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ABSTRACT Recent expert ensemble methods for long-tailed recognition encourage diversity by
maximizing KL divergence between the predictions of experts. However, the excessive diversity using KL
divergence, which has no upper bound, induces inaccurate predictions of experts. To address this issue,
we propose a new learning method for expert ensemble, which obtains the consensus by aggregating the
predictions of experts (Consensus) and maximizes the expected prediction accuracy of each expert without
excessive diversity from the consensus (Risk Aversion). To implement this learning scheme, we propose a
new loss derived from Rényi Divergence. We provide both empirical and theoretical analysis of the proposed
method along with a stability guarantee, which is not guaranteed at the existing methods. Thanks to this
stability, the proposed method continues to improve performance as the number of experts increases, while
the existing methods do not. The proposed method achieves state-of-the-art performance for any number of
experts. Furthermore, the proposed method operates robustly even when evaluated by varying the imbalance
factor.

INDEX TERMS Long-tailed object recognition, classification, ensemble of multiple experts, consensus,
risk aversion.

I. INTRODUCTION
In real-world scenarios, the distribution of object classes
often shows a long-tailed property [1], [2]. Long-tailed
distribution means that the some classes have a wealth
of data samples, called head classes, while some classes
have extremely limited number of data samples, called tail
classes. The long-tailed distribution, originally introduced
in economics as the Pareto distribution [3], is noteworthy
for its presence not only in economic contexts but also
in various natural phenomena [4]. This broad applicability
has attracted research interest, especially in the field of
visual recognition [2], [5], [6], [7]. The central challenge
in long-tailed recognition arises from the disparity between
training dataset designed to have long-tailed distribution
and test dataset which is not necessarily being long-tailed.
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Conventional learning methods lead to a strong bias towards
the head classes and suppress the performance in tail classes
since they assume a balanced class distribution of training
dataset. To solve the long-tail problems, most studies focus
on balancing strategies such as re-sampling [8], [9], [10],
adjusting logit or reweighted loss [6], [11], [12], [13],
augmentation [14], [15], [16], [17], contrastive learning [18],
[19], [20], [21], and so on.

Recently, expert ensemble methods using multiple experts
have been proposed [20], [22], [23], [26], [27], [28], [29],
[30]. The expert ensemble methods reduce the prediction
variance of the tail class that suffers from large variance due
to the lack of training samples [27]. Some expert ensemble
methods apply specialized training scheme for each expert
to make diversity among experts [22], [23], [26] as shown
in Figure 1 (a). However, this approach requires man-made
heuristics with pre-determined number of experts, which is
not scalable.
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FIGURE 1. Ensemble schemes using multiple experts. (a) Ensemble
scheme that trains each expert with its own specialized training
scheme [22], [23], [24], [25], [26]. (b) Ensemble scheme that encourages
each expert to be diversified [27], [28], [29], or distills knowledge from
the others [20]. (c) The proposed consensus and risk aversion (CRAL)
scheme that makes consensus and encourages diversified prediction in
stable manner.

Expert ensemble methods employ Kullback-Leibler diver-
genceDKL [31] as shown in Figure 1 (b). [20], [32] minimizes
DKL between experts to distill knowledge. However, min-
imizing DKL between experts discourages experts to make
diverse predictions, which results in saturated performance
even the number of experts increases, as shown in Figure 2.
On the other hand, the diversity loss maximizes DKL [27],
[29] between experts to encourage diverse prediction.
However, maximizing DKL makes experts be diversified
excessively because DKL has no upper bound, which induce
inaccurate prediction of other experts. As a result, increasing
the number of experts leads to performance degradation as
shown in Figure 2.

To address the aforementioned limitations, we propose
Consensus and Risk Aversion Learning (CRAL) that trains
expert ensemble for long-tailed classification. CRAL obtains
the consensus that aggregates the predictions of experts,
and makes each expert be optimized following risk aversion
behavior given the consensus, as shown in Figure 1 (c).
Risk aversion behavior maximizes an expected prediction
accuracy of each expert without excessive diversity from
the consensus. To implement the risk aversion behavior,
we propose a Negative Expected Rate of Return (NERR) loss
derived from derived from Rényi Divergence [33]. Finally,
we further enhances our model incorporating Class Prior
Adjustment (CPA).

Unlike KL-divergence that has no upper bound, the
proposed NERR loss has upper bound mathematically, which
is proved in this paper. This property guarantees stable
learning. Thanks to this property, the performance of CRAL

FIGURE 2. Maximizing DKL between experts for diversity(RIDE [27],
TLC [28]) results in performance degradation as more experts are
involved due to their instability. NCL [20], which minimizes DKL to distill
knowledge, shows performance saturating since it encourages experts to
predict similarly. The proposed method(CRAL) guarantees stability under
consensus and controls the degree of diversity between experts by a risk
aversion parameter, which shows continuous performance improvement
as the number of experts increases. For a fair comparison, all methods
are trained with CIFAR100-LT (imbalance ratio = 100) [5], [6] along with
the same data augmentation, training schemes, and environment.

improves continuously as the number of experts increases,
while existingmethods using ensemble of multiple experts do
not as shown in Figure 2. Furthermore, extensive experiments
are conducted to show the validity and outperforming
accuracy of CRAL in popular long-tailed classification
benchmarks [2], [5], [6], [7].

Our contributions are summarized as follows:
• We propose a new expert ensemble learning that gives
stable predictions by regulating diversity unlike existing
methods suffering from excessive diversity.

• We achieve the diversity regulation by consensus
of multiple experts and risk aversion behavior that
regulates the prediction diversity from consensus. To this
end, we develop the NERR loss.

• We prove that the NERR loss is bounded to ensure stable
training unlike existing methods using DKL .

II. RELATED WORKS
A. BALANCING STRATEGIES FOR LONG TAILED VISUAL
RECOGNITION
To mitigate the negative effects of class imbalance,
researchers have designed on balancing strategies such as
re-sampling of training dataset [8], [9], [10]. Subsequently,
methods adjusting logit or balancing loss have been proposed
to regulate the influence of each class, or samples [6], [11],
[12], [13], [34], [35], [36]. The presence of class imbalance
within the training data leads to an in ill-conditioned
decision boundaries, and predictions are severely biased
to the head classes [15], [37], [38]. Balanced losses
improves performance of tail classes by effectively balancing
imbalanced factors. Reference [13] proposes sample-level
re-weighting to control the influence of each sample on
training phase. Reference [34] proposes effective number
of each class as class-level re-weighting. Reference [12]
is another class-level re-weighting method that compensate
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class distributions’ disparity between training and test
dataset. References [11] and [36] introduces adjustment terms
of the prediction. Additionally, [6] proposes loss function
that induces larger margins for minority classes, thereby
rectifying the ill-conditioned decision boundary. On the
other hand, the methods to augment samples is explored
to mitigate the risk of overfitting to the limited tail class
samples [14], [15], [16], [17]. Additionally, contrastive
learning have been introduced to extract features with
powerful discriminativity [18], [19], [20], [21].

B. ENSEMBLE OF MULTIPLE EXPERTS IN LONG-TAILED
CLASSIFICATION
Methods have emerged to improve predictions for tail classes
in long-tailed classification [20], [22], [23], [24], [26], [27],
[28], [29], [30]. These methods primarily focus on acquiring
experts with diversity or distilling knowledge from each
other. BBN [22] employs an ensemble of two experts,
one trained on a long-tailed distribution dataset and the
other on a re-balanced data distribution. Similar to [22],
SADE [26] is trained using a dataset with different class
data distributions. Furthermore, [26] proposed strategies to
aggregate predictions of multiple experts through linear
interpolation with varying weights, and this process involves
the use of the test dataset. ACE [24] is designed to allocate
each expert to perform inferences for specific classes, with
multiple experts contributing to the tail class predictions.
LGLA [30] employs different logit adjustment strategies
for each expert and for aggregated logits. RIDE [27],
Mutual Learning [29], and TLC [28] aim to maximize the
relative entropy between experts, facilitating a wider range
of predictions. In particular, [27] introduces a router that
determines which expert to use during the inference phase.
TLC [28] employs evidence theory to enhance the predictions
of tail classes and present dynamic engagement strategy of
each expert. In contrast from [27], [29], and [28], LFME [25]
tries to distill other experts’ knowledge by minimizing cross
extropy of logits. Similary, NCL [20] focuses on knowledge
distillation by minimizing relative entropy between experts
while incorporating hard category mining.

C. ECONOMICS WITH INFORMATION THEORY
Information theory has been applied to economics to analyze
one’s decision according to the expected return. When it
comes to the horse-racing game [39], [40], DKL between
the probability distribution that gambler believes and official
odds eqauls the expected rate of return of the gambler under
the assumption that the gambler shows growth-optimizing
behavior [39]. Furthermore, expected utility hypothesis con-
siders different risk attitudes of individuals [41]. Individuals
refuse to take part in fair gamble whose expected return
is zero. At the same time, individual shows risk-averse
behavior rather than the option with higher risk-higher return.
[40] generalized the relationship between expected rate of
return with relative risk aversion coefficient [42], [43] using

generalized divergence [33]. Moreover, deriving consensus
from multiple experts is researched [44], [45].

III. METHODOLOGY
This section presents details of the proposed Consensus
and Risk Aversion Learning (CRAL). In Section III-A,
we introduce Rényi divergence, a key element in subsequent
formulas, along with brief outline about the expected rate
of return from economics, that leverages Rényi divergence.
In Section III-B, we propose CRAL and its training objec-
tive, Negative Expected Rate of Return (NERR), bridging
economics to ensemble of multiple experts. In Section III-C,
we present an strategy to obtain consensus of multiple
experts, and in-depth analysis to prove the stability of
CRAL under the proposed consensus function. Finally,
in Section III-D, we explain strategies to further improve
NERR, along with individualized training scheme to train
each expert.

A. PRELEMINARIES
Rényi Divergence [33], which is also known as α-divergence
is defined as follows:

Dα(P||Q) =
1

α − 1
log

(
C∑
i=1

pα
i

qα−1
i

)
, (1)

where P = {p1, . . . , pC } and Q = {q1, . . . , qC } are
probability distributions and α is a non-negative coefficient.
Dα at α = 1, ∞ is defined by taking the limit of (1), whereD1
corresponds to the well-kwown Kullback–Leibler divergence
DKL [31]. Dα is a generalized, smoothed statistic divergence
function of DKL [46]. Dα is asymmetric, meaning that
Dα(P||Q) is not equal to Dα(Q||P) in general. Furthermore,
Dα is an unbounded function with respect to the probability
distributions P and Q.

Divergence as a Measure of Expected Return. Diver-
gence serves as a measure of dissimilarity between two
probability distributions, and [39] have applied it to betting
theory assuming the gambler who takes part in the horse rac-
ing game. In the game, there exists a probability distribution
m believed by market, referred to as the official odds that sum
up to 1. Then, the amount bet on each horse is proportional
to m. However, if the gambler were to bet in accordance
with m strictly, expected return that the gambler receive
becomes zero. As a result, the gambler seeks to invest based
on own belief distribution b. Kelly [39] proved that, under
the assumption of growth-optimizing behavior, the gambler’s
expected rate of return is proportional to DKL(b||m).

Reference [40] further generalized expected rate of
return ERw (b,m) using the generalized divergence, Dα .
Reference [40] introduced relative risk-aversion coefficient
Rw and formulated expected rate of return as follows:

ERw (b,m) =
1
Rw

D1(b||m) +
Rw − 1
Rw

D1/Rw (b||m). (2)
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Here, Rw is defined in [42] and [43]:

Rw = −
wu′′(w)
u′(w)

, (3)

where u(w) is the utility function associated with the wealth
w, and ′ stands for the derivative operator with respect to w.
Rw serves as an indicator of risk attitude, where a low value
of Rw implies a high elasticity of return [47], showing a risk-
taking behavior.

B. CONSENSUS AND RISK AVERSION LEARNING
Leveraging the strength of multiple experts without heuristics
requires methods that maximize divergence between them.
However, existing approaches such as [27], [29], and [28]
exhibit performance degradation as the involved number of
experts increases. We attribute this to undesirable mathe-
matical properties of the employed divergence measures.
In response, we propose our scheme, Consensus and Risk
Aversion Learning (CRAL) as shown in Figure 1 (c). We
design CRAL so that it obtains consensus from all experts and
makes each expert yield prediction to maximize its expected
accuracy without excessive deviation from the consensus.
For further explanation, we introduce the notations used
throughout the paper.
Notations. Let’s define notations for further explanation as

followings:
• C : Number of classes of dataset
• Ei: i-th expert where i = 1, . . . , n
• Pi,c(x) = P(y = c|x,Ei): probability that the output y of
input data x belongs to class c, which is predicted by Ei.
We get probability prediction with softmax function of
logit li,c

• Pi = {Pi,c|c = 1, . . . ,C}: the probability mass function
predicted by Ei

• f : RC×n
→ [0, 1]C : consensus function that receives

belief probability distributions Pi, (i = 1, . . . , n) and
yields consensus probability distribution

Using (2), we define the training objective function for Ei,
called Negative Expected Rate of Return (NERR) loss, as

LNERR(Pi, f ;Rw) = −ERw (Pi, f ), (4)

where f indicates the consensus function f (P1, ..,Pn).
Remark: Comparing the parameters between (2) and (4),

we can draw analogies between betting theory and the
multiple-expert ensemble. The gambler’s belief b is replaced
by the individual expert’s prediction Pi. The consensus
function f can be used instead of official odds m in (2).

For simplicity, we adopt the isoelastic function [48] as for
the utility function in (3), i.e.,

u(w) =
w1−ρ

− 1
1 − ρ

, (5)

where ρ is a constant parameter. By (5), (3) is reduced
to Rw = ρ. From now on, we substitute Rw to constant
coefficient ρ. Then the following Theorem 1 gives intuition
about the behavior of LNERR(Pi, f ; ρ).

Theorem 1: For any probability mass functions Pi, f ,

−LNERR(Pi, f ; ρ) ≥ 0 if ρ ≥ 1, (6)

whereas −LNERR(Pi, f ; ρ) = 0 when Pi = f or if ρ → ∞

under the condition Pi, c ̸= 0 ∀c.
Proof: For ρ ≥ 1, −LNERR(Pi, f ; ρ) is linear interpo-

lation of divergence metrics DKL(Pi||f ),D1/ρ(Pi||f ), hence
−LNERR(Pi, f ; ρ) is also non-negative divergence metric.

The condition

DKL(Pi||f ) = D1/ρ(Pi||f ) = 0 (7)

is equivalent to Pi = f . Furthermore, if Pi,c ̸= 0 for all c =

{1, . . . ,C}, then

lim
ρ→∞

−LNERR(Pi, f ; ρ) = D0(Pi||f ) = − log 1 = 0, (8)

Theorem 1 indicates that the proposed training objective
−LNERR(Pi, f ; ρ) is a divergence metric under ρ ≥ 1. Letting
a hyper-parameter ρ ∈ [1, ∞), minimizing−LNERR(Pi, f ; ρ)
with respect to Pi, f encourages diversity between Pi and f .
Unlike methods that maximize DKL [27], [28], [29], the

proposed loss employ the consensus f and control the degree
of risk aversion [46] with ρ. Assigning a small value to ρ

encourages risk-taking behavior, encouraging every expert
to yield prediction maximizing its own accuracy without
excessive deviation from the consensus. On the other hand,
assigning a large value to ρ enforces risk aversion behavior.
Increasing ρ results in less diversity between Pi and f and
taking ρ → ∞ makes the loss converge to 0. Note that
we cannot guarantee −LNERR(Pi, f ; ρ) is non-negative for
0 < ρ < 1, and we cannot ensure NERR works properly
when ρ approaches zero.

C. STABILITY GUARANTEE
Minimizing −DKL(Pi,Pj), i ̸= j to train multiple
experts [27], [29] is unstable since −DKL(Pi,Pj) has no
lower bound with respect to (Pi,Pj). This instability lead
to performance degradation (Fig. 2), and even gradient
explosion is observed when employing many experts [28]. To
guarantee stability, our scheme gets consensus f and encour-
ages each prediction Pi to be diversified from consensus f .
We define the consensus function as f =

1
n

∑n
k=1 Pi. Then,

the following Theorem 2 ensures that −LNERR(Pi, f ; ρ) is
upper-bounded.
Theorem 2: For given natural number of experts n,

−LNERR(Pi, f ; ρ) is upper-bounded for any positive ρ, i.e,

−LNERR(Pi, f ; ρ) ≤ n · JSD(P1, . . . ,Pn))

≤ n log n, (9)

where JSD(·) stands for Jensen-Shannon divergence [49].
To give proof of Theorem 2, we first prove following

Lemma 1.
Lemma 1: For any probability mass function P,Q,

Dα(P||Q) is non-decreasing function of α for all nonnegative
real number α.

97886 VOLUME 12, 2024



T. Ha, J. Y. Choi: Consensus and Risk Aversion Learning in Ensemble of Multiple Experts

Proof: Here, we extend the proof for the probability
density function presented in [50] to the probability mass
function. Dα(P||Q) is non-decreasing function of α for all
positive α. Denote pc = P(y = c), qc = Q(y = c) for
c = 1, . . . ,C .

According to [50], for 0 ≤ α < β, the function f (x) =

x
α−1
β−1 defined on x ≥ 0 is strictly convex if α < 1 and strictly

concave if α > 1.
Case I: 0 ≤ α < 1. By Jensen’s inequality, following

inequality holds:(
C∑
c=1

(
pc
qc

)(β−1)

pc

) α−1
β−1

≤

C∑
c=1

(
pc
qc

)α−1

pc. (10)

Taking logarithm of (10), and divide both side by the negative
real number α − 1, we obtain Dα ≤ Dβ .
Case II: α > 1. By Jensen’s inequality, following

inequality holds:(
C∑
c=1

(
pc
qc

)(β−1)

pc

) α−1
β−1

≥

C∑
c=1

(
pc
qc

)α−1

pc. (11)

Taking logarithm of (11), and divide both side by the positive
real number α − 1, we obtain Dα ≤ Dβ .
Case III: α = 1. By the definition of Rényi divergence,Dα

is continuous at α = 1.
By Case I, II, and III, Lemma 1 holds.
Proof of Theorem 2: By Lemma 1, following equation

holds.

− LNERR(Pi, f ; ρ) − DKL(Pi||f )

=

(
ρ − 1

ρ

) (
D1/ρ(Pi||f ) − DKL(Pi||f )

)
(12)

≤ 0.

⇒ −LNERR(Pi, f ; ρ) ≤ DKL(Pi||f ) (13)

According to [51], following inequality holds.

JSD(P1, . . . ,Pn) ≤ log n (14)

Then, using (13) and (14), we get following.

DKL(Pi||f ) ≤

n∑
i=1

DKL(Pi||f )

= n · JSD(P1, ..,Pn)

= n · JSD(P1, ..,Pn)

≤ n log n. (15)

By (13) and (15), Theorem 2 holds for all ρ > 0.
The consensus is equally contributed by Ei, (i = 1, . . . , n),

which is suitable to CRAL that trains all experts under
the same training strategy. As a result, while [27] and
[28] shows worse accuracy when employing more experts,
CRAL improves accuracy as the number of experts increases,
as shown in Figure 2. Also, we use consensus as the final
predictor of ensemble at inference phase.

D. INDIVIDUALIZED TRAINING OF EACH EXPERT
We perform CRAL using LNERR(Pi, f ; ρ) to maximize
return of Ei, along with classification loss [12] denoted by
Lcls,i to train Ei. Instead of aggregating the losses of all
experts, we train Ei individually. This individualized training
allows each expert to be stand-alone classifier [27], and
well-trained experts generate good consensus in collaborative
manner [52]. Training loss for Ei is given by

Lcls,i + λLNERR(Pi, f ; ρ). (16)

In our implementation, the output logit (li,c = Wi,cx) of each
expert is normalized as

l ′i,c =
Wi,c

||Wi,c||2

x
||x||2

, (17)

where x is a feature vector, Wi,c is a classifier weight vector
for class c from Ei.

In LNERR(Pi, f ; ρ), class imbalance is not considered.
Thus to accelerate the effect of LNERR(Pi, f ; ρ), we adjust
the normalized logit (l ′i,c) using class prior probability
(P(y = c|Xtrain)) to compensates l ′i,c to reflect difference of
distributions between training and test datasets [12]. To this
end, we applyClass Prior Adjustment (CPA) strategy given
by

l ′′i,c = P(y = c|Xtrain)l ′i,c =
nc∑C
k=1 nk

l ′i,c, (18)

where Xtrain is the set of all training samples.

IV. EXPERIMENTS AND RESULTS
A. IMPLEMENTATION DETAILS
We implemented all our methods with PyTorch [53] library.
Our implementation is based on official implementation
of [14] and [27], but we do not use unfair additional
data augmentation when comparing performance to other
methods. We use weight decay of 2e−4 and batch size
is set to 256. The base learning rate is set to be 0.1,
with warm-up epochs following convention [14], [27]. f
is frozen during each iteration of training all experts Eis
(i = 1, .., n) individually. We set λ = 0.3 in (16), and
ρ = 5.0 for all experiments if not mentioned. We evaluate the
proposed method on the most commonly used benchmarks:
CIFAR100-LT [5], [6] with various imbalance factors(IF =

100, IF = 50, IF = 10) along with large-scaled benchmarks,
ImageNet-LT [2] and iNatualist2018 [7]. To ensure a fair
comparison, We make an effort to reproduce or gather results
of other methods using the same backbone baseline, data aug-
mentation strategies, and training schemes. We used 2 RTX
2080Ti to train CIFAR-100LT, and 4 RTX 4090 to train
on ImageNet-LT and iNaturalist2018, which is large-scaled
dataset. We use stochastic Gradient Descent as the optimizer
with the momentum of 0.9 [54]. Following [27], early layers
of backbone are shared.
ImageNet-LT: The ImageNet-LT dataset can be obtained

from the published source described in [2]. We conduct
experiments using both ResNet-50 [55] and ResNext-50 [56].
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TABLE 1. Comparison between CRAL and other multi-experts methods by
increasing the number of experts. All models are trained for 200 epochs
at CIFAR-100LT (IF = 100). n stands for number of experts. We add
performance difference from previous n in parenthesis. Note that we
cannot get the result for the cases written as ‘N/A’ due to their unstability.
All results are reproduced by us under the identical training strategies.

TABLE 2. Ablation study to verify the effects of NERR, CPA in CRAL. n
stands for the number of experts and Med stands for medium. When we
do not use NERR, we have trained with λ = 0 in (16). All models are
trained for 200 epochs at CIFAR = 100LT (IF = 100). The best results are
marked in bold.

Following common learning rate schedule [14], [27], we have
trained the proposed model for 200 epochs with learning
rate decay by a factor of 0.1 at the 120th and 160th
epoch. We also conduct 400-epoch training following recent
conventions [20], [21], [57] with learning rate decay by
a factor of 0.1 at the 320th and 360th epoch. We use
Randaug [58] along with random horizontal flip.
CIFAR-100 LT: CIFAR-100 is obtained by the method

described in [5]. To obtain CIFAR-100 LT, the long-tailed
version of CIFAR 100, we follow the method described
in [34].We use ResNet-32 [55] as the backbonewhenwe train
and evaluate on CIFAR-100 LT dataset. We follow common
learning rate schedule following [14] and [27] for 200 epochs
training with learning rate decay by a factor of 0.1 at the
160th and 180th epoch.We also provide results of 400 epochs
training following recent conventions [20], [21], [57] with
learning rate decay by a factor of 0.1 at the 320th and 360th
epoch. We use Autoaug [59] along with random horizontal
flip.
iNaturalist2018: iNaturalist2018 is acquired as described

in [7]. This data is from the natural world, and naturally, the
number of training data sample shows long-tailed character-
istics. We conduct experiment using both ResNet-50 [55].
Following [14], we have trained our model for 200 epochs
with learning rate decay by a factor of 0.1 at 75th and 160th
epoch. We use Randaug [58] with random horizontal flip.

B. EVALUATION METRIC
To provide a quantitative comparison, we report top-1 classi-
fication accuracy in percent(%) following conventions [20],
[27], [28]. Following [2], we report the accuracy for

FIGURE 3. Accuracy graph by changing the value of ρ (x-axis, log-scale
with base 2). All models are trained for 200 epochs at CIFAR = 100LT (IF =

100).

three disjoint class subsets: Many classes with more than
100 training samples, Medium classes with 20 to 100 training
samples, and Few classes with less than 20 samples. For
CIFAR-100 LT [34], we can control the imbalance factor
(IF), defined as the ratio of the number of training samples
of the largest class to that of the smallest class. We design the
number of training samples of i-th class ni (i ∈ {0, 1, . . . , 99})
of CIFAR-100 LT following [34]. In [34], ni = 500µi, where
µ = (IF)−1/99. The number of samples of each class in
the test dataset remains the same as the CIFAR-100 data.
We report the results for commonly-used three IFs (IF= 100,
IF = 50, and IF = 10) for CIFAR-100 LT dataset.

C. ABLATION STUDIES
1) STABILITY AND SCABILITY IN NUMBER OF EXPERTS
To verify the stability and scalability of the proposed CRAL,
we compare its performance by increasing the number of
experts in the model, as shown in Figure 2 and Table 1.
For quantitative comparison, we compare the performance
with other methods (RIDE [27], TLC [28], and NCL [20]),
that provieds official implementation and that can increase
the number of experts of the model. For fair comparison,
all results in Table 1 are reproduced. They are all trained
using CIFAR-100LT(IF = 100) [5], [6] under the same
augmentation strategy and training schemes. As pointed out
in Sec I and III, the performance of [27], a method of
maximizing DKL among experts, fluctuates as the number
of experts increases. Additionally, in the case of TLC [28],
when the number of experts was 10 and 15, training was
not possible due to the exploding gradient despite multiple
trials. NCL [20], which minimizes divergence between
experts, shows saturation of performance even if the number
of experts is increased. However, the performance of the
proposed CRAL can be seen improving as the number of
experts increases. Through this, the stability of the proposed
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TABLE 3. Comparisons with state-of-the-art methods on ImageNet-LT [2]. † denotes results reproduced using the identical environment, data
augmentation strategy, and training schedule by us based on their official implementations. ∗ indicates that mixup-based augmentation such as [67] is
used. ** uses the test dataset during the training phase. e indicates that it trained for shorter epochs. ‡ means we re-calculate ‘All’ performance using
‘Many, Medium, Few’ performances which is copied from its original paper, since they are slightly inconsistent. Bold text indicates best results among the
same training scheme. ’-’ indicates the original paper has not released the result of corresponding experiment.

CRAL and the scalability of the number of experts can be
empirically verified.

2) EFFECTIVENESS OF COMPONENTS
We verify the effectiveness of CRAL’s each component:
LNERR (NERR) and Class Prior Adjustment (CPA) through
an ablation study. As shown in Table 2, NERR enhances the
performance of multiple experts for All, Many, Medium, and
Few cases. Moreover, the addition of CPA further enhances
overall accuracy, compensating the disparity of distributions
between training and test dataset.

3) EFFECT OF RISK AVERSION COEFFICIENT ρ

To observe changes in CRAL according to risk aversion ρ,
we have trained models changing ρ on a log scale from
ρ = 0.3 to ρ = 100, as shown in Figure 3. For ρ > 1,
if we assign large value to ρ the performance of CRAL shows
saturation from some point. This is because risk-aversion
behavior results in less diversity from the consensus.
As we have mentioned in Sec. III-B, the performance is
unstable when ρ < 1, since we cannot guarantee the
LNERR(Pi, f ; ρ) is divergence metric. The performance drops
most in Few classes with unstable ρ as predicted byTheorem
I. Therefore, risk-taking behavior with limited number of
training samples is not recommended. Meanwhile, we find

maximum of overall accuracy among the trained models at
ρ = 5.0.

D. COMPARISON WITH STATE-OF-THE-ARTS
1) EVALUATION ON ImageNet-LT
Table 3 presents the performance evaluations on ImageNet-
LT [2] along with state-of-the-art methods published in
2023 along with representative methods with multiple
expert ensemble. For fair comparison, we only collect
results that use RandAug [58], and gathers them by their
backbone(ResNet-50 [55] and ResNext-50 [56]), or that
uses other augmentation such as [67] which is not adopted
by others if not specified. We further presents results of
CRAL trained for 400 epochs training scheme following [20],
[21], [29], and [30]. We compare state-of-the-art methods
that uses the same training epochs. The proposed CRAL
outperforms state-of-the-art methods in accuracy of all, many,
and medium when trained for 400 epochs, while shows
competitive performance when trained for 200 epochs.

2) EVALUATION ON CIFAR-100 LT
Table 4 displays the performance evaluation on CIFAR-
100LT [6] along with state-of-the-art methods published in
2023, and representative multiple expert ensemble methods.
For fair comparison, we only include methods that utilize
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TABLE 4. Comparisons with state-of-the-art methods on CIFAR100-LT [5], [6]. † denotes reproduced results with the identical environment, data
augmentation, and training schedule to us. * indicates that mixup-based augmentation such as [67] has been employed. ** indicates that the method use
test dataset during training phase. bold text indicates best results, and underlined text indicates the second best results. ‘-’ indicates the original paper
has not released the result of corresponding experiment.

TABLE 5. Comparisons with state-of-the-art methods on
iNaturalist2018 [7]. * indicates that mixup-based augmentation such
as [67] is used. ** indicates trained for 400 epochs, while others are
trained 200 epochs. ‡ stands for that we re-calculate ‘All’ performance
using ‘Many, Medium, Few’ performances that is copied from its original
paper, since they are slightly inconsistent. ‘-’ indicates the original paper
has not released the result of corresponding experiment.

the same data augmentation, and they are grouped based on
their training epochs, either 200 or 400 in Table 4. For some
representative multiple experts ensemble methods [20], [27],
[28] that do not report their performance with Autoaug [59]
or both 200 and 400 epochs training, we have reproduced the
results and marked the methods as † in Table 4. The proposed
CRAL outperforms in all IF = 100, IF = 50, and IF = 10 for
both trained with 200 epochs and 400 epochs, using n = 4.

3) EVALUATION ON INATURALIST2018
Table 5 presents the performances on iNaturalist 2018 [7]
with state-of-the-art methods. For fair comparison, we only
collect models whose backbone is ResNet50 [55] and trained

for 200 epochs except NCL [20]. The proposed CRAL shows
competitive performance in the dataset. The proposed CRAL
outperforms state-of-the-art methods. CRAL with 4 experts
outperforms state-of-the-art methods in accuracy of All,
Many, Medium, and Few. Also, CRAL with 3 experts show
competitive result to the [65], the best methods among the
state-of-the-art methods.

V. CONCLUSION
In this paper, we proposed Consensus and Risk Aversion
Learning (CRAL) scheme to train ensemble of multiple
experts. Unlike formermethods, CRALobtains the consensus
that aggregates the predictions of experts first. Given the con-
sensus, CRAL maximizes expected prediction accuracy of
each expert following the risk aversion behavior implemented
by the proposed Negative Expected Rate of Return (NERR)
loss. We provided in-depth analysis on the behavior and
mathematical stability of the NERR loss with the consensus
function defined in the paper. Furthermore, we applied Class
Prior Adjustment that makes NERR to use compensated
logits. Through ablation studies, we verified the effectiveness
of CRAL and its scalability in the number of experts.
Furthermore, CRAL outperformed state-of-the-art methods
on popular long-tailed classification benchmarks.
Limitation: Though we proposed scalable multiple experts

ensemble, increasing number of experts still requires more
computational resource to train.

VI. FUTURE WORKS
Design of Consensus Function We have used average of the
experts’ predictions as consensus, but it can be improved
further. For example, we may use weighted average instead
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of simple average because Theorem II still holds for the
weighted average. However, the method of determining
weights requires an elaborate design, so we leave this as
future work.
Designing Adaptive ρ:We have kept the value of risk aver-

sion factor ρ as constant throughout all experts throughout
the training. We expect that designing ρ to adaptively change
depending on each expert’s accuracy during the training can
improve performance rather than using a fixed, unified value.
We leave it to future work.
Application to Other Domains: Though our method

designed to solve long-tailed image classification problem,
it can be applied to other domain such as event-triggered
control with multiple experts [70], cross-domain semi-
supervised classification in remote sensing images [71],
or hyperspectral image classification [72], and so on.
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