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ABSTRACT This study introduces the first single branch network designed to tackle a spectrum of biometric
matching scenarios, including unimodal, multimodal, cross-modal, and missing modality situations. Our
method adapts the prototypical network loss to concurrently train on audio, visual, and thermal data within
a unified multimodal framework. By converting all three data types into image format, we employ the
Vision Transformer (ViT) architecture with shared model parameters, enabling the encoder to transform
input modalities into a unified vector space. The multimodal prototypical network loss function ensures
that vector representations of the same speaker are proximate regardless of their original modalities.
Evaluation on SpeakingFaces and VoxCeleb datasets encompasses a wide range of scenarios, demonstrating
the effectiveness of our approach. The trimodal model achieves an Equal Error Rate (EER) of 0.27% on
the SpeakingFaces test split, surpassing all previously reported results. Moreover, with a single training,
it exhibits comparable performance with unimodal and bimodal counterparts, including unimodal audio,
visual, and thermal, as well as audio-visual, audio-thermal, and visual-thermal configurations. In cross-
modal evaluation on theVoxCeleb1 test set (audio versus visual), our approach yields an EER of 24.1%, again
outperforming state-of-the-art models. This underscores the effectiveness of our unified model in addressing
diverse scenarios for biometric verification.

INDEX TERMS Biometric matching, cross-modal matching, face verification, face-audio association,
metric learning, multimodal verification, speaker verification, transformer.

I. INTRODUCTION
Biometric matching is the process of verifying a person’s
identity based on the person’s unique biological or behavioral
characteristics (see Fig. 1). Specifically, person verification
confirms an individual’s identity by comparing and matching
their biometric data with the data of that person previously
stored in a system. Whereas, in person identification, an indi-
vidual’s biometrics are compared with the data of various
other individuals to find a match, essentially identifying the
individual in a larger group. Common biometric traits or
modalities include face, voice, fingerprint, iris scans, and
others [1].
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The advancements in deep learning have significantly
improved the performance of biometric systems for different
modalities. Deep learning has shown impressive outcomes in
facial recognition due to its ability to extract features from
a large amount of data [2]. Regarding voice recognition,
deep learning models based on recurrent neural networks
(RNNs) and convolutional neural networks (CNNs) have
been effectively utilized as reported by Bai and Zhang [3].
CNNs (AlexNet, GoogLeNet, and ResNet) applied in fin-
gerprint recognition for large databases achieved superior
results compared to traditional methods [4]. Liu et al. [5]
presented a novel condensed 2-channel CNN for efficient
and accurate iris identification. Using a multi-branch model
and fast fine-tuning improved performance while reduc-
ing computational complexity. Recently, leveraging deep
learning, even brain signals were utilized for biometrics.
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FIGURE 1. The training pipeline of our unified biometric matching system
using the multimodal prototypical network loss on the
audio-visual-thermal SpeakingFaces dataset. Each speaker is represented
by support and query samples across three modalities: log-mel
spectrogram (A), thermal facial image (T), and visual facial image (V).
A shared Vision Transformer (ViT) encoder extracts embeddings from each
modality, visualized as light blue (support) and purple (query) circles. The
extracted unimodal vectors are then fused to produce multimodal
combinations (VT, AV, AT, AVT). The multimodal prototypical network loss
clusters embeddings of the same speaker together in a shared vector
space, minimizing intra-class distances and maximizing inter-class
distances to enable universal biometric matching (unimodal,
cross-modal, multimodal).

For instance, a study explored the effectiveness of deep
learning techniques, namely CNNs and RNNs, in extract-
ing distinctive features from electroencephalogram signals,
demonstrating high-level accuracy for brain-based biometric
recognition under challenging conditions across extended
time periods [6].

The categorization of biometric matching depends on
the number of available modalities, leading to distinctions
such as unimodal, multimodal, and cross-modal. Unimodal
matching involves using a single biometric trait for identity
verification. Exceptional results have been achieved with
face [7], [8], [9] and voice biometrics [3], [10]. Although
unimodal systems have the advantage of simplicity and ease
of implementation, they may be vulnerable to challenging
conditions. For example, a person might be in a low-light
environment or partially occluded, resulting in the visual
stream being unreliable for verification. In other cases, the
audio track might be corrupted due to background noise or
microphone malfunction.

Multimodal biometric matching takes advantage of mul-
tiple types of data simultaneously, while compensating or
addressing the limitations that individual modalities may
have on their own [11]. Such approach has shown to be
superior not only in accuracy, but also in reliability [12],
[13], [14]. A notable drawback of multimodal systems is

their dependence on the presence of all modalities. They tend
to encounter difficulties and performance degradation when
faced with missing or corrupted modalities.

Cross-modal biometric matching extends the concept of
multimodal matching by comparing data from different
biometric modalities [15]. It can be especially useful in
scenarios with incomplete multimodal data due to sen-
sor malfunctions, data corruption, and enviromental noise.
Recently, cross-modal processing has been applied in various
combinations, such as audio-visual [14], [16], [17], [18],
[19], [20], [21], [22], [23], thermal-visual [24], [25], [26],
and audio-text [27]. The common strategy employed in these
studies involves mapping inputs from diverse modalities
into a shared space to facilitate cross-modal retrieval. For
instance, in [16], a system, with separate subnetworks
for each modality, is employed to extract low-dimensional
embedding vectors from speech and facial data. These
subnetworks are trained using a contrastive loss function to
map matching face and voice embeddings to the same space.
Sari et al. [14] introduced a multi-view system designed
to produce high-level representations for audio and video
modalities within a shared space that spans both modalities.
This was accomplished by employing a shared classifier for
the outputs of the audio and video encoders, ensuring that
when optimized together, the encoder outputs were projected
into a common space.

All of the multimodal and cross-modal approaches above
involve using separate encoders to extract feature embeddings
for each modality, that can be fused at different stages to
achieve joint representation. However, it is worth noting
that embeddings derived from modality-specific networks
often exhibit significant semantic similarities. For instance,
attributes like gender, ethnicity, and age of speakers are
reflected in both their audio and visual signatures [16].
In [17], a single stream network (SSNet) was trained with a
new loss function to map audio and visual embeddings into
a shared latent space, while maintaining neighborhood con-
straints within and across the twomodalities. Saeed et al. [21]
introduced a single-branch network (SBNet), designed to
acquire a discriminative representation for both unimodal
and multimodal tasks without modifying the network archi-
tecture. SBNet involves extracting modality embeddings
using modality-specific pre-trained networks and utilizing
modality-invariant fully connected layers within a single
branch to learn unified multimodal representations. However,
it is not entirely input-agnostic, as it still necessitates separate
processing of audio and visual data.

Inspired by the multimodal nature of human perception
and the ability to make decisions based on any combination
of available data, we introduce the first input-agnostic,
multimodal, and unified biometric matching system. Our
approach is designed to handle unimodal, multimodal,
missing-modality, and cross-modal scenarios, supporting ver-
ification using audio, visual, and thermal modalities. Conse-
quently, we overcome the limitations of existing works [12],
[13], [14], [16], [17], [18], [19], [20], [21], [22], [23].
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FIGURE 2. Biometric matching scenarios for our transformer-based unified system evaluated on the audio-visual VoxCeleb1 dataset: a)
cross-modal, b) missing modality, and c) all available modalities are present.

The inclusion of the thermal modality is essential to
ensure robust person verification, countering suboptimal
environments that can adversely affect facial images and
voice recordings, as well as potential deep-fakes in the visual
and audio domains. The core of our system is a single
transformer-based network with shared weights across all
modalities. Our loss function aims to minimize discrepancies
between different modalities, ensuring that the extracted
embeddings of the same individual are closely clustered
together, regardless of their original modality. Our main
contributions are the following:

• An input-agnostic model that operates with audio,
visual, and thermal data and performs multimodal,
cross-modal, and unimodal biometric matching.

• A unified approach, where all learnable parameters are
shared across all of the modalities.

• Amultimodal prototypical network loss to map different
modalities to the same representation space.

• Publicly available source code on our Github1 to
facilitate further research in this area.

The rest of this paper is organized as follows: Section II
discusses the related works, focusing on the adaptations of
transformers and prototypical networks for person recogni-
tion. Our unified transformer-based system, the multimodal
prototypical network loss, and evaluation protocols are
explained in Section III. Section IV presents and discusses the
results. Finally, Section V concludes the paper and discusses
future research directions.

II. RELATED WORKS
A. TRANSFORMERS FOR PERSON RECOGNITION
Transformers [28] have achieved state-of-the-art perfor-
mance in various NLP tasks and are now widely used
across multiple fields. Several works have adapted the
transformer encoder for speaker recognition. Vaswani et al.
explored five transformer variants and introduced

1https://github.com/IS2AI/unified_multimodal_transformer

a multi-view self-attention mechanism [28]. It balances
capturing global dependencies and modeling local contexts
by utilizing sliding windows of varying sizes for each
attention head. In [29], local information modeling in the
self-attention module is enhanced by restricting the attention
context and introducing convolution operations. The SWIN
transformerwas adapted for the speaker verification task [30],
processing input features at multiple scales using shifted local
window self-attention to generate multi-scale output features.

All of these works [29], [30] are unimodal, operating
only in the audio domain. The AV-SUPERB benchmark was
the first attempt to unite audio and visual modalities for
multiple tasks in speech and audio processing, including
speaker recognition [31]. Meanwhile, the Vision Transformer
(ViT) [32] has demonstrated an impressive capacity for gen-
eralization and transfer learning across various domains [33],
[34], [35], [36]. Recognizing the substantial knowledge
encoded in a pretrained ViT, our aim is to leverage it as a
multimodal processor for understanding diverse modalities
through their image representation and adapt it to the task of
biometric matching.

B. PROTOTYPICAL NETWORKS
The prototypical networks were initially developed to tackle
few-shot classification challenges, where labeled data is
scarce [37], [38]. The core concept involves an embedding
vector, or prototype, surrounded by data points of the same
class. Classification is performed by computing the distances
between queried examples and class prototypes, predicting
classes based on these distances. The prototypes effectively
represent the general characteristics of a class [37].

In the field of biometrics, a person’s identity is traditionally
verified based on a limited set of enrolled utterance samples,
as the result prototypical networks have found success in
audio-only speaker recognition [39], [40], [41]. Recently,
this method has gained popularity for addressing different
aspects of multimodal learning problems [42], [43], including
action recognition [44], sound classification [45], speech
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recognition [46]. In our work, we adapt this loss to perform
unimodal, multimodal and cross-modal matching by learning
multimodal prototypes.

III. METHODS
We introduce a unified, single-branch and input-agnostic
network to perform person verification. Figure 1 illustrates
the key components of our architecture. Our system utilizes
ViT [32] as the encoder to extract high-level feature
representations from input data. The model can handle
visual, thermal, and audio data, transforming them into a
representation suitable for ViT. Thermal and visual data are
provided as images, while raw audio undergoes conversion
into log-mel spectrograms. These spectrograms, akin to
image-like representations in the time-frequency domain,
facilitate easy tokenization, similar to images.

All learnable parameters are shared across all of the
three modalities. The encoder is fine-tuned for the person
verification task using our multimodal prototypical network
loss, explicitly designed to compare and contrast embed-
dings from different modality configurations. This approach
enables our model to learn all possible combinations of
modalities, offering adaptability to missing streams. As a
result, the system is capable perform unimodal, multimodal,
and cross-modal person verification (see Fig. 2).

A. THE ENCODER
The backbone of our verification system is the ViT
pre-trained on ImageNet-21k, comprised of 14 million
images and 21,843 classes [47]. The ViT’s architecture
closely follows the original transformer [28], with a few
modifications at the input processing stage. Given an input
image, the token embeddings are extracted by decomposing
the input into a sequence of non-overlapping and fixed-sized
patches (16 × 16 in this case), that are flattened and pushed
through a learnable linear operator. The resulting sequence of
embedded patches is prepended with a learnable class token
and then combined with learnable positional embeddings to
retain the position information of each patch.

The ViT utilizes only the encoder of the original trans-
former. The encoder comprises of a series of blocks with
two main components. First, the series of embeddings go
through a multiheaded self-attention (MSA) mechanism,
which allows the ViT model to capture dependencies and
relationships between different patches. Second, the output of
MSA passes through a multilayer perceptron (MLP), which
consists only of fully connected layers to capture complex
and non-linear relationships in the data. MSA and MLP are
both preceded by LayerNorm (LN) and followed by residual
connections.

B. LOSS FORMULATION
The original loss was introduced in [37] to build prototypical
networks for few-shot learning. Prototypical networks are
trained in mini-batches. Each of them contains K classes,
with a support set S and a query set Q for every class.

A support is a labeled set of samples, that are used to predict
classes of unlabeled samples, which are collectively called
a query. In the context of biometric matching, a class is a
person ID, and a sample is an utterance, that can be captured
as an audio recording, or a facial image.

We denote Sk = {xi, yi}, 1 ≤ i ≤ NS , as the support set,
where each xi is an utterance of class k . The prototype of each
class ck ∈ RD is the representative embedding of the class and
calculated as the mean of embeddings in the support set:

ck =
1
NS

NS∑
i=1

E(xi) (1)

where E is an encoder that maps utterance data into the
D-dimensional embedding space. In our case, it is the ViT
encoder.

At the training stage, each query example {xj, yj} ∈ Q
is classified against K persons based on a softmax over
Euclidean distances to each person’s prototypes:

p(yj = k|xj) =
exp(−d(E(xj), ck ))∑K

k ′=1 exp(−d(E(xj), ck ′ ))
(2)

The prototypical network loss function (PNL) aims to
minimize for each mini-batch the distance between a query
feature vector and its true support prototype:

LP =

K∑
k=1

NQ∑
j=1

− log p(yj = k|xj) (3)

As we adapt the loss to multimodal biometric matching, let
us encode V ,T ,A as visual, thermal, and audio modalities,
respectively. Thus, we further specify an utterance sample by
adding the modality information as xui ∈ R224×224×3, where
u ∈ {A,V ,T }. Note that each sample is a 3-channeled image
of size 224 × 224, following the input requirement of the
pretrained ViT encoder.

Since our evaluation scenarios consist of one-to-one
comparisons, both the query and support sets are configured
with a single utterance per person ID, following [40]. The
utterances are represented by three modalities, which results
in the following support and query sets for each class k:

Sk = {xAs,k , x
V
s,k , x

T
s,k}

Qk = {xAq,k , x
V
q,k , x

T
q,k}

where 1 ≤ q ≤ Nq, and 1 ≤ s ≤ Ns.
Let us simplify the notation of the loss with introducing

an embedding vector vu ∈ R128 that is produced by the ViT
encoder:

vus,k = E(xus,k )

vuq,k = E(xuq,k )

Noting that our system handles each data modality in a
separate forward pass, the multimodal embedding vectors are
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then computed based on the unimodal ones:

vVTq,k =

(
vVq,k + vTq,k

)
/2

vAVq,k =

(
vAq,k + vVq,k

)
/2

vATq,k =

(
vAq,k + vTq,k

)
/2

vAVTq,k =

(
vAq,k + vVq,k + vTq,k

)
/3

In total, as illustrated in Fig. 1, the three data sources result
in seven configurations of unimodal, bimodal and trimodal
settings:

M = {A,V ,T ,VT ,AV ,AT ,AVT }

The prototype of each configuration can be computed as:

cAk = vVs,k
cVk = vVs,k
cTk = vTs,k

cVTk =

(
vVs,k + vTs,k

)
/2

cAVk =

(
vAs,k + vVs,k

)
/2

cATk =

(
vAs,k + vTs,k

)
/2

cAVTk =

(
vAs,k + vVs,k + vTs,k

)
/3

Since the distinction of query and support embeddings,
allows us to specify the modality of the samples coming from
different data sources, let us denote ms ∈ M and mq ∈ M
as the modality configurations of the support and query sets
respectively. We extend the definition of the prototypical
network loss (3) to the multimodal case as:

L
mq,ms
P = −

K∑
k=1

NQ∑
j=1

log
exp(−d(v

mq
j,k , c

ms
k ))∑K

k ′=1 exp(−d(v
mq
j,k ′ , c

ms
k ′ ))

(4)

The multimodal prototypical network network loss
(MNPL) aggregates all possible combinations of modality
settings:

LMP =

∑
mq∈M

∑
ms∈M

L
mq,ms
P (5)

C. DATA PREPARATION
The model was trained and evaluated on two publicly avail-
able multimodal datasets suitable for biometric matching:
SpeakingFaces [48] and VoxCeleb [49]. Statistics on both
datasets are provided in Table 1. SpeakingFaces dataset
was designed for biometric authentication and it consists of
high-resolution thermal and visual spectral videos capturing
fully framed faces, synchronized with audio recordings of
individuals uttering commands in English. VoxCeleb is a
large-scale human speech video dataset, that is widely recog-
nized as the standard for benchmarking speaker recognition
systems. It captures individuals speaking in various scenarios,
including interviews and public speeches. Following the

TABLE 1. Statistics for the SpeakingFaces (SF) and VoxCeleb (VC) datasets.

approach in [40], the VoxCeleb2 development split was
deployed for training, and the VoxCeleb1 test split was
used for evaluation, as detailed in Table 1. The data were
reprocessed following our previous work [50], to extract
facial regions from the visual and thermal images in both
datasets.

Since we used the pretrained ViT encoder, we transformed
all input data into 3-channeled images of size 224 × 224.
For visual and thermal modalities, the extracted facial regions
were first normalized for each modality separately and then
resized to 224×224. For the raw audio data, we first extracted
a random 3-second temporal segment with a sampling rate
of 16 kHz and then transformed it into a 128-dimensional
log-mel spectrograms. We increased the input channel of the
audio spectrogram from 1 to 3, by duplicating the data, and
then resized it to 224 × 224.

D. EVALUATION PROTOCOL
Due to the input-agnostic nature of our model, it can execute
not only unimodal, multimodal, and cross-modal matching
but also handle cases where one or more modalities are absent
for a given subject. Figure 2 illustrates the capabilities of our
unified system when trained on audio-visual input. In Fig. 2a,
the cross-modal case is depicted, where a verification pair
consists of a facial image for one speaker and an audio
recording for the other, with the cosine similarity score
between the corresponding extracted embedding vectors
employed to quantify their similarity. Figure 2b showcases
the scenario where complete audio-visual information is
present for one speaker, and only onemodality is available for
the other. In this case, three scenarios are possible, depicted
from top to bottom: the unimodal comparison (V versus V),
the cross-modal matching from part (a), and the comparison
of the fused audio-visual embedding with the visual one.

Figure 2c illustrates that when all data is available for
both speakers, nine combinations can be executed to simulate
all possible matching scenarios, including those presented
in parts (a) and (b). These scenarios can be represented by
a 3 × 3 matrix, with the main diagonal cells containing
the comparisons with the same type of embeddings for
both subjects. The top left cell represents the V versus V
configuration, where only visual embeddings are compared
with each other. The bottom right cell represents the
audio-visual configuration, where the fused embeddings are
contrasted with each other. The rest of the cells cover
missing modality and cross-modal cases. The bottom left
cell represents the comparison of audio-visual and visual
embeddings (AV versus V), while the top center cell
represents the cross-modal comparison of visual and audio
embeddings (V versus A).
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Using the same logic, the trimodal evaluation results
in 49 combinations, as seven different embeddings can
be constructed when all three modalities are present for
a given speaker. This comprehensive approach illustrates
the robustness and versatility of our model across various
biometric matching scenarios.

E. IMPLEMENTATION DETAILS
The model implementation based on the PyTorch [51]
framework was trained using an NVIDIA A100 graphics
processing unit. Hyper-parameters were optimized separately
for each modality setting with AdamW [52]. Each model
was trained for 100 epochs and saved at each iteration. The
models trained on SpeakingFaces, which performed the best
on the validation set, were evaluated on the test set. All
intermediate models trained on VoxCeleb2 development split
were evaluated on the VoxCeleb1 test split. All experiments
were repeated independently three times to minimize the
effect of random initialization, and we report the mean of
three experiments.

The models’ performance was assessed based on the Equal
Error Rate (EER) metric, a commonly employed measure
in the evaluation of biometric matching [53]. The EER
represents the point at which the false acceptance rate (FAR)
and false rejection rate (FRR) are equal, offering a balanced
assessment of the system’s performance where both types
of errors—incorrectly accepting a non-matching identity and
incorrectly rejecting a matching identity—are minimized.
A lower EER indicates superior overall system performance
by minimizing both error types.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. SPEAKINGFACES RESULTS
We explored our approach on all possible combinations
of modalities for the SpeakingFaces dataset. We trained
three unimodal (visual, thermal and audio), three bimodal
(visual-thermal, audio-visual, audio-thermal) and the tri-
modal (audio-visual-thermal).

Figure 3 presents EER values on the validation and test sets
for our unimodal and bimodal person verification systems.
Figure 3a displays unimodal models denoted by V (visual),
T (thermal), and A (audio). Each cell contains the EER on the
validation (top) and test (bottom) sets for individual unimodal
configurations.

Figures 3b-d collectively showcase evaluation scenarios of
bimodal systems. They follow the evaluation logic outlined
in Fig. 2c. In these, the featured systems are capable of
producing up to three embeddings for a given subject (visual,
thermal, and visual-thermal in Fig. 3b; visual, audio, and
audio-visual in Fig. 3c; audio, thermal, and audio-thermal
in Fig. 3d). For brevity, we will denote each embedding
type with the first letter of its modality, e.g., AV for audio-
visual and T for thermal. Since a person verification protocol
involves comparing a pair of subjects, there could be in
total nine comparison scenarios that can be represented by

a 3 × 3 matrix. Each cell in the matrix stands for one of
the scenarios. The main diagonal cells involve comparisons
with the same type of embeddings for both subjects. For
example, in Fig. 3c, the top left cell represents V versus
V configuration, where only visual embeddings are compared
with each other. The rest of the cells cover missing modality
and cross-modal cases. For instance, the bottom left cell in
the Fig. 3d represents the comparison of audio-thermal and
thermal embeddings (AT versus T), while the top center cell
represents the comparison of thermal and audio embeddings
(T versus A). Similar to Fig. 3a, each cell lists the EER on the
validation (top) and test (bottom) sets.

1) UNIMODAL SYSTEMS
In our previous study [50], we constructed encoders for
unimodal thermal and visual systems using the default
ResNet34 model [54]. For the unimodal audio system,
we employed ResNet34 with self-attention pooling [55],
instead of the global average pooling at the end of the
residual network. In this work, while retaining the same input
transformations, we utilize ViT as the encoder to capture all
three modalities. ViT, having been pretrained on ImageNet-
21k for visual image classification, unsurprisingly led to a
reduction in EERs for visual verification on both evaluation
sets: from 4.04% to 1.77% (validation) and from 4.10% to
2.4% (test) when compared to [50]. Overall, on both the
validation and test sets, the visual modality demonstrates
the lowest EER values among all unimodal configurations.
The results for the unimodal thermal with ViT also showed
improvement compared to the ResNet version, decreasing
EER from 10.30% to 7.09% (validation) and from 10.86% vs
6.16% (test). The EERs for the unimodal audio models were
comparable with our previously reported results, 10.82%
versus 11.54% and 9.29%versus 9.94% for the validation and
test sets, respectively. This suggests that ViT demonstrates
strong results after fine-tuning on newmodalities, adapting to
thermal data and learning to interpret log-mel spectrograms
as effectively as networks specifically designed for those
modalities.

2) THE VISUAL-THERMAL SYSTEM
The joint training on the two modalities resulted in a
substantial performance improvement in unimodal scenarios.
Specifically, the EER improved from 1.77% to 0.68%
(validation) and from 2.4% to 0.32% (test) in V ver-
sus V evaluation. A similar trend was observed in the
T versus T scenario, with the EER improving from 7.09%
to 3.55% (validation) and from 6.16% to 2.09% (test).
The visual-thermal fusion configuration (VT versus VT)
consistently outperforms individual unimodal configurations
listed in Fig. 3a. On the test set, T versus VT and VT versus
T (1.74% and 1.81%) outperform T versus T (2.09%). When
thermal imagery is available for a pair of subjects, it’s better
to fuse at least one of themwith visual information to improve
the robustness. Furthermore, the visual-thermal evaluation
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FIGURE 3. EER (%) of unimodal and bimodal models evaluated on the verification pairs of SpeakingFaces (SF) dataset. Each cell presents the EER
(%) for the validation and test splits, displayed on the top and bottom rows, respectively. The reported values represent the mean results from
repeated experiments. Part (a) shows the results for unimodal models. Parts (b) to (d) include evaluations for cross-modal and multimodal pairs.
In these parts, the modalities on the horizontal axis correspond to the given modalities of person ID1, while those on the vertical axis correspond
to the given modalities of person ID2. The darker the shade of the cells, the lower the EER (%), indicating better performance.

(VT versus VT) achieved EER of 0.21% on the test set and
surpassed not only separate modality evaluations but also all
of our previously reported results in [12]. The performance
improvement indicates that visual and thermal modalities
indeed complement each other. This supports the idea that
combining multiple modalities can enhance the accuracy of
person verification systems.

3) THE AUDIO-VISUAL SYSTEM
In evaluating the audio-only scenario (A versus A), compara-
ble performance emerged between the unimodal audio model
(11.54% validation and 9.94% test) and the audio-visual
model (12.11% validation and 9.70% test). Joint training of
the two modalities resulted in lower EERs for the visual-only
scenario (V versus V). While the audio modality doesn’t
exhibit the same level of complementarity as thermal to
the visual, it brought a notable drop in EER from 1.77%
(unimodal visual) to 0.59% (audio-visual) in the validation
set and from 2.4% (unimodal visual) to 0.47% (audio-
visual) in the test set. Considering the inherent differences
between audio and visual modalities, and their equal
weight in computing the joint embedding, it is remarkable
that the inclusion of audio information did not adversely
impact the joint embedding and the training process. These
findings underscore the robustness of the audio-visual model,
demonstrating its capacity to integrate information from both
modalities to enhance performance.

4) THE AUDIO-THERMAL SYSTEM
The evaluation of the audio-only scenario (A versus A)
revealed comparable performance between the unimodal
audio model (11.54% for validation and 9.94% test set)
and the audio-thermal model (12.3% validation and 9.74%
test set). Notably, joint training of both modalities yielded
improvements when assessed in the thermal-only scenario
(T versus T). The EER decreased from 7.09% (unimodal ther-
mal) to 5.44% (audio-thermal) in validation and from 6.16%

(unimodal thermal) to 3.24% (audio-thermal) in the test set.
Although the reduction isn’t as substantial as observed in
the visual-thermal system, it’s noticeable that training with
the audio modality assisted in the thermal modality, despite
significant differences in the appearance of the training data.
Particularly interesting is the higher performance of the
audio-thermal (AT versus AT) combination compared to the
thermal-only scenario (T versus T). The fusion of audio and
thermal data played a significant role in enhancing results for
both modalities.

Overall, cross-modal scenarios generally result in the
highest EER values for every bimodal system, highlighting
that verifying subjects across different modalities presents
more challenges compared to within-modal verification.
In missing modality scenarios of audio-visual and audio-
thermal models, the test and validation results suggest that the
distribution of fused embeddings is closer to the embeddings
extracted from facial images rather than ones from the log-
mel spectrograms.

5) THE AUDIO-VISUAL-THERMAL SYSTEM
Figure 4 illustrates the performance of the trimodal model
across both the validation and test splits. The trimodal model
provides up to seven embeddings for each subject, including
visual, thermal, audio, visual-thermal, audio-visual, audio-
thermal, and audio-visual-thermal embedding vectors. In the
context of a person verification protocol, where pairs of
subjects are compared, this results in a matrix structure of
49 comparison scenarios, organized in a 7×7 matrix. Similar
to Fig. 3, each cell in this matrix corresponds to a specific
scenario, displaying the EER on the validation (top) and test
(bottom) sets.

On the test set, the fusion of the three modalities achieves
the EER of 0.27%, surpassing all other 48 configurations.
This performance even surpasses our previously reported best
EER of 2.48% for a trimodal network [12]. This reaffirms the
efficacy of combining visual, thermal, and audio modalities
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FIGURE 4. EER (%) of the trimodal model trained and evaluated on
SpeakingFaces (SF) dataset. For each configuration (or cell), the EER (%)
on the validation and test splits are presented at the top and bottom
rows, respectively. We report the mean of the repeated experiments for
unimodal, cross-modal and multimodal scenarios. The modalities on the
horizontal axis correspond to the given modalities of person ID1, while
those on the vertical axis correspond to the given modalities of
person ID2. The darker the shade of the cells, the lower the EER (%).

within a person verification model, significantly enhancing
its overall performance. At the same time, such a remarkable
result was achieved by a singular network, that was able to
capture three diverse modalities across the same set of shared
weights.

The unimodal configurations maintain performance levels
similar to their best-performing counterparts in the bimodal
systems. EER values for audio-visual and visual-thermal
configurations are comparable to their bimodal counterparts
in Fig. 3 as well. However, the audio-thermal configuration
outperforms its bimodal equivalent in Fig. 3, with EER values
decreasing from 4.13% to 3.56% on the validation set and
from 2.03% to 1.73% on the test set. This implies that training
with visual modality has enriched the model, enabling it to
perform well even in the audio-thermal configuration where
visual information was not initially required.

In line with the results presented in Fig. 3, two notable
observations highlight the complementarity of thermal and
visual modalities for the trimodal model. First, the fusion of
visual and thermal information is stronger than each indi-
vidual modality. On the test set, visual-thermal configuration
(VT versus VT) achieves 0.29%, surpassing the visual-only
(V versus V) and thermal-only (T versus T) configurations,
which reach 0.35% and 2.46%, respectively. Second, if visual
information is available for at least one subject in a pair,
incorporating it with the thermal information enhances the
performance of the verification process. The evaluation
scenarios, T versus VT and VT versus T demonstrate a
lower EER value than T versus T, with 2.26% and 2.24%,
respectively, being lower than 2.46% in the T versus T case.

FIGURE 5. EER (%) of a) unimodal audio and unimodal visual, and b)
audio-visual models trained on VoxCeleb2 dev split and evaluated on
VoxCeleb1 (VC1) test split. We report the mean of the repeated
experiments. Each cell represents the EER (%) for the given modality pair.
The modalities on the horizontal axis correspond to the given modalities
of person ID1, while those on the vertical axis correspond to the given
modalities of person ID2. The darker the shade of the cells, the lower the
EER (%), indicating better performance.

TABLE 2. Unimodal verification EER (%) on VoxCeleb1 (VC1) test split
of unimodal models trained on VoxCeleb2 development split. For our
models, the three EER values represent results obtained using three
different random seeds, which were consistently used across all train
configurations.

To sum up, the SpeakingFaces results verify the strength
of a unified transformer network to tackle various modalities
for the person verification task.

B. VOXCELEB RESULTS
Figure 5 showcases the performance of the unimodal audio,
unimodal visual, and audio-visual models trained on the
VoxCeleb2 development set and evaluated on the VoxCeleb1
test set. In Fig. 5a, we present the performance of the systems
trained exclusively on single-modality data. We compare
these results with state-of-the-art models listed in Table 2.
Notably, our ViT-based approach outperforms all others in
the visual domain. While our unimodal audio model exhibits
slightly lower performance compared to the counterparts, it’s
important to note that these comparisons involve systemswith
encoders custom-built for audio data. In contrast, our ViT
encoder maintains the same structure for both modalities,
emphasizing its versatility and effectiveness.
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TABLE 3. Unimodal verification EER (%) on VoxCeleb1 (VC1) test split of
the models capable of both unimodal and cross-modal cases. For our
models, the three EER values represent results obtained using three
different random seeds, which were consistently used across all train
configurations.

TABLE 4. Cross-modal verification EER (%) on VoxCeleb1 (VC1) test split
from previous studies and our unified transformer.

In Fig. 5b, we focus on the evaluation of the audio-visual
model across the nine scenarios, featured in Fig. 3c. The
fusion of audio and visual modalities demonstrates superior
performance compared to each individual configuration. That
is, visual-only (V versus V) yields a mean EER of 0.98%,
audio-only (A versus A) gives a mean EER of 5.71%, while
audio-visual (AV versus AV) achieves 0.73%. However, it is
worth noting that audio-visual, although strong, is worse than
the unimodal visual model featured in Fig. 5a, which exhibits
an EER of 0.51%. Additionally, the visual-only configuration
is not as strong as the unimodal visual model, with the
EER decreasing from 0.98% to 0.51%. A similar situation
is observed with the audio-only configuration, transitioning
from 5.71% to 2.71%.

Our audio-visual system stands out compared to state-of-
the-art models capable of simultaneously handling unimodal,
multimodal, and cross-modal verification on the VoxCeleb1
test set. Table 3 provides a comparison of our bimodal
approach in single-modality scenarios with the Multi-view
Approach [14] and the Single-branch (Git) [21]. In both
visual-only and audio-only cases, our ViT-based system
significantly outperforms its counterparts.

Table 4 contrasts the performance of our audio-visual
model with state-of-the-art models specifically in cross-modal
verification scenarios. Cross-modal verification poses a sig-
nificant challenge, as it involves matching entirely different
data types. The VoxCeleb1 test and VoxCeleb2 development
splits are disjoint, adding to the complexity, as we aim to
associate the face of a previously unseen individual with
the voice of someone previously unheard during training.
We report the mean of cross-modal evaluations (A versus V,
and V versus A). In this context, our model exhibits superior
performance when compared to Learnable Pins [16], Deep
Latent Space [17], Multi-view Approach [14], DIMNet [22],

Disentangled Representation Learning [20], and Single-
branch (Git) [21].

In summary, the performance on the VoxCeleb dataset also
underscores the efficacy of our unified approach. The ViT-
based encoder, shared across the two modalities and coupled
with the multimodal prototypical network loss, demonstrates
proficiency in handling bimodal data. The model effectively
matches diverse combinations of modalities, proving its
adaptability to cross-modal scenarios.

V. CONCLUSION AND FUTURE WORKS
In this study, we introduced a transformer model for
biometric verification and demonstrated its versatility across
modalities. Joint training on audio, visual, and thermal
data using a unified ViT with multimodal prototypical
network loss led to significant improvements in EER.
Unimodal models trained and tested on the SpeakingFaces
dataset showed enhanced performance in visual and thermal
modalities compared to our previous ResNet-based approach,
with comparable results for the audio modality. While ViT
showcased adaptability to thermal and audio modalities, fur-
ther enhancements are needed to strengthen its performance
with audio compared to custom networks tailored for this
type of data. The bimodal training further decreased the
EER on both single- and multi-modal scenarios of bimodal
models. Overall, the bimodal configurations consistently
outperformed the unimodal models. The trimodal single
network was able to take the best of its unimodal and bimodal
counterparts and achieved the EER of 0.27% on the test set
and 0.88% on the validation set, surpassing our previously
reported ResNet-based trimodal model.

To ensure a fair benchmarking of our unified transformer
on the VoxCeleb1 test set, we assessed its performance
against other models designed for both unimodal and cross-
modal verification. Our bimodal system outperformed the
state-of-the-art results in both scenarios. The results of the
unimodal models confirmed ViT’s suitability for handling
facial data, outperforming other visual methods. However,
improvements are needed in handling raw audio data to
enhance competitiveness in this domain.

The presented framework involved a simple fusion strat-
egy, providing equal weight to each modality in comput-
ing multimodal embeddings. In future work, we plan to
explore advanced attention mechanisms for more effective
fusion. By integrating attention mechanisms that are jointly
trained with the encoder, we aim to dynamically adjust
the contributions of each modality based on the context,
thereby enhancing the overall fusion process and improving
performance.

Overall, the achieved improvements of the trimodal
model on the SpeakingFaces dataset and the outstanding
performance of the audio-visual model on the VoxCeleb
dataset, highlight the efficacy of our unified multimodal
approach in tackling a variety of scenarios for biometric
checking.
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