT applications, such as healthcare,

smart homes, consumer electronics, intelligent transportation
systems, and smart cities, are prime targets for our proposed
SIoT-based trustworthiness. Trust establishment andmanage-
ment in all these applications are crucial. Let us consider a
scenario in healthcare where devices within the same room or
area can establish trust and share information. For any patient,
devices such as wearable health monitors, smart infusion
pumps, digital stethoscopes, and bedside tablets, are deployed
to provide comprehensive patient care. These devices must
communicate and collaborate to monitor the patient’s health
and provide real-time data to healthcare providers. Our trust
mechanisms ensure that sensitive patient data is shared only
with trustworthy devices. For a smart city scenario, our
trust procedure can be easily integrated to enhance traffic
management and ensure public safetywith smart devices such
as traffic lights, surveillance cameras, smart parking meters,
air quality sensors, and emergency response units. In this
paper, we consider a generalized trust management model
using Equation (2), where a device can quantify, calculate
and store the trust value of another device, regardless of the
application.

B. SIoT-BASED AGGREGATION MODEL
In an independent and autonomous IoT paradigm, a device
can calculate trust for other devices using Equation (2), which
can be used for various applications. We propose a SAFE-
GF-NOMA, SIoT-based aggregation scheme for GF-NOMA
contention, where trustworthiness is a crucial component.
An autonomous device can communicate and keep track of
periodic trust among devices using Equation (2), as outlined
in Algorithm 1. The trust information of the nearby devices

Algorithm 2 Aggregation Communication Algorithm
1: Initiate the process by Ij
2: Broadcast the aggregation request
3: for each response i do
4: Calculate Tj,i using Equation 1
5: if Tj,i > TThresh then
6: Register in TT
7: end if
8: end for
9: Select a resource out ofM , broadcast from the BS
10: Identify transmit power level Pj
11: Transmit over selected resource with the selected power

is stored locally in a ‘‘Trust Table’’ (TT). Once the TT is
populated, a device can initiate the aggregation process and
become the CH for the cluster, or participate in existing
clusters. However, an operator-controlled and pre-defined
threshold TThresh value is used to filter out trustworthy
devices. Nevertheless, once the trust is established among
a group of autonomous devices, the CH can relay the
uplink transmissions on behalf of the cluster members, over
GF-NOMA cellular resources. Algorithm 2 outlines the
proposed procedure for an initiator interested in becoming
the CH. In our proposed aggregation scheme, a broadcast
discovery message initiates the registration process to detect
potential devices in the vicinity (referred to as the CLOR).
A nearby device can reciprocate by sending its information,
constituting a handshake. The received information is then
utilized, along with the relationship and centrality of the
device, to examine trustworthiness during the investigation
process using Equation (2). The registration concludes by
adding the device and its corresponding trust value to a
local TT. In each device, the TT holds a list of devices
with their respective IDs, trust values, and validity, which
is periodically updated. Establishing an SIoT relationship
with a nearby device does not guarantee aggregation or
resource sharing; it depends on the mutual trust between the
two participants. The clustering process is triggered when a
device (initiator) has data to transmit and sends a participation
request to the devices stored in the TT. Nearby devices join
the aggregation if the trust value Ti,j is higher than the
threshold TThresh.
Please note that the threshold value TThresh is determined

by the application requirements and controlled by the
operator. Devices handling sensitive information, such as
security cameras and monitoring devices, typically have
a higher threshold compared to devices like temperature
sensors, which may have a lower threshold. The CH
considers the GF-NOMA BS broadcast with resources
and power levels and selects a random resource to
transmit uplink data on behalf of the cluster members.
The proposed aggregation significantly reduces uplink
access, resulting in two advantages for GF-NOMA resource
allocation:
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1) Reduced uplink access increases the success of uncoor-
dinated uplink data transmission in the GF-NOMA and
IoT environment.

2) Devices that opt for local transmission within the
cluster reduce overall system interference, increasing
signal strength, data rate, and quality of service.

Nevertheless, another important aspect of the proposed
scheme is the CH selection. Throughout this manuscript,
the initiator has been designated as the CH because of its
willingness to transmit on behalf of nearby devices. A CH
must fulfill two key criteria: having sufficient energy for
continuous transmission and maintaining a higher average
trust value. The proposed algorithm ensures that both criteria
are met by default. However, it is important to have a criterion
defined to ensure CH selection at the beginning of cluster
formation or at a later if the current CH’s energy is depleted.
We model a periodic approach where the device a with the
highest CH suitability value (0j

a) can replace CH j. Let k jt|C
be the devices currently associated with the CH j, then the 0

j
a

formulation is outlined below:

0j
a = (1 − w) ×

∑k jt|C
i=1
i̸=a

⌊
Ti,a − TThresh + 1

⌋
k jt|C

+ w× Et,a,

(3)

where Et,a ∈ [0, 1] represents the total remaining energy of
device a and k jt|C denotes the total count of devices associated
with CH j, out of k , participating in the proposed SAFE-GF-
NOMA aggregation, as elaborated in the next section. The
initiator collects and assesses 0 for each cluster member,
determining the next CH based on the highest value (i.e.

argmax
k jt|C
a=1 0a). Notably, the trust value (Tij) between device

i and j evolves or diminishes over time. In our proposed
scheme, we adopt the trust management process outlined
in [25]. To help the reader keep track of all used mathematical
notations, Table 2 outlines the description of all symbols.

IV. ANALYTICAL MODEL
We propose that the CHs aggregate devices within the com-
munication range, based on the trust values. Let the number
of devices surrounding a CH (j) depend on the sparsity of
the device distribution which in turn depends on the radius
of BS (λBS) and communication range of CH, λj. The total
number of devices in the proximity (kt|C ) of total It CHs can
be calculated as:

kt|C =

It∑
j=1

[
(λj/λBS) × (k − It )

]
, (4)

where It ≤ (λj/λBS) + 1, k is the total number of devices, λj
and λBS is the capillary communications range of CH j and
BS radius, respectively.

Subsequently, the cluster size relies on communication
range and BS size, whereas uniformly distributed and
non-overlapping It also represents the number of clusters.

TABLE 2. Symbol table with descriptions.

Participation in the cluster requires a level of trust between
a device and CH, where trust value is unique and experience-
dependent. A device i joins a cluster if the trust edge value
between device i and CH j, (Ti,j) is greater than threshold
TThresh. The total number of devices participating in the
proposed SAFE-GF-NOMA scheme to reduce uplink access
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(k ′

t|C ), can be estimated as:

k ′

t|C =

kt|C∑
i=1

It∑
j=1

[
8i,j ×

⌊
Ti,j − TThresh + 1

⌋

×

⌊
Tj,i − TThresh + 1

⌋]
, (5)

where8i,j is a binary identification of device i’s participation
in CH j’s cluster. Our designed equation for k ′

t|C smartly
formalizes the trust condition (Ti,j > TThresh) using ⌊Ti,j −

TThresh + 1⌋ and makes use of a geometrically possible
number of non-overlapping clusters. Moreover, for a device
to become part of the proposed aggregation, trust for both
device i to CH j and CH j to device i must be greater than the
threshold TThresh.

Let us assume that a GF-NOMA BS broadcast M
resources, each with L power levels resulting in M × L
possible resources in the broadcast. The collision probability
of a device competing with another device can be defined
as 1 − (Probability of not selecting unique resource) = 1 −(
1 −

1
M

)
, where 1

M is the probability of selecting a unique
resource. In the presence of other k − 1 active devices, the
collision probability can be defined as:

Pc = 1 −

(
1 −

1
M × L

)k−1

(6)

Considering that the CH aggregates the devices partic-
ipating in aggregation, the competition is reduced by C
devices, resulting in less collision probability. The collision
probability for the proposed aggregation scheme, using
Equation 6 is updated as:

Pc = 1 −

(
1 −

1
M × L

)k−k ′
t|C−1

(7)

Let us consider the successful decoding order of transmis-
sion (P1i,BS,r > P2i,BS,r > . . . > Pki,BS,r ) with different power
for the same frequency resource r . The signal-to-interference-
plus-noise-ratio (SINR) for a device i communicating to a BS
for resource r , SINRi,BS,r with transmission power P1i,BS,r ,
over a quasi-static Rayleigh fading channel with additive
white Gaussian noise µ and |hi,BS|2 channel gain, is [13]:

SINRi,BS,r =
|hi,BS|2 × Pi,BS,r

µ +
∑kr

n=1 gn × Pn
, (8)

where kr other devices are transmitting over the same
resource with superimposed signal.

Moreover, the devices not competing in the uplink access
(i.e. k ′

t|C ) for all the resources reduce the competition and
improve the decoding at the BS. Assuming the uniform
distribution of devices in clusters, and over all the resources,
the uplink over resource r will also reduce with a factor of
(k ′

t|C,r = k ′

t|C/M ). In the proposed system, the SINR for
a device transmitting to a BS SINRi,BS|C,r , over resource r
with transmit power of P1i,BS,r , where total k

′

t|C,r devices do

not create interference due to cluster participation, can be
estimated as:

SINRi,BS|C,r =
|hi,BS|2 × P1i,BS,r

µ +
∑k−k ′

t|C
n=1 gn × Pn

(9)

The proposed SAFE-GF-NOMA scheme aims to reduce
uplink competition, thereby decreasing interference for uplink
transmissions. At the physical layer, a BS using uplink power
control and successive interference cancellation (SIC) can
decode and identify the specific resource blocks assigned
to each transmission. The proposed aggregation method
enhances the bit error rate at the BS by minimizing
competition, which can be further improved by employing
advanced encoding and decoding techniques at the physical
layer [15]. Additionally, a variational interference-based
receiver in non-orthogonal waveforms can effectively reduce
inter-symbol interference (ISI). Evaluating the combined
performance of our proposed aggregationmethod at theMAC
layer and a low-complexity encoder at the physical layer
presents an intriguing avenue for future research.

Moreover, we consider a peer-to-peer link between the
device and CH using 802.11n with OFDM and channel
bonding in a 2.4 GHz band with 20 MHz bandwidth.
Assuming that the channel gain g and noise factor µ in a
cluster is approximately similar to the OFDMA, the SINR
for a device in a cluster communicating to the CH, can be
estimated as [26]:

SINRi,C =
|hi,j|2 × Pi,C

µ +
∑k ′

t|C
n=1 gn × Pn

(10)

The maximum achievable data rate for above stated all
three scenarios (RBS,RBS|C , and RC ), can be calculated as:

Ri,BS = f log(1 + SINRi,BS,r ) (11)

Ri,BS|C = f log(1 + SINRi,BS|C,r ) (12)

Ri,C = f log(1 + SINRi,C ) (13)

The total energy consumed to transmit content of size ST
bits, with an achievable data rate of R and a transmission
power of P, can be calculated as E = ST .P/R. Similar to the
data rate, the energy consumption of a device communicating
to the BS:

Ei,BS = ST .P/Ri,BS = ST .Pi,BS/(f log(1 + SINRi,BS,r ))

(14)

Similarly, energy consumption for a device (not in cluster)
transmitting to the BS where total C devices are in clusters
is:

Ei,BS|C =ST .P/Ri,BS|C =ST .Pi,BS/(f log(1 + SINRi,BS|C,r ))

(15)

And, energy consumption for a device communicating to the
CH becomes:

Ei,C = ST .P/Ri,C = ST .Pi,C/(f log(1 + SINRi,C )) (16)
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FIGURE 6. Capacity gain.

FIGURE 7. Success probability (λBS = 250 m and It = 2).

The above analysis points out that trustworthy clustering
not only ensures privacy but also reduces interference, which
in turn increases data rate and subsequently, less energy
is consumed for each transmission. In the next section,
we discuss results and observations to validate our claims.

V. PERFORMANCE EVALUATION AND RESULTS
To evaluate the efficacy of the proposed SAFE-GF-NOMA
scheme, we present the impact of the proposed trustworthy
aggregation on uncoordinated GF-NOMA uplink access
collisions. Please note that in our evaluation a collision in the
GF-NOMA is defined as two or more devices transmitting
over the same frequency resource with the identical power
level at the same time. Our exhaustive evaluation includes
metrics of capacity gain, success, and collision probabilities
with varying TThresh values. The simulation settings operate
on two scenarios with cell coverage radii of 250 and
500 meters to represent densely and sparsely populated
environments, respectively. In both scenarios, we consider
a Poisson distribution of 50 to 300 devices, while each
device is able to maintain a constant capillary communication

FIGURE 8. λBS = 250 m, TThresh = 0.3.

FIGURE 9. λBS = 250 m, TThresh = 0.5.

range of 32 meters. We consider a typical point-to-point
arrangement using IEEE 802.11n with a stock antenna,
where the communication range is fixed to 32 meters.
Moreover, the CHs (It ) are uniformly distributed to ensure
an equal number of devices within capillary communication
proximity. Uniform distribution is deliberate to produce
non-overlapping clusters for performance evaluation.

Following the aggregation scheme, each device joins a
CH for resource sharing if its trust value (Ti,j ∈ [0, 1])
is higher or equal to TThresh. The initial trust is assumed
to follow a random distribution; however, over time, our
simulation model maintains and updates the Ti,j accordingly.
We assess the proposed SAFE-GF-NOMA scheme using
various TThresh values of 0.3, 0.5, 0.7, and It values of
2, 4, 6, and 8. Please note that the number of CHs
in a realistic scenario will be higher than the number
of CHs used in the performance evaluation. The number
of devices involved in aggregation is calculated using
Equation (5) for both simulation and analytical experiments.
To facilitate our analysis, we have developed a discrete event
C++ simulator designed to replicate the behavior of our
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FIGURE 10. λBS = 250 m, TThresh = 0.7.

FIGURE 11. λBS = 500 m, TThresh = 0.5.

proposed aggregation scheme. Devices utilize a random walk
distribution to simulate mobility during each scheduling slot.
We have considered that the power selection for GF-NOMA
is dependent on the channel gain, which is estimated using
distance. A random walk mobility distribution accurately
replicates a low-mobility urban environment. Furthermore,
to account for the random distribution of trust and users’
random resource-power selection in GF-NOMA broadcast,
we conduct exhaustive experiments comprising 96, 000 runs
to observe simulation outcomes.

The analytical results using Equation (5) and simulation
results of capacity gain of the proposed scheme are presented
in Figure 6. Our SAFE-GF-NOMA aggregation achieved
a capacity gain of up to ∼ 70% over the legacy cellular
system when utilizing It = 8 and TThresh = 0.3. Moreover,
increasing the cell radius and trust threshold as (R = 500 m)
and TThresh = 0.5, respectively, demonstrates an approximate
10% gain even with only It = 2. A quick observation
highlights that higher values of It or lower TThresh values lead
to increased capacity gain, as they result in the aggregation
of more devices and a reduction in the number of requested
preambles. Interestingly, the operator-controlled parameter
TThresh introduces a trade-off between privacy and capacity
gain. Reducing the TThresh value significantly increases the

FIGURE 12. Average datarate.

FIGURE 13. Average energy consumption.

capacity gain but at the expense of clustering devices with
low privacy and trustworthiness. A higher TThresh value
ensures better privacy but reduces capacity gain, while a
lower TThresh value sacrifices privacy for higher capacity
gain. Additionally, a smaller radius (e.g., R = 250 m)
leads to a denser device distribution, further increasing the
capacity gain. Please note that such control that allows
application-specific configuration for privacy and resource
sharing is not present in the existing state-of-the-art schemes.
Figure 7 compares the success probability of aggregation
and EPCB schemes [12] within a single scheduling slot,
considering 54 GF-NOMA resource preambles and 10 ∼

60 simultaneous user requests. We compare the proposed
SAFE-GF-NOMA solution with EPCB [12] because it is the
most relatable approach so far, and both the solutions operate
on the devices without centrally provided information.
As depicted, the success probability decreases for all systems
as the number of requests increases in all schemes. However,
EPCB with M = 64 achieves approximately 40% ∼ 84%
success, while the proposed aggregation scheme surpasses
this performance by providing 70% ∼ 88% success with T =

0.3. Moreover, across all scenarios of TThresh, aggregation
shows a significant advantage of≈ 40% ∼ 70% gain over the
existing EPCB scheme, especiallywith a lower trust threshold
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of TThresh = 0.3. This advantage comes from the device
aggregation and resource-sharing capabilities of the proposed
SAFE-GF-NOMA scheme, outperforming EPCB’s barring
technique.

To further investigate the proposed SAFE-GF-NOMA
aggregation, we evaluate both the proposed and legacy
systems in terms of collision probability for different TThresh
values (0.3, 0.5, 0.7) while using a fixed set of 64 GF-
NOMA resource-power broadcast preambles. Specifically,
Figures 8 (for TThresh = 0.3) and Figure 9 (for TThresh = 0.5)
illustrate that higher trust levels result in approximately 20 ∼

30% fewer collisions in the proposed SAFE-GF-NOMA
solution. It’s worth noting that the choice of TThresh entails a
tradeoff between gains and privacy. Interestingly, as TThresh or
the cell coverage (λBS) reduces (i.e. device density increases),
Figures 10 and Figure 11 demonstrate a further reduction in
collision probability. The collisions reduce as low as 10% ∼

20% in our solution as compared to the legacy system.
Overall, aggregation achieves 10% ∼ 30% fewer collisions
than the legacy system. Considering the 1 ms scheduling of
GF-NOMA, on-demand clustering, and periodic TT updates,
we assume that the proposed aggregation scheme can achieve
similar performance in amobile environment for lowmobility
or vehicular networks.

Furthermore, Figure 12 identifies that incorporating the
proposed clustering scheme provides an approximate data
rate of ∼ 0.9 Mbps to a device within a cluster and ∼ 0.4
Mbps to a device outside of a cluster. In comparison, devices
in the legacy system experience a data rate of only ∼ 0.3
Mbps. Moreover, Figure 13 corroborates our findings by
demonstrating that a device within a cluster requires only
0.26 ∼ 5 J to transmit a 1 Mbps file, while a device
outside of a cluster requires 0.6 ∼ 12 J. In comparison,
the legacy system demands 0.8 ∼ 17 J of energy for the
same transmission. The proposed scheme not only benefits
devices within clusters but also enhances the data rate and
reduces energy consumption for devices outside of clusters.
The impact of the proposed clustering on the overall system is
due to the reduction in uplink access thus reducing the overall
interference.

A. OVERHEAD AND LIMITATION
The evaluation of time and order complexity in the proposed
SAFE-GF-NOMA system is based on quantifying the
communication messages involved. Initially, each device
communicates with its neighbors (CLORi), followed by trust
calculations with common neighbors during the registration
phase outlined in Algorithm 1. The complexity of the initial
TT formulation phase can be approximated by the sum of
message counts to direct neighbors and common neighbors,
denoted as O(CLORi +

∑k
j=1 CLORi ∩ CLORj). It’s worth

noting that the registration phase is not frequent. Practically
speaking, this means that the proposed system efficiently
manages initial communication overhead through infrequent
registration phases and streamlined clustering processes.
The trade-off between overhead and performance gain is

important, especially in real-world scenarios where network
and cellular resources are often limited. The capacity gain and
improved success probabilities not only justify the overhead
but also highlight the system’s potential for scalable and
reliable IoT communications in 6G networks.

The clustering phase occurs after the initial TT pop-
ulation process, where initiators broadcast invitations to
nearby devices, resulting in an estimated complexity of
O(CLORi). In the best-case scenario, each message could
lead to capacity enhancement. Moreover, the participating
devices only have to transmit to the selected CH. Despite
the complexity, considering the capacity gain and success
probability achieved through aggregation, the complexity
remains an acceptable trade-off. By using the proposed
SAFE-GF-NOMA trust-based clustering, the model keeps
the communication overhead low and effectively supports the
network’s performance goals. This practical benefit shows
that the model is suitable for use in heterogeneous and
dynamic IoT environments, where it is crucial to allocate
resources efficiently.

VI. CONCLUSION AND FUTURE WORK
Undoubtedly, GF-NOMA offers frequency reuse with min-
imal coordination between BS and IoT devices. However,
the uplink contention in uncoordinated resource alloca-
tion resulted in additional delays and had a catastrophic
impact when emergency services or disaster management
communicated. In this study, an innovative, autonomous,
and independent aggregation model, built on the Social
Internet of Things (SIoT) relationships, was proposed.
Subsequently, our SIoT-based aggregation is used to establish
trustworthy clusters for efficient resource allocation in
6G cellular networks. Through extensive simulations and
analytical experiments, the results demonstrated that the
proposed aggregation achieved a remarkable capacity gain
of approximately ∼ 70%. Moreover, the success probability
exhibited a substantial improvement of around 40% ∼

70% compared to the existing enhanced power choice
barring scheme (EPCB) [12]. Additionally, the reduced
competition for resources resulted in a significant reduction
of approximately 10% ∼ 30% in collision probability
compared to legacy systems.

Our future work will focus on refining trustworthiness
management strategies to further reduce communication
overhead and explore the application of SIoT principles in
novel 6G applications. This includes:

• Enhanced Trust Metrics: Developing more sophisti-
cated metrics for trustworthiness that consider dynamic
and contextual factors, thereby improving the reliability
of trust-based clustering.

• MachineLearning Integration: Incorporatingmachine
learning algorithms to predict and adapt to changing
network conditions, enhances the efficiency and
robustness of resource allocation. The predicted trust
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can reduce the communication overhead of local trust
management.

• Scalability Analysis: Investigating the scalability of the
proposed aggregation model in large-scale IoT networks
such as IIoT and URLLC, ensuring its effectiveness in
diverse and dense environments.

• Energy Efficiency: It is also interesting to consider
multiple CHs in the same cluster to load balance
and reduce energy consumption while considering the
minimal uplink access burden. A prompt future direction
can explore techniques to further optimize energy
consumption in SIoT-enabled networks, particularly for
battery-constrained IoT devices.

• Security Enhancements: Along with the proposed
privacy preservation SIoT-based scheme, security mea-
sures can also be strengthened within the SIoT frame-
work to protect against potential cyber threats and ensure
data integrity and privacy.

• Real-world Deployments: Conducting real-world
deployments and field trials to validate the theoretical
and simulation-based findings, addressing practical
challenges and enhancing the model’s applicability.

Along with the above-given research problems, there can
be various future directions aimed to build on the foundation
established in our study. The boundaries of the SIoT-based
autonomous trust management and aggregation can be
pushed to ensure robust, efficient, and secure communication
in 6G networks.
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