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ABSTRACT The increasing demand for intensive care unit (ICU) admissions, and the associated rising costs
have urged the need for effective management strategies. In this research, we focus on the challenges faced
by (1) hospitals in report generation and in their effort to properly allocate ICU patients, and (2) insurance
organizations responsible for payments. We address the issues of misclassification and financial burden on
hospitals and insurance organizations that arise from inefficient and subjective application of regulations
while also considering the impact on medical personnel. Through existing literature analysis, as well
as extensive discussions with critical care professionals and insights gained from university hospitals,
we identified the need for a supportive machine learning model for ICU level classification of patients,
and furthermore, we propose an easily deployable and highly interoperability software system specifically
for placement of patients in various ICU levels. We aim to support healthcare professionals in their
decision-making process with the supportive machine learning model and the software system that we
named ‘‘heartbeat”. This research aims to bridge the gap between hospitals and insurance institutions to
ensure fair and objective patient classification and to improve the overall ICU management. The process has
been tested using MIMIC-III version 1.4 dataset as a proof of concept to demonstrate the applicability and
effectiveness of the developed system. Further testing using real data after official deployment and usage by
various stakeholders.

INDEX TERMS ICU, MIMIC-III, supportive, machine learning, ICU management, ICU level, clustering,
classification.

I. INTRODUCTION

Over the years, advancements in artificial intelligence (AI),
machine learning (ML), intensive care unit (ICU) technolo-
gies, and automation systems development have significantly
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enhanced the efficiency of healthcare professionals, includ-
ing doctors, caregivers, and nurses. These technological
breakthroughs have undeniably improved the quality of the
healthcare services provided by hospitals. Despite these
positive impacts, in some countries like Turkey, bureaucratic
complexities have emerged as a major hurdle, hindering
the full potential of these advancements. The cumbersome

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

146121


https://orcid.org/0009-0003-8751-3609
https://orcid.org/0009-0009-2211-7297
https://orcid.org/0000-0003-0042-0569
https://orcid.org/0000-0001-6657-9738
https://orcid.org/0000-0001-6352-3122

IEEE Access

Y. Hakverdi et al.: Enhancing ICU Management and Addressing Challenges in Tiirkiye

bureaucratic processes counteract the efficiencies introduced
by the technologies, causing delays and inefficiencies in the
healthcare system. This issue becomes even more pronounced
during critical times, such as the COVIDO-19 pandemic,
when streamlined and agile healthcare practices were cru-
cial. Non-compliance with regulations due to convoluted
processes may lead to additional costs for patients, the
government, insurance institutions and hospitals alike.

Moreover, the fact that the structure of critical care units
is organized into tiers based on patient fatality rates, neces-
sitates different equipment packages and medical personnel,
including nurses and doctors, for each level of care. While this
tiered approach aims to provide tailored treatment, it can lead
to significant cost variations between levels. Consequently,
the cost paying entity may face higher charges based on the
level of care they require, which may turn into a financial
burden for many. Addressing these bureaucratic complexities
and streamlining healthcare processes is essential to fully
harness the potential benefits of AI, ML, emerging ICU
technologies, and automation in healthcare. By reducing
administrative burdens and fostering compliance, it will be
possible to ensure that advances in technology will continue
to drive efficiency and improve patient satisfaction without
imposing undue financial strain on paying entities, the
government, or hospitals.

In general, ICU is mostly regulated and managed by
institutional and government policies in various parts of the
world. For instance, in the UK, there are several works
reported to manage ICU as a combined effort by institutions
and academicians. One of the most significant works was
performed by the intensive care society in the UK [1].
The work described in [1] provides enough details about
ICU logistics and management; most importantly, it includes
detailed information on patient-level classification, starting
from admitting a patient to the most appropriate ICU level
which matches the encountered health case of the patient, and
how to decide whether a patient is to be moved to another
ICU level. On the other hand, regulations related to these ICU
aspects in the United States are subject to rigorous reviews
and frequent updates trying to address the concerns of the
parties involved.

One notable ICU related work within the United States
is described in the research of Eddleston et al. (2009) [2].
It offers a comprehensive exploration of ICU concepts and
patient classification. This work delves into the intricacies
of categorizing ICU patients and determining the necessary
resource allocation for each patient and ICU level. The
guidelines put forth in the study described in [2] encom-
pass a wealth of illustrative examples to enhance clarity.
Specifically, within the context of ICU-level description, the
guidelines layout the criteria for patient admission to the ICU
ward. For example, the guidelines provide symptomatology
and diagnostic indicators for different patients as well as the
presence of comorbidities, thereby enhance the precision of
the classification process. As far as Turkey is concerned,
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these types of guidelines were prepared in a similar way.
Indeed, the regulations applied in Turkey heavily reference
United States research on this matter; they are periodically
updated to catch up with the international standard. However,
one main difference specific to Turkey is that the employed
regulations provide more comprehensive explanation about
the type of wards that hospitals may utilize for ICU patients.
The regulations also identify hospitals which are allowed to
treat patients in each category of the ICU ward [3].

To be more specific, in Turkey, the government orga-
nization (SGK - Sosyal Giivenlik Kurumu -a.k.a., Social
Security Institution) partially covers ICU costs for Turkish
citizens. The amount of coverage is determined based on the
patient’s level of treatment and the specific clinic/hospital
they have visited, resulting in varying levels of insurance
payment from the government to either hospitals or patients.
Unfortunately, the current regulations and categorization
system for the ICU structure introduce subjectivity in deter-
mining the severity level of patients. This creates challenges
for doctors and SGK in efficiently managing the ICU
ward and covering the expenses, especially when hospitals
provide non-compliant reports. This is because hospitals may
subjectively show a patient in the highest cost ICU level
which could be associated with the case, and accordingly,
SGK is expected to pay the cost. Consequently, doctors and
officials responsible for validating refunding may engage in
subjective debates about the ICU admission criteria, leading
to potential rejections and inadequate reimbursements for
hospitals. The high cost associated with ICU awards and the
increasing demand for ICU admissions have given rise to
significant price discrepancies caused by misclassification.
These discrepancies affect both hospitals and doctors, posing
financial challenges on the healthcare system.

After carefully analyzed the current situation of the ICU
awards in Turkey, we identified the discrepancies in the
system leading to major conflicts due to subjective decisions
where hospitals try to increase their income, while SGK tries
to minimize the payments. This motivated the development
of a complete transparent solution which implements the
current ICU mechanism in Turkey enriched by regulations
well defined in other systems in developed countries, mainly
the United States and UK.

With the help of ICU doctors specialized in adult,
paediatric and neonatal units at Medipol University Hospital,
we identified issues having dual or multiple implica-
tions/interpretations within the tiered structure of the ICU
system. The drawbacks of the current system not only impact
the medical personnel, but also burden hospitals financially.
With escalating equipment and personnel costs, hospitals
tend to charge patients in a manner that surpasses the SGK-
covered fees. Moreover, there is a noticeable discrepancy
in expenses between hospitals offering high-quality critical
care services and those providing more standard care. This
difference is primarily observed in private and government
hospitals. During discussions with domain experts, the
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discrepancy in quality and the lack of government coverage
for expenses due to these regulations being subjective and
non-compliant for both SGK and hospitals were frequently
highlighted.

In light of the aforementioned circumstances, the objective
of this research project is to develop a supportive machine
learning model as part of an easily deployable automated
system with increased interoperability. The system aims
to provide doctors with a modern Web interface for
streamlined report generation specifically tailored for SGK.
By implementing some predefined templates for each ICU
unit, the system seeks to enhance and enforce standardization
and ensure consistency, thereby further improve the quality
of ICU management. Hence, the primary problem that is
intended to be resolved is the conflict between hospitals
and the refunding institution SGK. This will be achieved by
introducing objective and non-debatable admission criteria
by enforcing new regulations devised by domain experts.
Classification models have been employed to decide on the
most appropriate ICU level for a given patient based on
his/her various body indicators. The classifiers have been
trained using data extracted and adapted from MIMIC-III
due to the unavailability of ICU specific data which could
be used in the training. Additionally, this project seeks to
provide Al-powered information tool to further assist doctors
in their decision-making process; it introduces explainable
and fact-based data analysis for supporting streamlined report
generation. The results reported based on MIMIC-III dataset
are encouraging; they demonstrate the effectiveness and
applicability of the developed system.

The rest of this paper is organized as follows. Section II
is a brief overview of the related literature. Section III cover
the necessary background. The methodology is presented in
Section I'V. The results obtained using the MIMIC-III dataset
are reported in Section V. Section VI includes the discussion.
Section VII is conclusions.

Il. LITERATURE REVIEW

The literature review in this project is mainly divided into two
parts. Papers related to ICU admission criteria, ICU levels
and general information about ICU wards were collected,
followed by the application of machine learning and deep
learning for better handling the ICU ward. A literature review
related to ICU information shows that there are certain
admission criteria before transferring a patient to ICU. These
criteria can be enumerated as (1) when to admit patients,
(2) initial treatment, and (3) basic monitoring equipment
provided in the ICU ward. Determining patient admission
time is one of the crucial steps when it is intended to
consider ICU in medical treatment. Minimizing the time for
admission improves the chance of survival and improves
patients’ recovery duration, thus reduces the ICU length of
stay. Although time is crucial, unnecessary admission needs
to be avoided since ICU is a scarce and expensive resource
maintained in hospitals, and only eligible patients need to be
admitted. Although patient eligibility can be measured using
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several analysis techniques, it should have less priority below
vital function support [4].

After vital support is established for critically ill patients,
resources that will be provided for the patient need to
be determined using several analysis techniques. These
resources vary greatly in different sections of the ICU
ward; these sections are referred to as the ICU levels, and
they are mainly divided into priority levels of patients:
(1) critically ill patients who are characterized as severe cases
should be admitted to priority 1, (2) less critical patients
are classified into priority 2, etc. These prioritization levels
are generally determined by the Society of Critical Care
Medicine (SCCM). Since the ICU is an expensive system
for maintaining and providing its services to patients, ICU
resources should be allocated in the most possible efficient
way. Although there are several analyses techniques provided
for specific situations, misclassification of patients could be
encountered in some hospitals. This is sometimes done inten-
tionally for the hospital to charge higher rates. Unfortunately,
misclassification of patients may lead to misuse of resources
and mostly not having the appropriate resources accessible
for patients who need them. Consequently, mortality rate may
be negatively affected [5].

In addition to inefficient use of ICU resources and
prioritization of patients into ICU levels, when difficulty of
patient transfer from the emergency ward to ICU occurs,
certain risks may appear and affect the mortality rate. For
instance, Dacosta et al. [6] classified patients transfer to ICU
into either slow or rapid transfer based on a threshold. The
authors indicated that from the 80% slow transferred patients
a larger percentage died in the hospital.

There exist a large number of utilities and resources
that need to be efficiently allocated among ICU levels, and
prioritized according to patients’ criticality. These resources
need to be managed by considering certain standards [7],
[8]. The usage and type of utility needed also vary based
on ICU levels, and more support is needed for critically
ill patients; accordingly, the distribution of resources and
utilities should be categorized according to ICU levels.
These standards may change depending on the state of
emergency. Certain categories are determined and reflected as
color coded of patients’ assessment scores [9]. Furthermore,
a considerable amount of research has been conducted on
mortality prediction and sepsis prediction. Most information
provided on these works is mostly collected in systematic
review papers, e.g., [10] and [11]. Mortality rate prediction
may be guided by an essential study which compared
some machine learning algorithms for predicting COVID-19
patients mortality rate [12].

Generally, traditional machine learning algorithms like
K-nearest neighbor (KNN), support vector mchine (SVM),
Gaussian Process, etc. have been mainly used in this domain.
Although some of these algorithms do not provide a probabil-
ity rate easily, algorithms that transform classification results
to a probabilistic distribution exist. The latter algorithms
have been used by Sonu Subudhi et al. [13], who mentioned
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that the Brier score could be used for determining the
classification error. Further, comprehensive research has been
conducted for predicting the mortality rate from medical
EHR data [13]. Yilmazcan Ozyurt et al. introduced an
approach for early warning and mortality prediction models
by implementing a ‘“deep Markov model”. The authors
described the provision of a real-time mortality risk using
AttDMM, which serves as a warning system. This real-time
approach offers more comprehensive monitoring than other
machine learning models which only estimate a single point
in time for ICU mortality.

In addition to traditional method, intermediate machine
learning algorithms have been observed to perform better,
e.g., ensemble models [14]. For instance,
Ramin Ghorbani et al. introduced an ensemble hybrid model
to forecast the fatality ratio among critical patients by solving
the unbalanced data problem with various methods. The
dataset used to train the model was generated according
to admissions to Shadid Beheshti University of Medical
Sciences and Health Services in Iran between 2013 and
2019. The dataset was assembled from ICU patients within
24 hours of admission. The dataset consists of 1,999 records
and 21 attributes. The researchers handled the unbalanced
data using oversampling methods (SVM-SMOTE). They
also used validation techniques like shuffled 5-fold cross
validation and random hold-out.

Another study investigated the Cox proportional hazard
(CPH) model for ICU mortality prediction [15]. The authors
checked how the CPH model can be applied for the selection
of features in critical care unit fatality prediction models.
The data used in this research was used for the Physio net
2012 challenge; it is a subset of the MIMIC-2 dataset that
contains information about ICU patients admitted to Boston’s
Beth Israel Deaconess Medical Center from 2001 to 2008.
It is available on the Physio net 2012 challenge website.
A positive aspect of the research is that it introduced new
methods for feature selection and showed their importance
to produce the results.

Most of the current research utilizes MIMIC-III dataset
which contains structured data of approximately 57,000
patients with ICU first-day measurements and additional
features such as caregiver notes. The data was collected as
part of regular routine hospital care, alleviating the burden on
caregivers to manually collect this information. Additionally,
data was obtained from various sources, including ““Critical
Care Information System,” the “Hospital Electronic Health
Record” database, and the “Social Security Administration
Death Main File” to capture data pertaining to the care
process [16]. A tool called MIMIC-Extract tries to address
the problem of a lack of processing frameworks for healthcare
research for collecting and transforming data from electronic
health records (EHR) and from MIMIC-III database [17].

In most countries the ICU ward is regulated and managed
by institutions and government policies, e.g., [1]. The inten-
sive care society in the United Kingdom prepared a report
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which describes the regulations of the ICU ward. The report
covers various aspects related to ICU, including staffing and
resource allocation at each level of the ICU, patient-level
classification, etc. Furthermore, ICU regulations have been
comprehensively studied and are frequently updated in the
United States [2]. These demonstrate the global interest in
managing and handling the ICU ward better to the benefit of
all parties, including hospitals, patients and parties covering
the cost associated.

ICU guidelines have been prepared in a similar way in
Turkey. They are set by the government in consultation with
various healthcare institutions. They heavily reference United
States research on this matter, and they are periodically
updated. Additionally, in Turkey the government classifies
hospitals and grants to each hospital the class of ICU patients
who can be treated at the specific hospital. Accordingly,
hospitals can treated patients at levels up to the one granted
by the government [18].

Researchers also investigated bed occupation prediction
and patient flow prediction. For instance, Chia et al. [19]
focused on building a neural network model as a simple and
generalized model for patient flow in the emergency depart-
ment. They also predicted the number of patients arriving to
the emergency department. However, they did not provide a
comprehensive analysis of the structure of the data which
flows through the ICU and the useful features that could
be more beneficial. This helped in developing patient flow
prediction leading to a comprehensive report to nursing staff.

The work of Johnson et al. [20] utilizes Bayesian networks
by bundling domain knowledge and time series data into
a single encapsulated structure for predicting hourly flow
through the emergency department. They utilized the results
for better allocation of the resources. They built a web app
for managing the flow and the model. We developed a more
advanced system compared to what they have built for the
emergency department. Compared to PatientFlowNet [19],
the system has been tested at Aalborg University Hospital;
it had a direct impact on the emergency department. The
tech stack that they utilized is simpler than what we have
built. We provided richer selections regarding the choice
of the platform. Further our work surpasses the research
of Johnson et al. [20] on use cases. They reported some
use cases in the front-end for Aalborg University Hospital
emergency department.

We benefited from the work of Wang et al. [21] which,
among other aspects, concentrated on occupancy prediction.
They provide a framework and a data warehouse for building
different kinds of models according to hospital needs. Their
approach for predicting patient flow is different from the
other approaches described in the literature. They predict the
overall hospital occupancy by predicting the input and output
of patients into the emergency department. They predict
patient flow into the emergency department. Then, according
to the predicted length of stay, they individually calculate
the overall stay of the patient at the hospital and in the
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ICU ward in particular. For patient types, they use the most
common illnesses and treatments instead of focusing on every
symptom that may be encountered in patients. This makes
data exploration much easier and provides a more generalized
and efficient algorithm.

We also inspired from the work of Wang et al. [21] the way
they produce and communicate the various types of reports.
We also inspired from the work of Eddleston et al. [22]which
provided a model for predicting bed occupancy in Singapore.
Compared to other related works, they predict the occupancy
which is divided into different ward types from Class C to
Class A. For the framework, they used fewer and simpler
models compared to previous works, e.g., PatientFlowNet.
They utilized the regression model for bed demand fore-
casting, the Poisson model for obtaining predictions with a
probabilistic distribution, etc.

lll. BACKGROUND

For the reader to further understand the research conducted
in this study, we briefly cover some of the basic resources
utilized; these include the MIMIC-III dataset, as well as
important algorithms and models that have been used in the
clustering and classification phase of the study.

A. MIMIC-1II
MIMIC-III, stands for ‘‘Medical Information Mart for
Intensive Care I11,” is a comprehensive and publicly available
database designed to support research in the field of
critical care medicine. It was produced by MIT Laboratory
for Computational Physiology. It is widely utilized by
researchers, healthcare professionals, and data scientists to
gain insights into various aspects of patient care and outcomes
within ICU.. We particularly used MIMIC-III Version 1.4 in
this research

MIMIC-III contains de-identified data related to over
40,000 patients who were admitted to ICU at the Beth
Israel Deaconess Medical Center in Boston, Massachusetts,
between 2001 and 2012. The dataset is rich in clinical
information, including demographics, vital signs, laboratory
results, medications, diagnoses, procedures, and more. This
extensive collection of data offers a valuable resource
for studying patterns, developing predictive models, and
conducting retrospective analyses to better understand critical
care practices, patient trajectories, and treatment outcomes.

Researchers and healthcare professionals use MIMIC-III
to address various research questions, such as evaluating
the efficacy of interventions, predicting patient deterioration,
studying disease progression, and identifying factors that
contribute to patient outcomes. The dataset’s large size and
diversity provide an opportunity to explore a wide range of
clinical scenarios and conduct studies that can potentially
lead to improvements in patient care and healthcare delivery.
However, it is important to note that due to the sensitive nature
of medical data, MIMIC-III has been de-identified to protect
patient privacy. Researchers and users accessing the dataset
are required to adhere to ethical and legal guidelines to ensure
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the responsible usage of the data while preserving patient
confidentiality.

B. CLUSTERING

Clustering is the distribution of a given set of objects into
groups such that similar objects end up in the same group.
The compactness of each group together with the separation
of the groups confirms the quality of the clustering outcome.
A large number of clustering techniques could be found in
the literature. In this section, we briefly cover clustering
techniques which we have used in this study.

A Gaussian Mixture Model (GMM) is a probabilistic
model used in statistics and machine learning for representing
complex data distributions as a combination of multiple
Gaussian (normal) distributions. It is particularly useful when
dealing with data that may come from a mixture of different
processes. GMM assumes that the data is generated by a
weighted sum of several Gaussian distributions, where each
Gaussian component represents a distinct cluster or mode
within the data.

Consider a dataset X = {x1, x2, ..., x,}, where x; is a data
point in a d-dimensional space. GMM represents the data as
a mixture of K Gaussian components:

K
PO =D N (xl i, Th) (1)

k=1

Here, p(x) is the probability density function of GMM, my
is the mixing coefficient of the kth component (satisfying
Zszl e = 1 N(x|uk, k) is the Gaussian distribution with
mean py and covariance matrix X for the kth component.

The expectation-maximization (EM) algorithm is com-
monly used to estimate the parameters of GMM. The
EM algorithm alternates between two steps: the E-step
(Expectation step), where the probabilities of data points
belonging to each component are computed, and the M-step
(Maximization step), where the parameters (g, iy and X)
are updated based on the computed probabilities.

GMMs find applications in various fields, such as clus-
tering, density estimation, and data generation. They can
model complex data distributions and identify the underlying
patterns within the input data. The latter patterns might not be
captured well by a single Gaussian distribution. However, it is
essential to consider the appropriate number of components
(clusters) and to handle challenges such as convergence to
local optima during the optimization process.

K-Means is a popular clustering algorithm used in
machine learning and data analysis. It aims to group a dataset
into a predefined number of clusters. The algorithm works by
iteratively assigning data points to the nearest cluster center
and then updating the cluster centers based on the newly
assigned points.

Mathematically, K-Means can be described as follows.
Given a dataset X = {x{,x2,...,X,}, where x; is a data
point in a d-dimensional space, and a user-defined number
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of clusters K. For numerical attributes, the goal is to find
K cluster centers {cy, c3, ..., cx} that minimize the sum of
squared distances between data points and their respective
cluster centers:
. K 2
argmine, c, e > min i = g @)

The algorithm starts by randomly initializing the cluster
centers. In each iteration, it performs two steps:

1) 1. Assignment Step (Expectation): Each data point is

assigned to the nearest cluster center.

2) 2. Update Step (Maximization): The center of each
cluster is updated as the mean of all data points assigned
to the cluster.

These steps are repeated until convergence is achieved,
usually when the assignments and cluster centers no longer
change significantly. K-Means is efficient and works well
when the clusters are spherical and have relatively uniform
sizes. However, it is sensitive to the initial selection of
cluster centers and might converge to local optima. Various
techniques, such as trying different initializations and using
more advanced clustering algorithms, can help mitigate these
issues.

C. CLASSIFICATION

Classification is a technique which builds a model capable of
learning from a given set of data instances, called the training
set, the characteristics of each of a set of known classes. The
success of the process is measured by checking its ability to
correctly determine the class of a set of unseen data instances
forming the test set. While classification is known as learning
by example, clustering is accepted as learning by observation.
The rest of this section covers the classification techniques
used in our study.

XGBoost (Extreme Gradient Boosting) is a powerful
machine learning algorithm known for its effectiveness
in predictive modeling tasks. It falls under the category
of boosting algorithms. It is particularly favored for its
ability to handle complex relationships within data. XGBoost
combines the predictions of multiple weak learners, typically
decision trees, to create a strong predictive model. It does
this by employing a process called boosting, where each
subsequent model corrects the errors of the previous ones.
In XGBoost, the algorithm builds decision trees sequentially,
focusing on data points that were previously misclassified or
had high prediction errors. Each new tree gives more weight
to these exceptional cases, and hence gradually improving
the overall model’s performance. The key strengths of
XGBoost include its regularized learning, which helps
preventing overfitting, and its ability to effectively handle
missing data and nonlinear relationships. It also provides
insights into feature importance, aiding in feature selection
and understanding the driving factors behind predictions.
XGBoost offers a range of parameters that can be tuned for
optimal performance; these include the number of trees, depth
of trees, and learning rate. It is widely used in various machine
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learning competitions and real-world applications due to its
strong predictive capabilities and robustness.

Ensemble Model is a machine learning technique that
combines the predictions of multiple individual models to
create a more accurate and robust overall prediction. The
idea behind ensembling is that by combining the strengths
of different models, the weaknesses of one can be offset
by the strengths of another, resulting in improved overall
performance. Ensemble models work by training several
base models on the same dataset and then combining their
predictions in various ways. Two common types of ensemble
methods are:

1) Bagging (Bootstrap Aggregating): In bagging, multiple
instances of the same base model are trained on
different subsets of the training data, produced through
random sampling with replacement. These models
vote or average their predictions to produce the final
prediction.

2) Boosting: Boosting focuses on sequentially training
models, where each new model pays more attention
to the data points that previous models misclassified.
It assigns more weight to difficult cases. This helps in
correcting errors produced by earlier models.

Ensemble models, such as random forest (a bagging
technique) and gradient boosting (a boosting technique),
often outperform individual models due to their ability to
reduce overfitting, capture complex patterns, and generalize
well on diverse datasets. They are widely used in machine
learning for tasks such as classification, regression, and even
more advanced tasks, such as object detection and natural
language processing.

Voting Classifier is an ensemble machine learning tech-
nique that combines the predictions of multiple individual
classifiers or models to make a final prediction. It operates
by allowing each classifier to vote on the predicted class for
a given input, and the class with the most votes becomes the
overall prediction. Voting classifiers are particularly useful
when different models excel in different aspects of a problem,
as their combined decision can lead to better overall accuracy
and generalization. There are two main types of voting
classifiers:

1) Hard Voting: In hard voting, the prediction of each
individual classifier is treated as a vote, and the
class with the majority of votes is chosen as the
final prediction. This is effective when the individual
classifiers are diverse and bring different perspectives
to the problem.

2) Soft Voting: In soft voting, the predicted probabilities
for each class from the individual classifiers are
averaged or weighted, and the class with the highest
average probability becomes the final prediction. Soft
voting takes into account the confidence level of each
classifier’s prediction; it can be more robust when the
classifiers provide probability estimates.

Voting classifiers are simple to implement, and they can be

used with various types of base classifiers, including decision
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trees, support vector machines, and logistic regression. They
form a practical choice for improving model performance and
can be used in a variety of machine learning tasks, such as
classification and sometimes regression.

IV. METHODOLOGY

The methodology of this research is organized into subcate-
gories to comprehensively explain the different components
of the proposed system. First, we introduce the development
of a supportive machine learning model from initial data
extraction to testing/evaluation. Next, we introduce ‘“Heart-
beat,” a platform-independent software system. Finally,
we elucidate the steps and requirements outlined by domain
experts in the development of an intuitive interface specifi-
cally designed for doctors to generate reports efficiently and
effectively.

A. SUPPORTIVE MACHINE LEARNING MODEL

The initial development of the supportive machine learning
model involved close collaboration by regular discussions
with medical doctors at Istanbul Medipol University hospital.
The steps of the model development can be summarized as
follows: (1) data extraction, (2) preprocessing, (3) clustering,
(4) classification, and (5) evaluation. For the purpose of
building and testing a foundational model for future use in the
hospital setting, the MIMIC-III dataset has been employed
due to its suitability. However, as MIMIC-III database does
not directly provide data that can be seamlessly integrated
into our development process, a systematic approach to
data extraction becomes essential. In MIMIC-III dataset,
there is no direct target feature for ICU levels. Instead,
it includes only the type of ward and whether the patient has
been admitted to a different type of ward together with the
treatment process. Therefore, we face to choose either create
our own target variable with the help of domain experts or
use an unsupervised learning approach. Both strategies were
tested, and the critical decisions made are further detailed in
the discussion section.

Figure 1 provides a big picture view of the overall process
from data extraction to the evaluation phase; individual
phases are later explained in more detail in their respective
sections. In essence, the initial stage involves extracting data
from MIMIC-III database. Given its vast array of information
ranging from lab results and vital signs to handwritten
caregiver reports, a careful selection and filtration process is
required. After extracting the relevant data in . csv format,
additional preprocessing steps are necessary to prepare the
data for model training and testing phases.

Notably, MIMIC-IIT lacks ICU levels, which is our
target variable, thus necessitating either manual labeling of
samples or clustering. This aspect is further explored in the
classification/clustering section, where hybrid solutions are
proposed. These approaches require dimensionality reduction
to visualize the dataset and execute clustering algorithms
efficiently. Following clustering, the labels of each cluster
generated from different clustering algorithms applied to the
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dimensionally reduced dataset, are assigned to individual
patient records. Subsequently, mortality rates are mapped
to ICU levels, with detailed explanations provided in the
classification section. Once the levels are mapped and cluster
labels are allocated per patient, classification algorithms are
applied.

1) DATA EXTRACTION PHASE

For the purpose of building and testing a foundational model
for future use in the hospital setting, MIMIC-III v1.4 was
utilized. However, as MIMIC-III does not directly provide
data that can be seamlessly integrated into our development
process, a systematic approach for data extraction becomes
essential; MIMIC-extract cite18 provides good insights for
this process.

The complete flow is shown in Figure 2. We divided
the data extraction process into two phases. The first phase
is to extract the foundational dataset which will serve as
the basis for constructing further datasets. Initially, three
base tables were identified, these tables are admissions,
icu_details, and icustays. These tables preserve
the most basic and fundamental information about patients
(e.g., demographics), ICU details (e.g., the admitted ward),
admission date-time, the stay time, etc.

After these three tables were joined, a cohort filtering
was done. Cohort filtering includes only patients who were
first time admitted to ICU, (since MIMIC-III is a decade
long database and it presents patients who were admitted
to/discharged from ICU more than once over time). This
approach allows us to modify a single phase over the whole
pipeline. This will allow us to make sure only patients who
pass through the cohort filter will be present in the main
dataset produced at the end. After selecting the relevant
patients, a preprocessing step was applied on the filtered
datasets, resulting in a base/foundational dataset.

In the second phase, a more dynamic approach was
followed for creating the main/final dataset ready for
model development. Compared to MIMIC-extract, instead
of focusing on time-series data directly, we tried to include
a variety of measurements contained in different tables
such as comorbidity scores, medical severity scores, etc.
based on the literature review or feedback from doctors at
the University hospital. This processing pipeline provides
flexibility to adjust the tables in our main dataset creation
process. It allows us to incorporate contextual information,
such as whether to include or exclude E1ixhauser’ scores
based on their relevance or similarly. We can decide whether
to include or omit height measurements of patients based on
their significance to the methodology and the problem we aim
to address. This process generates one dataset. Alternatively,
we can maintain the everyscore table and only join
the elixhauser table to create a separate dataset. This
flexible approach allows us to control the dataset production
with minimal adjustments to the table list. It particularly
suits environments where research progresses with frequent
feedback. This pipeline ensures that the joined table derived
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FIGURE 1. A summarized overview of the entire methodology. It begins with data extraction from MIMIC-III; it then constructs a base or foundational
dataset which is used to form the main dataset. The latter dataset undergoes preprocessing steps, including encoding, aggregation, and imputation.
After the dataset is prepared in the preprocessing step, the method proceeds to model operations, such as dimensionality reduction, clustering, and
classification. Cluster labels are assigned, leading to the creation of separate models for each cluster. Ground truth ICU levels are derived from
mortality rates and assigned to each patient. Finally, separate models are trained for each cluster using cluster labels, followed by an evaluation step.

Second Phase

A=\

dataset 2

First Phase

admissons

base table

s ol

Dataset Creation Process Flow

FIGURE 2. Dataset extraction process, the first phase shows generating
foundational base dataset that will be fed to the second phase. The
generated dataset is used for creating further datasets by joining them
with tables which store specific information from comorbidity scores to
medical severity scores, and so on. This type of approach provides more
flexibility in terms of generating and producing a clean dataset.

from the base or foundational dataset will exclusively contain
patients who have undergone the cohort selection processes
and preprocessing steps. Consequently, we focused on solely
obtaining the health records and measurements of these
selected patients. With the final dataset in hand, it is
forwarded through a preprocessing pipeline to obtain refined
dataset ready for training.

2) PREPROCESSING PHASE
After the final dataset was obtained, a series of preprocessing
and exclusion operations were performed. Preprocessing
was performed using our customized preprocessing pipeline,
where we were able to control intermediary steps in the
pipeline, such as caching and turning verbose on and
off in case needed; we can also add additional mediator
operations, if needed. Figure 3 shows the detailed flow of
the preprocessing pipeline with the number of records and
shape/size of the dataset.

After obtaining the main dataset from the data extraction
phase, it undergoes a series of minor and major operations.
These operations remain consistent across different dataset
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FIGURE 3. The whole preprocessing task with additional information
provided in between the steps throughout the pipeline. Initially, the
dataset extracted from MIMIC-111 which is the main dataset built upon the
foundational dataset is forwarded to the preprocessing pipeline. First,

columns which have% of the values missing as well as unrelated columns

are dropped as specified under Table 1; second, aggregation is performed
on the appropriate columns with the appropriate aggregation functions;
third, separate encoding techniques are applied on the dataset; for values
that have 1 or 3, one hot encoding is used, while for diagnosis frequency
encoding is used since it includes over 15,000 unique values. Finally,
feature scaling is done.

TABLE 1. Number of empty values for each column.

Column name Number of empty values

avg_fio2 25009
avg_chloride 26629
avg_temperature 26284
avg_tidalvolume 30555
avg_albumin_min 22989
avg_albumin_max 22989
avg_peep 34784
avg_bicarbonate 52245
avg_o2flow 45942
avg_bands_min 41590
avg_bands_max 41590
avg_aado2 38324
avg_requiredo2 38323
avg_carboxyhemoglobin 54538
avg_methemoglobin 55357

versions by applying the exact same procedures to each
version obtained from the dataset extraction phase. Initially,
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columns containing a significant percentage of empty values
were dropped. Subsequently, unrelated columns such as
insurance type, timestamps, and stay IDs were also removed.
During this stage, we observed that certain features which
contain null values within the dataset exceed % of the dataset’s
size. Consequently, these features were deemed insignificant
and were subsequently removed. Table 1 contains all the
dropped columns.

After further investigation, we discovered that certain mea-
surements, particularly in the lab records, lack mean features
due to having minimal and maximal records for specific
patients. To streamline the dataset and reduce the number of
repeated features along with varying ones that cause duplica-
tion of patients, we decided to aggregate these measurements
and calculate their mean values. Additionally, to handle the
remaining small number of duplicate records, we aggregated
the mean measurements of patients recorded on the same
day to obtain a single consolidated patient record. This
approach does not only improve the dataset compactness, but
also ensures meaningful and comprehensive analysis. All the
aggregated columns are from the lab measurements, since
those are features that vary while the rest of the patient data
stays the same, hence resulting in high cardinal dataset.

After the aggregation was performed, we were left with
a relatively refined dataset suitable for exploration; hence,
we cached the dataset in this step, and further used it in the
explosion phase.

After the aggregation and removal operations were
completed on the dataset, different encoding techniques
are performed on categorical features depending on their
statistics. For instance, binary encoding may be applied on
gender; for the rest of the categorical features, it is possible to
apply one-hot encoding with panda’s pd . get _dummies ()
function. For categorical features that have a large number of
unique values, e.g., Diagnosis column, frequency encoding
is applied instead. After completing the encoding process for
each categorical feature, we proceed with data imputation
using an iterative imputer.

Figure 3 shows the statistics for the number of empty
values for each object, on average 14 features were identified
as empty for a single patient record; all of these features are
from lab measurements. Accordingly, a simple imputation
method should be enough here. With data imputation and
removal of unnecessary columns as well as columns with
most empty values, no empty record is left in the dataset. The
final operation is scaling the dataset and making it ready for
model training. We employed standard scaling by removing
the mean, and scaling to unit variance using the function
StandardScaler from Skleran library.

3) CLUSTERING

Before running the employed clustering algorithms, some
processing steps were performed on the dataset; these
steps are different from those enumerated above for the
preprocessing pipeline. For this phase of the development
of the supportive machine learning model, scaling was
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applied with the sklearn.preprocessing module
StandardScaler on the final refined dataset which
did not contain any repeated subject measurements (only
unique patient records). After scaling was applied on
the dataset, the three columns (subject_id, hadm_id
and icustay_id) were removed since no further query
operations or set operations were needed. As aresult, we have
the finalized, refined, and scaled dataset for clustering.

After the pre-clustering processing on the dataset was
completed, dimensionality reduction was applied to the
dataset. Initially, PCA was applied with a component number
equal to 20 for further reduction and visualization of the
dataset. Then two different algorithms, namely t-SNE and
UMAP, were applied separately on PCA data. The results of
both t-SNE and UMAP are shown in Figure 4.

After dimensionality reduction was completed with
two different approaches, namely (PCA + t-SNE) and
(PCA + UMAP), different clustering algorithms (e.g., Gaus-
sian Mixture Models, K-Means, Spectral, Birch, DBSCAN,
HDBSCAN) were applied on the reduced dataset. Figure 5
provides the results of the clustering applied on the reduced
dataset.

In the last stage, silhouette scores were computed using
the labeling outcomes derived from the clustering algorithms.
However, it is worth noting that density-based clustering
algorithms do not effectively capture the underlying clusters,
as evident in Figure 5. As a result, the analysis excluded the
density clustering algorithms. The outcomes of this compre-
hensive analysis are meticulously presented in the subsequent
section. Among the clustering techniques considered, notable
performance was observed for some algorithms, namely,
K-Means, GMM, and BIRCH. Both K-Means and GMM
exhibited slightly superior scores. In case it is important
to have the model easy to understand and user-friendly,
choosing K-Means or GMM becomes a viable choice. It is
worth mentioning that for the sake of simplicity, GMM labels
were adopted for the subsequent classification phase.

4) CLASSIFICATION

Once the clustering is applied and the best performing cluster
labels are assigned to the dataset as a new column, additional
pre-classification operations are performed on the dataset.
Initially, as stated in the first part of this section and in
the background section, MIMIC-III does not contain any
patient ICU level; it only contains the type of ward. Further
information could be obtained from medical scores, which
can then be mapped to mortality rates using related logit
functions of those specific severity scores. For simplicity and
initial testing, we obtained mortality rates from the LODS
scoring system of the patients, and this feature was calculated
from the official logit function. Refer to [1] for more details
regarding these scoring systems.

logit = —3.4043 + 0.4173 - score 3)

The value of the logit function score represents the LODS
score of the patient. Once the logit score is calculated, the
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FIGURE 4. Visualization of UMAP (left) and t-SNE (right). For t-SNE and UMAP, the final dataset resulted from the preprocessing phase with
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FIGURE 5. Clustering results. Clustering is applied on a dataset reduced with t-SNE which has more clear distinction between clusters and provides better
visualization. From left to right, the following clustering algorithms were used, GMM, DBSCAN, Spectral, HDBSCAN, Birch and K-Means. For K-Means and
similar algorithms the number of clusters was fixed to 5 clusters; for algorithms which require parameters like DBSCAN, the parameters are set to

produce 5 clusters. This will allow for fair comparison.

mortality rate is found using Equation 4. After obtaining the
mortality rate for each function by applying Equations 3 and
4 to the LODS score, ICU levels were obtained by mapping
each mortality rate to an interval number, where the number
of intervals equals to the number of ICU levels as shown in
Equation 5. Figure 6 shows the labeled level distribution of
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ICU level mapping is performed by dividing the mortality
rate into three groups; the number of groups may increase or
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FIGURE 6. Histogram plot of the distribution of patients in ICU levels;
these were calculated as described under section IV- A.4 Classification.
Most patients are admitted to ICU level 1 which is the level for less critical
patients; this is the natural distribution of the patients in ICU levels since
critical patients occur less compared to more neutral patients.

decrease depending on the intended ICU levels. For our study,
the number of ICU levels was set as 3 which is the common
number of ICU levels used in most countries, including
Turkey. The three levels used in this study may be interpreted
as follows: Level 1 for mild cases, Level 2 for moderate cases,
and Level 3 for severe cases. Equation 5 shows the interval
distribution.

0 < mortality_rate < 0.33
0.33 < mortality_rate < 0.66
0.66 < mortality_rate < 0.99 5)

After obtaining the ICU levels for patients, the features
that were used for obtaining ICU levels were removed
from the dataset. These features are LODS, mortality rate,
and the rest of the medical scoring parameters present in
the dataset because some of these scoring parameters have
major similarities between them. After labelling patients
with the appropriate ICU levels, the classification procedure
follows a cluster-then-predict methodology. In this approach,
the ensemble model was individually executed on each
cluster, thereby accommodating distinct patient cohorts more
effectively. The advantages and drawbacks of this approach
are explained in Section VI. In essence, owing to the presence
of ICU-level labels and cluster labels in the preclassification
and post-clustering phases of the dataset, a grouping oper-
ation based on cluster labels was activated. Consequently,
subsequent split, training, and testing procedures were carried
out on these segmented datasets. Five fold cross-validation
has been employed in the process. This enabled the execution
of classification on distinct clusters in a segregated manner.
Finally, it is obvious that there is an apparent class imbalance
problem in our dataset when patients are labeled with ICU
levels. To resolve this issue the oversampling methodology
SMOTE [31] has been applied, other researches also used an
under-sampling methodology as well; refer to Figure 1 for
details [32].
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B. HEARTBEAT

Some of the main challenges of our research problem are the
design of the UI and the lack of standardization in the ICU
reporting section of the already used programs in the hospital
management environment.

We engaged in extensive consultation with domain experts,
including medical professionals with different specializations
and expertise in varying demographic structures. Their main
concerns were identified as the lack of ICU report standards
and the usability of the ICU reporting system. In light of this
feedback, the following design choices were considered for
Heartbeat. These design choices have been further backed
by figures and explanations of the system architecture,
UI design, and flow of data in the application.

o - The system should be simple: Many hospitals rely
on third-party software solutions designed for general
operational purposes. In our context, this was true, and a
single software package was utilized for the whole hos-
pital management system. This required us to develop
a software system that would be smoothly integrated
within an environment where different software systems
are already running.

e - Modern and compatible UIl: Medical doctors pri-
marily expressed concerns about the lack of stan-
dardized reporting of patient status during their ICU
engagement. Moreover, this particular use case for
patient reporting relied on simple text file editing.
Consequently, we decided to develop a user interface
that not only standardized the reporting process, but also
offered flexibility and modularity to domain experts,
enabling them to adapt the standardization to regulatory
requirements.

The system architecture is characterized by a relatively
simple structure, consisting of a frontend and a backend
components. Each hospital management system has its
unique protocols for managing patient data and compliance
obligations concerning privacy regulations. Rather than
standardizing our data, we expose APIs that will be easily
integrated with the rest of the hospital’s IT system. Therefore,
the standardization and formatting of the data according
to regulations could be further processed in the hospital
IT system data pipeline. Given these design considerations,
Flask and SQLite emerged as the natural choices perfectly
suited for this task. Flask offers a streamlined single-file API
solution with its dedicated server, while SQLite provides a
straightforward file-based database system. Figure 7 provides
a summarized view of the system architecture.

As shown in Figure 7, the frontend exists under the
Hospital network along with the other IT solutions, including
the patient management system, and other 3rd party medical
software systems. This separation is emphasized here to show
that with API exposed from Flask and SQLite behind, it is
straightforward to consume the associated endpoints. This
way, with few HTTP requests to the API, Heartbeat should be
operational based on the set design considerations as depicted
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TABLE 2. Silhouette Score.

Model Silhouette Score

KMeans 0.614
GMM 0.495
BIRCH 0.614

in Figure 7. The backend source code and the frontend visual
interface are, respectively, available under:

1) yigithakverdi/mybs-heartbeat: A simulation/backend
system for the ICU environment (github.com),
yigithakverdi/mybs-web-app: Medipol Yogun Bakim
Sistemi web uygulamasi (github.com)

2) yigithakverdi/icu-flow-prediction: ~Series of ML
models for ICU patient flow prediction (github.com)

UI Improvements: Significant enhancements have been
made to the UI elements. Previous iterations required
doctors to manually input their notes using predefined
templates tailored to their specific use cases. This approach
led to variations in ICU report templates across different
wards and among individual doctors. In order to ensure
compatibility and seemless integration with the existing
hospital IT infrastructure, we decided to use JSON documents
to represent regulations for each ICU ward. This further
improved the modification and maintenance of the ICU level
identification process for patients, since once a regulation is
updated it will be straightforward to modify JSON documents
and changes would immediately be reflected to relevant Ul
elements. Instead of visualizing the JSON format directly in
the frontend and allowing editing from there on, checkbox
trees are employed to represent the hierarchical structure of
JSON documents.

Figure 8 illustrates an example of the reflection of the hier-
archical structure of a JSON document onto a checkbox tree.
This will allow standardization across different ICU wards
and will provide consistency on reporting to government
institutions, since simply checking or unchecking the boxes
will determine the ICU levels of the patients as compared
to the traditional method of inconsistent text writing. The
algorithm which defines the ICU levels was developed by
considering the regulations. It simply consists of multiple
conditional statements which implement the applicable rules.

Data in Heartbeat: The data produced by doctors
mainly describe patient conditions; it is distinct from the
data collection directly from the ICU equipment. This data
is presented in categorical format taken from the values
in the JSON document that generates the Ul elements.
Doctor-generated reports primarily address the requirements
of government insurance agencies; they do not consider
the treatment relevant for individual patients. The latter
necessitates more granular and time-sensitive data.

This paper underscores the significance of our software
system in addressing critical issues within the realm of ICU
management. Figure 78 provides the UI flow diagram and
detailed view of the selection page. The source code for
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FIGURE 7. A simple system architecture diagram. By simply consuming
the endpoints, our application should be operational. A JSON Document
is stored in the backend; it is automatically loaded to the frontend after
an authorized successful login.

Heartbeat and machine learning experiments are available as
open source on the following links:

Backend: https://github.com/yigithakverdi/mybs-
heartbeat,

Frontend: https://github.com/yigithakverdi/mybs-web-
app,

Machine learning experiments with notebook:

https://github.com/yigithakverdi/icu-flow-prediction

V. RESULTS

Before delving into the clustering metrics, we begin by
visually inspecting the cumulative variance explained by the
PCA components. This step helps us identify the components
that capture the most appropriate variance in the data. The
cumulative variance plot in Figure 6 displays the distribution
of the levels.

For the evaluation of our clustering phase, we employed
silhouette scores. These scores provide insights into the
quality of our clustering results. Table 2 provides an overview
of the silhouette scores obtained from various clustering
algorithms. We excluded density-based methods from this
comparison. Notably, the clustering plots align closely
with the silhouette scores, clearly showcasing the superior
performance of the three algorithms GMM, K-Means, and
BIRCH.

During the classification phase, we provided a deeper
understanding by generating and visualizing the confusion
matrices. These matrices allow us to assess the classification
performance of our models. The accuracy scores, shown in
Table 3, quantify the performance further.

VI. DISCUSSION AND FURTHER IMPROVEMENTS

The clustering process begins with an initial reduction
of variances using PCA. To further refine our dataset,
we harnessed two distinct algorithms, namely, t-SNE and
UMAP. These outcomes are visually depicted in Figure 4.
Remarkably, UMAP exhibited a significant proficiency in
crafting distinct groups. This pattern held true for t-SNE,
yet UMAP consistently demonstrated superior performance,
as exemplified in the illustrated instances.
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FIGURE 8. User Interface Flow; this Ul was designed based on multiple meetings and feedback from medical doctors; Ul flow is shown on the left side
and Ul elements are summarized on the right side. Initially doctors use the login page to access the ICU patient database page; then they select the ICU
placement page which best fits the age category of the patient, and data entry is completed accordingly. The selections on the right side are provided as
categories with associated checkboxes for seemless data entry. Patients are placed in the ICU levels which fit their case by considering doctor’s choices
and the related regulations. Categorized checkboxes are visualized using JSON document to facilitate smooth modifications when needed.

TABLE 3. Accuracy scores for each cluster per model.

Model Cluster 0  Cluster 1~ Cluster2  Cluster 3
RandomForestClassifier 0.827 0.896 0.864 0.915
GradientBoostingClassifier 0.842 0.899 0.857 0.918
svC 0.778 0.896 0.814 0.876
LogisticRegression 0.806 0.891 0.825 0.925
GaussianNB 0.727 0.704 0.729 0.363
XGBClassifier 0.855 0.904 0.864 0.928
VotingClassifier 0.837 0.899 0.850 0.918

Transitioning to the realm of classification outcomes, our
results showcase an exceptional level of accuracy across
a spectrum of clusters. It is vital to underscore that each
training phase operates independently. To elucidate, upon
concluding training for a specific cluster label (considering
the example of GMM cluster label 0), the model undergoes a
complete reinitialization, embarking on fresh training within
the ensuing cluster. This strategic approach empowers us
to capture the distinct variances exclusive to each cluster.
This strategy aims to foster bespoke classification models
for individual patients residing within their corresponding
clusters, thereby enhancing our capacity to cater to the unique
needs of a diverse patient population.

To streamline our subsequent analysis, we decided to
utilize GMM for conducting the classification task based
on distinct GMM labels or inclusion in clusters. After
completing the clustering process, we examined the level
distribution within the clusters. This distribution can be
observed in Figure 9.

In the context of extensive consultations with medical
specialists from various ICU units (adult, neonatal, pediatric),
a consensus was reached regarding feature selection. Notably,
the features integrated into our model do not directly
mirror regulatory guidelines. To illustrate this, within the
context of neonatal ICU placement regulations, patient’s
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weight emerges as a key determinant. Patients falling within
specific weight ranges could experience significant shifts
in ICU placement. However, these nuanced variations are
absent from our dataset since MIMIC-III lacks explicit
level information. Instead, level information is derived
indirectly from medical scoring systems as described above.
While these scoring systems might indirectly encapsulate
features pertinent to regulatory processes (particularly those
governing ICU patient placement in Turkey), feature impor-
tance results suggest that their influence is comparatively
modest when adjacent to other features. Notwithstanding this
limitation, our findings underscore the model efficacy by
accurately predicting outcomes using a comprehensive array
of pertinent features, measurements, and metrics sourced
from the ICU environment within the first day of admission.
Moreover, we pursued a basic mapping technique by simply
dividing the mortality rate by the number of levels; instead,
for further experiments, we can map ICU levels using simple
clustering focused on them;it is also possible to use different
statistical methods.

Considering the challenge at hand, a potential avenue
for resolution lies in adopting a hybrid approach. Such an
approach could integrate rule-based and statistical methods
to map features within the dataset to corresponding levels
derived from MIMIC-III dataset. Alternatively, supplemental
anonymized data from hospital records could be leveraged to
augment this endeavor.

For deeper specialization, a pragmatic path entails seg-
menting distinct ICU ward types (neonatal, pediatric, adult).
By focusing on these ICU units individually, we could tailor
models to meet their unique requirements. Additionally, the
number of permissible levels might vary depending on the
ward; for instance, considering the example of neonatal ICU,
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FIGURE 9. Visualization of patients with ICU levels over the clustered and dimensionally reduced t-SNE dataset. Blue colored dots are ICU level 2, grey

dots are level 1, and red dots are level 3.

regulatory constraints impose a maximum of five levels,
ranging from 1 to 4A, and an additional level, 4B, for
severe cases. Given these constraints, level mapping could be
divided into five intervals, which could then be dynamically
adjusted based on the specific hybrid approach in use.

VIl. CONCLUSION

In conclusion, we proposed two solutions to answer the
problems associated with patient classification to the ICU
levels.

1) Supportive Machine Learning
2) ICU placement system/software that is
deployable with increased interoperability

easily

Each of the suggested solutions has received positive
feedback from both domain experts, doctors and professors
who have contributed to this paper. Their feedback was
received in extensive meetings and has been realized in
various parts of the project leading to the current version
of the system. More feedback will be available from other
domain experts who will use the actual system after it will be
deployed at a number of hospitals. The latter feedback will be
quantified and analyzed to help produce the next version of
the system. The associated results will be shared in a future
research outcome. We have also received positive responses
for our proposed software system “‘heartbeat” from SGK in
further meetings.

Our proposed model individually specializes in different
clusterings of patients, and has been proven to accurately
classify patients into the ICU levels. Doctors could utilize the
proposed models to further support the regulatory process.
Furthermore, our model could be utilized on the SGK
insurance side to explain why patients are admitted to the
predicted level. For our heartbeat system, the improved UI
elements and the simple design provide easy deployment to
the IT infrastructure/systems of hospitals.

The developed system is expected to be effective once
deployed in healthcare providing institutions involved in
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ICU admissions. Once set, it is planned to collect data
and conduct a comprehensive analysis accordingly. In other
words, we realized the need to conduct some tests using
real-world data collected from local hospitals in Turkey.
However, collecting the data will need deployment of the
system at various hospitals. This will be our next step and
will take considerable time, and hence has been left as future
work. Further, though we used MIMIC-III in this study and
reported interesting results, we plan to use MIMIC-1IV in the
next version of this study to investigate how the new version
of the data may affect the results.
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