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ABSTRACT Human trajectory prediction tasks find applications in many fields, like autonomous driving
and social robots. The main challenge arises from the fact that pedestrians, while walking, consider their
own route and constantly account for their spatial and temporal interactions with other pedestrians to avoid
collisions. However, most existing state-of-the-art models either overlook the balance between a pedestrian’s
own path and their interactions with others, or they focus solely on either one of these aspects.We posit that an
effective pedestrian trajectory prediction should incorporate bothmacro andmicro perspectives. In this paper,
We propose a Multi-Encoder-TransFormer-network (METF), which can balancing the information between
micro and macro. First, we propose a multi-encoder architecture to simultaneously encode macroscopic
and microscopic information and allocate different degrees of importance for macroscopic and microscopic
information. Then, we introduce a graph attentionmechanism to capture the interactions between pedestrians
at each moment, and also introduce an attention module to learn the time dependence of the interaction in
different moments within a long time range.We also redesigned the input, output and computational methods
of the transformer decoder for the trajectory prediction problem, and reduced the computational cost while
maintaining the accuracy. Upon comparing with a wide range of methods, we found that METF achieved
superior performance on two publicly available datasets (ETH and UCY), producing trajectories that align
more closely with pedestrian social walking patterns. Ablation experiments illustrate the effectiveness of the
designs for various parts in the METF.

INDEX TERMS Trajectory prediction, graph attention networks, social interactions.

I. INTRODUCTION
This section introduces the importance and challenges of
human trajectory prediction, as well as the limitations of
existing methods in balancing the pedestrian’s own path and
interactions with others.

Human trajectory prediction pedestrian trajectory predic-
tion is a complex but highly valuable task, it has received
considerable attention in the fields of robotics [1], [2],
autonomous driving [3], [4], and computer vision [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Anandakumar Haldorai .

In trajectory prediction, modeling the complex and diverse
interaction between humans is crucial and challenging.
Early work used handcrafted energy functions, but they
failed to establish crowd interaction between pedestrians
in crowded spaces. In recent years, some methods have
proposed modeling pedestrian interactions based on LSTM
and Attention mechanisms. Alahi et al. [7] use LSTM’s
hidden state to represent the states of pedestrians, and
propose a ‘‘pool’’ scheme to model pedestrian interactions.
This method employs a grid of fixed size to partition
the neighborhood, and aggregates the hidden states within
each grid, thereby integrating the influence of surrounding
pedestrians. Unlike the ‘‘pool’’ scheme, another method uses
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FIGURE 1. Illustration of the macro direction and micro interaction of
pedestrians. The three dashed lines represent the macro travel paths of
three pedestrians, A, B, and C. They intend to walk along these lines.
However, when encountering other pedestrians on their route, they will
temporarily adjust their path to avoid collisions.

the Attention mechanism to capture dynamic interactions
between pedestrians [8], [9]. Compared with the ‘‘pool’’
scheme, the Attention mechanism is not limited to the
manually set attention range and can adaptively allocate the
impact to adjacent pedestrians. Therefore, attention based
models can better model the interaction behavior between
pedestrians.

However, despite the extensive research conducted on
various methods of capturing pedestrian interactions, most
previous work has overlooked a crucial factor. In pedestrian
trajectory prediction, we posit that personal walking habits
and goals play a significant role. Furthermore, striking a
balance between pedestrian interactions and their individual
walking habits and destinations is of paramount importance.
Individuals have their own destinations, which largely dictate
the approximate direction of their travel route. As pedestrians
proceed in their intended direction, they must take measures
to avoid collisions with others.

As shown in Figure.1, pedestrians A, B, and C all
have their destination:exits A and exits B. We reckon
that the pedestrian’s own forward goal can be seen as
the ‘‘macro’’ direction of the pedestrian’s trajectory, which
highlights the dotted line under pedestrians’s feet, and
they may encounter others along their own ‘‘macro’’ route.
To avoid collisions with other pedestrians, pedestrians may
change their short-term forward path, but their main forward
direction does not change significantly. We believe that this is
an ‘‘micro’’ adjustmentmade by pedestrians in their ‘‘macro’’
direction.

Numerous existing methods have been thoroughly exam-
ined in the context of modeling pedestrian interactions, yet
they frequently neglect the equilibrium between ‘‘macro’’
and ‘‘micro’’ information. In pedestrian interactionmodeling,
most models focus on a single moment. Huang et al. [10]
argue that both immediate and over-time interactions are
key. Thus, STGAT employs ‘‘M-LSTM’’ and GAT for
momentary interactions, and ‘‘G-LSTM’’ for interactions
over significant time periods. However, numerous studies
[11], [12] have demonstrated that the attention mechanism
surpasses LSTM in predicting long sequences. This is

because, in the prediction of long sequences, it becomes
challenging for hidden states to retain sufficient information.
Moreover, STGAT did not consider the significant impact of
interactions over multiple periods, whereas the structure of
LSTM may only capture crucial interactions within a single
period, potentially leading to congestion and information loss
in long-term sequence prediction. The attention mechanism
can concentrate on global information and autonomously
assign varying degrees of importance to different pieces of
information, unlike LSTM, which tends to focus solely on a
specific period of interaction, potentially leading to the loss
or excessive compression of certain crucial information.

To address the aforementioned issues: 1. the limitations of
existing methods in balancing the pedestrian’s own path and
interactions with others, 2. the existing model does not fully
consider the temporal correlation of pedestrian interaction
or cannot achieve a better effect due to methodological
limitations, we propose a novel model: the Multi-Encoder
Transformer. This model is designed to harmonize the
macro-level direction of pedestrian movement with the
micro-level obstacle avoidance behavior. First, we designed
a novel architecture named Multi-Encoder Transformer, with
the aim that the model not only possesses the ability to simul-
taneously focus on diverse kinds of information, but also can
fully balance the significance among different information.
Then, in the modeling of pedestrian interaction, we integrate
the Graph Attention Network (GAT) with the Attention
module to more effectively capture the temporal correlation
of pedestrian interaction, with the intention of attaining a
superior modeling effect for pedestrian interaction. Finally,
aiming at the problem of pedestrian trajectory prediction,
we have carried out a new design for the input and output of
the Transformer Decoder, while reducing the computational
load and maintaining the accuracy of the model at the same
time. The main contributions of this paper are as follows:

1)This paper proposes a novel architecture named
Multi-Encoder Transformer which can simultaneously focus
on macro-micro information, and balance the significance
among different information.

2)In the interaction stage, a gat module is introduced to
model the pedestrian interaction at each individual time point,
adaptively allocating the importance degree of the influence
of different pedestrians on the current pedestrian. Moreover,
we use an additional transformer encoder to capture the
temporal correlation of pedestrian interactions at different
time points. This module allows the model to adaptively
capture the pedestrian interaction at the time points that are
more important for the pedestrian’s future trajectory.

3)In the Decoder, we redesigned the input, output and
calculation methods of this module for the pedestrian
trajectory prediction problem, and reduced the amount of
computation compared to the original transformer decoder
while maintaining the prediction accuracy of the model. The
experimental results are presented in Section IV.
The rest of this paper is arranged as follows. In Section II,

we analyze recent work on pedestrian trajectory prediction.
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In Section III, we explain the principle of the METF model
in detail. In Section IV, we do comparative experiments
with other models on the open data sets and analyze the
experimental results, and some ablation experiments are
introduced to prove the effectiveness of the module design.
We also visualized the prediction results of the model in order
to observe the prediction results obviously. In Section V,
we summarize the work of this paper.

II. RELATED WORK
This section reviews the related work in crowd interaction
modeling, recurrent neural networks for sequence prediction,
models based on attention mechanism, and graph neural
networks. It provides the background and foundation for the
proposed method.

A. CROWD INTERACTION MODELING
The initial work on modeling pedestrian interaction was
spearheaded by Yu et al. [13]. Their primary focus was on
pedestrian dynamics and social forcemodels. The social force
model is a methodology that describes pedestrian movement,
predicated on the interaction between a pedestrian’s internal
motivation and the external environment. The methodology
of the social force model aligns with our approach of
considering pedestrian trajectory prediction from both macro
and micro perspectives. It posits that pedestrian movement
is primarily influenced by the following forces: 1. The force
propelling pedestrians in the expected direction; 2. The force
compelling pedestrians to maintain a certain distance from
other pedestrians and boundaries; 3. The force of attraction
between pedestrians. However, other studies [7], [14] have
demonstrated that social force models struggle to accurately
model the interactions of complex populations in intricate
scenarios. In recent years, many deep learning-based models
have tried to model the interactions among pedestrians.
Alahi et al. [7] use the LSTM hidden state to represent the
state of the pedestrian and use the ‘‘pool scheme’’ to model
the pedestrian interaction with the hidden state. Vemula et al.
[9] propose an attention-based approach to model pedestrian
interactions. They use a soft attention model to capture the
relative importance of each person in the crowd, regardless
of their proximity. Mohamed et al. [15] proposes a trajectory
prediction framework based on Spatio-Temporal Graph
Transformer (STAR), which decomposes spatio-temporal
attention modeling into temporal and spatial modeling. In the
past years, the seq2seq-based models have achieved great
success in modeling human-human interactions. The models
mentioned above all model human-human interactions by
different method.

B. RECURRENT NEURAL NETWORKS FOR SEQUENCE
PREDICTION
Sequence prediction encompasses multiple sub-problems,
one of which involves using historical sequences to forecast
future sequences. For instance, the LSTM model in neural
networks [16] is a type of neural network specifically

designed to predict future sequences based on historical
data. Pedestrian trajectory prediction can also be framed
as the task of using past sequences to anticipate future
sequences. However, merely employing LSTM for pedestrian
trajectory prediction proves challenging when it comes
to modeling pedestrian interaction. To tackle this issue,
numerous researchers have embarked on various explo-
rations. For instance, one approach [7] utilizes the ‘‘social
pool’’ mechanism to amalgamate information from multiple
pedestrians to predict their trajectories. Another method
[10] employs the Graph Attention Network (GAT [17]) to
model the hidden state of pedestrians in LSTM output,
thereby modeling the interaction between pedestrians at
various times, and subsequently using ‘‘G-LSTM’’ to model
the temporal correlation of pedestrians at each moment.
However, each approach has its own set of challenges:
the ‘‘social pool’’ mechanism in [7] heavily depends on
artificially set attention ranges, and in [10], it is challenging
for LSTM to adaptively allocate the importance of all
pedestrians.

C. MODELS BASED ON TRANSFORMER
The Transformer network, has demonstrated exceptional
performance in fields such as natural language processing
and machine translation. According to research [11], [12],
its performance in machine translation, speech recognition,
and natural language understanding surpasses that of LSTM
[18]. In [19], the Transformer model was employed to predict
pedestrian trajectories, demonstrating superior effectiveness
compared to the LSTM model, even without considering
pedestrian interaction. Yu et al. [20] proposes a multi-agent
framework based on the Transformer Network, to predict
people future trajectories. Experimental results show that the
Transformer Network performs well in the task of pedestrian
trajectory prediction, and has advantages in dealing with
missing data and long-term prediction. In [21], TGConv,
a Transformer-based graph convolution mechanism, was
utilized to model crowd interactions at various time points.
The time dependence at each point was modeled by an
independent time transformer, which subsequently became
the state-of-the-art model at that time. Yu et al. [20] designed
the temporal transformer and the spatial transformer based
on the transformer for the pedestrian trajectory prediction
problem. It uses the temporal transformer to capture the state
information of the pedestrian at different time points of itself,
and uses the spatial transformer to capture the interaction
information among pedestrians at the same time point.

D. GRAPH NEURAL NETWORK
Graph Neural Networks (GNNs) have demonstrated superior
performance inmachine learning tasks that involve graph data
types. For instance, the Graph Convolution Network (GCN)
proposed by Kipf and colleagues has yielded impressive
results in tasks such as social network analysis, node
classification, and community discovery. In [15], Graph
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FIGURE 2. Illustration of Transformer. Transformer makes use of the
encoder representation of the observed input positions and the
previously predicted outputs. Shown in blue and are the self-attention
and encoder-decoder attention modules, which enable Transformer to
learn on which past position it is necessary to focus in order to predict an
accurate result.

Convolution Networks are utilized to extract spatial and
temporal information of pedestrians from the graph, thereby
generating suitable embeddings and leveraging them to
predict pedestrian trajectories. In [17], Graph Attention
Networks (GAT) also exhibit strong performance in tasks
such as facial recognition, pose estimation, and social
network analysis. In these tasks, GAT is capable of
learning the relationships and significance between nodes,
thereby significantly enhancing the model’s comprehension
ability.

In addressing the problem of pedestrian trajectory predic-
tion, when modeling the simultaneous interaction between
pedestrians, we represent each pedestrian as a node with
edges connecting them. This approach transforms the data of
all pedestrians in a scene at a given moment into graph data,
where the edges symbolize the intensity of the interaction
between two pedestrians. Likewise, other research [10] has
employed GAT to model pedestrian interaction and has
attained optimal results.

We incorporated GAT and attention mechanisms into
the ‘‘macro encoder’’ and ‘‘micro encoder’’ of our model,
leveraging their respective strengths, thereby enabling their
application to tasks inwhich they excel. Ultimately, themodel
yielded optimal test results.

III. METHOD
This section introduces the problem formulation and the
various components of the model proposed in this paper,
as well as their design ideas.

A. PROBLEM FORMULATION
The problem of human trajectory prediction is as follows: We
assume that there are N pedestrians in a scene, represented
as p1, p2, . . . , pN ,the position of pedestrianpi (i ∈ [1,N ])
represented as S ti = (x ti , y

t
i ).. Pedestrians ’s position S ti is

known for a continuous period of time t = 1, . . . ,Tobs,our
goal is to predict the future continuous time, S ti in t =

Tobs+1, . . . ,Tpred .

B. ENCODER-DECODER TRANSFORMER
Transformer is a kind of modular architecture which consists
of an encoder and a decoder. As shown in Figure 2, both the
encoder and the decoder in the Transformer are six layers,
and each layer contains three main modules: 1. an attention
module, 2. a feed-forward fully-connected module, 3. two
residual connections after each of the previous blocks.

The ability of the network to capture sequence
non-linearities mainly resides in the attention modules. Inside
each attention module, an entry of a sequence, termed
‘‘query’’ (Q), is compared with all the other sequence
entries, named ‘‘keys’’ (K) through a scaled dot product,
which is scaled by the equal query and key dk embedding
dimensionality.Then, the output is utilized to weight the same
sequence entries which are now named ‘‘values’’ (V). Hence,
attention is provided by the equation:

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
(1)

The aim of the encoding stage is to generate a represen-
tation for the observation sequence that enables the model
to have memory.For this purpose, after the encoding of the
input, encoder produces two vectors of keys, Kenc, and values
Venc, which would be passed on to the decoder. The decoder
predicts the future track positions in an auto-regressive
manner. At each new prediction step, a new decoder query
Qdec is compared with the encoder keys Kenc and values Venc
in accordance with Eq. (1).

In the model we proposed, both the macro encoder and the
micro encoder as well as the decoder adopt the same design as
the Transformer, but the designs in aspects such as the output
of the encoder and the calculation method of the decoder are
completely different, and the details will be elaborated in the
DECODER chapter and the PREDICTION chapter of this
section.

C. MULTI ENCODER ARCHITECTURE
As depicted in Fig.3, our proposed architecture comprises
two sub-encoders: the micro-encoder and the macro-encoder,
each with distinct responsibilities. We partition the problem
of human trajectory prediction into two components: macro
and micro. Correspondingly, each encoder is tasked with one
of these components.

Specifically, the macro-encoder models pedestrian direc-
tion, inferring future plans from historical trajectories, i.e., the
pedestrian’s planned path to their destination.We assume that
deviations from a planned route are inevitable during most
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FIGURE 3. The architecture of our proposed METF model. The entire model is based on seq2seq and consists of two parts:Encoder and Decoder. The
Encoder contains two sub encoders:micro encoder and macro encoder. 1.Macro-encoder,The blue dashed box along the way represents a single
pedestrians’s input of each time position to the macro encoder,which is a single pedestrian attention encoder; 2.Micro encoder, including GAT and
attention module, the input of the GAT is the information of all pedestrians at each moment, and the output is the pedestrian interaction information
and serves as the input of the attention module to model the temporal correlation of pedestrian interactions. The Memory contains both micro and
macro information for each pedestrian. Decoder generates future trajectories based on Memory.

walks. Frequently, we encounter pedestrians on our planned
path and choose to avoid them, but this does not imply a
change in our initial route. In reality, we alter our path to
avoid collisions on short sections of the planned route. Thus,
from a macro perspective, there is little difference between
the planned and actual walking routes. However, from amicro
perspective, locations where we encounter other pedestrians
differ from our planned route. Occasionally, thesemicro-level
route changes can prompt us to replan the macro-level route.
The micro-encoder addresses these micro-level pedestrian
path changes.

D. MACRO ENCODER
Each pedestrian exhibits unique behavioral patterns, encom-
passing walking speed, acceleration mode, and macroscopic
destination path. The Attention mechanism has been demon-
strated to effectively capture a single pedestrian’s behavior
patterns based on their information, without considering the
influence of other pedestrians [10]. Consequently, we employ
the attention mechanism in modeling pedestrian movement
intentions. It solely observes the pedestrian’s information and
can efficiently allocate the importance of the pedestrian’s
state at different times, thereby effectively encoding pedes-
trian intention. Ultimately, its output serves as the output of
the ‘‘macro’’ encoder. This part is the macro-encoder.

In our deployment, our raw data is pedestrians ’s coordinate
S ti at time t = 1, . . . ,Tobs. In order to enable the attention
module to process input data, we embed it into a higher
D-dimensional space through a linear projection with a
weight matrixWx , as shown in equation 1.

e(i,t)obs = S tiWx (2)

Due to the fact that the attention module receives inputs
from various time points simultaneously, it cannot distinguish
the input time information.Therefore, we adopt the same
approach as Transformer [12], after embedding the input into
dimension D, we use ‘‘position encoding’’ to encode the data
of all pedestrians at all times.The specific approach is to add
the input embedding e(i,t)obs and a position encoding vector pt ,
which has the same dimension D with e(i,t)obs . We use sine and
cosine functions to define pt .

pt = {pt,d }Dd=1 (3)

where pt,d =


sin

(
t

10000d/D

)
fordeven

cos
(

t
10000d/D

)
fordodd

(4)

Each dimension of the positional encoding corresponds to
a sinusoid. The wavelengths form a geometric progression
from 2π to 10000 · 2π .
After obtaining pt ,add pt and e(i,t)obs to obtain an embedding

with time order information.

D:ξ
(i,t)
obs = pt + e(i,t)obs (5)

Macro encoder employs the standard encoder architecture
of a naive transformer on ξ

(i,t)
obs . The objective of employing

macro encoding is to encapsulate the pedestrian’s walking
status, inclusive of travel speed and path planning, via
observable pedestrian trajectories. This approach aims to
furnish the decoder with effective macro route and speed
information for prediction. This rationale underpins our
choice of the standard encoder architecture of a naive
transformer over LSTM to encapsulate the macro direction
of pedestrians.
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FIGURE 4. Illustration of modeling the interaction of pedestrians at the
same time point using GAT. In a given scene, all pedestrians are
represented as points on a graph. The influence of each pedestrian on
others is adaptively assigned importance using GAT. Here, αi,j represents
the degree of influence of point j on point i. This model is used to
simulate the interaction between pedestrians at a specific moment.

Contrary to LSTM, the naive transformer’s standard
encoder architecture can parallelly observe pedestrian sta-
tus at all time points and adaptively assign importance
to pedestrian status at different time points, instead of
sequentially receiving information at each time point and
opting to forget or remember specific information. Therefore,
we posit that attention encoders, compared to LSTM, offer the
following advantages: 1. Parallel computing allows attention
encoders to achieve faster computation speeds during training
and inference stages; 2. The attention encoder observes
global information simultaneously, rather than step-by-step.
We contend that the proximity of the historical trajectory
to the prediction point does not necessarily denote its
importance. Instead, for different pedestrians, the signifi-
cance of historical trajectory points may vary, regardless of
their proximity to the prediction point. LSTM’s limitations
can result in over-compression or forgetting of historical
trajectory information that is farther from the prediction
point, leading to the loss of crucial information. This enables
attention encoders to more efficiently concentrate on useful
information and better encapsulate pedestrian walking status.

E. MICRO ENCODER
We hypothesize that a pedestrian’s true route can be
bifurcated into their macroscopic route and their microscopic
adjustments on this macroscopic route. The micro encoder’s
role is to discern the mutual influence among pedestrians and
equip the decoder with information on the micro adjustments
that pedestrians might make on their macro route in the
future due to the influence of other pedestrians. Numerous
prior studies have underscored the importance and efficacy
of modeling pedestrian interactions at various time points.
However, we contend that not every interaction moment
carries significant impact. It could be the interaction over a
duration that holds more importance, or the interaction at a
specific point in time.

Consequently, we employ a combination of GAT and
attention mechanisms to model pedestrian interaction. GAT
is utilized to capture the interaction between pedestrians at
each moment, while attention is used to identify significant

time periods of pedestrian interaction. Ultimately, its output
serves as the input for the ‘‘micro’’ encoder.

Micro encoder handles raw data in the same way as macro
encoder. It is worth noting that when the micro encoder
embeds the original data, we do not use a new linear layer for
embedding, but instead use the same embedding ξ

(i,t)
obs as the

macro encoder. This is because we have empirically found
that using the same embedding as the macro encoder and
using a new linear layer embedding has little impact on the
accuracy of the model.

To obtain the interaction between pedestrians at each
moment, we consider all pedestrians in a scene as multiple
points in a graph, and consider this graph as a fully
connected graph, assuming that each point in this graph may
affect each other(Recent research findings indicate that when
considering the influence of other pedestrians, it is necessary
to consider every pedestrian [8], [22]). We use the latest
progress of GNNs (Graph Neural Networks), GAT (Graph
Attention Network), to model the mutual influence between
pedestrians at different time points, because GAT allows for
the fusion of information between points and can adaptively
assign weights to each point, simulating the actual situation
where the degree of influence between each pedestrian varies
in real scenes. Therefore, we employs the GAT on ξ

(i,t)
obs .

Shown as Fig.4.
The input of GAT is ξ at the same time, ξ =

{ξ⃗ t1, ξ⃗
t
2, . . . , ξ⃗

t
N }, N is the number of people going down at

that moment, that is, the number of points in the graph. αi,j is
the correlation coefficient between nodes (i, j), indicating the
degree of influence of node j on node i.

αtij =
exp(LeakyReLU(aT [W ξ ti ∥W ξ tj ]))∑

k∈Ni
exp (LeakyReLU(aT [W ξ ti ∥W ξ tk ]))

(6)

where ∥ represents the connection operation, αtij is the
attention coefficient of two points (i, j) at the same time. Ni
represents the number of nodes at that time. The final output
of GAT is also determined byαtij and ξ are calculated.W(W ∈

Rd
′
×d ) is the weight matrix of a shared linear transformation

which is applied to each node (d is the dimension of ξ ti , d
′

is the dimension of ξ̂ ti ). x
T represents transpose operation to

x, a is the weight matrix of a single-layer feedforward neural
network. It finally normalized by LeakyReLU.

The final output of GAT is also determined by αtij and ξ are
calculated.

ξ̂ ti = σ

∑
j∈Ni

αtijWξ tj

 (7)

σ is a nonlinear function.W is the weight matrix of a shared
linear transformation. ξ̂ ti is the output of GAT.

The objective of the micro encoder is to convey the
influence of other pedestrians on the current pedestrian to the
decoder, enabling the decoder tomodel themicro adjustments
of pedestrians on their macro routes. As stated at the outset
of this section, not every interaction moment is significant.
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FIGURE 5. Illustration of use of attention mechanisms to capture
significant group interactions at a specific or continuous time point. The
Attention encoder takes as input the information regarding a pedestrian’s
interactions with other pedestrians at various time points. In the figure,
dashed lines of the same color represent the inputs of a pedestrian’s
interactions at different times into the Attention encoder.

It could be a specific moment or a fewmoments of interaction
that play a pivotal role in the micro adjustment of pedestrians
on the macro route. We posit that in certain scenarios, it is
not a single moment of interaction that holds importance, but
rather a continuous or several consecutive interactions.

Therefore, we are like macro encoders, deploying the
standard encoder architecture of a naive transformer on ξ̂ ti ,
use it to capture certain individual or continuous important
interactions.Shown as Fig.5.

The input for the Attention encoder is ξ̂ = {ξ̂1i , ξ̂2i ,

. . . , ξ̂
tobs
i }, that is, the interaction information between the

current pedestrian and other pedestrians at different times.We
treat the output of the attention encoder as the output of the
micro encoder.

F. DECODER
The role of the decoder is to forecast the macro route
of a pedestrian and the micro adjustments made by the
pedestrian on the macro route, drawing upon the macro and
micro information encapsulated by the macro encoder and
micro encoder. In our implementation, the decoder employs
the standard decoder architecture of a naive transformer.
However, it is noteworthy that our design for memory and
input diverges significantly from theirs.

Memory consists of outputs from macro encoders and
micro encoders, the outputs of the macro encoder and micro
encoder for a pedestrian are u, u = {u1i , u

2
i , . . . , u

Tobs
i }; n, n =

{n1i , n
2
i , . . . , n

Tobs
i }. The memory is calculated as:

mi = ui ∥ ni (8)

The input also consists of two parts: ξ and ξ̂ . ξ =

{ξ⃗1i , ξ⃗2i , . . . , ξ⃗
tobs
i }, ξ̂ = {ξ̂1i , ξ̂2i , . . . , ξ̂

tobs
i }, the input is

calculated as:

qi = ξ̂i ∥ ξi (9)

The memory and the input are concatenated in the
feature dimension by u, n, and ξ, ξ̂ , respectively. Special

attention should be paid to the u, n and ξ, ξ̂ ’s concatenate
order:Align u with ξ̂ and n with ξ in the memory and the
input. That is to say,in the second attention layer of the
decoder, the ξ̂ (containing pedestrian interaction information
at every moment) after being processed by the self attention
layer in the decoder, then it will calculate attention score
with the output n of the micro encoder(which includes
crowd interaction information); The ξ (which only including
information about pedestrians at various time points) after
being processed by the self attention layer in the decoder, then
it will calculate attention score with the output u of the micro
encoder (which only have pedestrian’s own information).
The purpose of our design is to integrate macro and micro
information, enabling more accurate prediction of pedestrian
macro routes and micro adjustments of pedestrians in macro
routes.

G. PREDICTION
During the final prediction phase, numerous models opt to
predict the Gaussian distribution of future pedestrian trajecto-
ries, or introduce random vectors during the prediction phase
and generate 20 predictions, with the optimal result among
the 20 predictions serving as the model’s evaluation result.
We contend that this method can assess a model’s upper limit,
but gauging the model’s standard level proves challenging,
hence we refrained from incorporating randomness at this
stage. Ultimately, we employ a linear layer to output the
future trajectory coordinates of the concluding pedestrian.

The output of the Decoder is recorded as o1i , o
2
i , . . . , o

Tobs
i .

The superscript is the time point, and the subscript is the
pedestrian number. We concatenate the decoder output of a
pedestrian in the feature dimension.

o = o1i ∥ o2i ∥ . . . ∥ oTobsi (10)

Then, we will input the o into the linear layer.

(xTobs+1
i , yTobs+1

i , xTobs+2
i , yTobs+2

i , . . . , x
Tpred
i , y

Tpred
i ) = δ(o)

(11)

Our loss design is very simple.

Loss = ||(xi, yi) − (x̂i, ŷi)||2 (12)

The (xi, yi) is prediction, and the (x̂i, ŷi) is ground truth.

IV. EXPERIMENTS
This section introduces the datasets, evaluation metrics, com-
parison with existing methods, quantitative and qualitative
evaluation of the proposed METF method.

A. DATASETS
The ETH and UCY datasets [32] are two common datasets
used to train and evaluate pedestrian trajectory prediction
methods. They are all real pedestrian trajectories captured
from a bird’s-eye perspective, including 1536 pedestrians and
richmultiplayer interaction scenes. Their sampling frequency
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TABLE 1. Comparison with baselines models on public benchmarks ETH and UCY for ADE/FDE. The method name followed by an ‘‘*’’ indicates that the
results of the method in the table are based on the Best-of-20 Samples, the others are deterministic result. Lower is better.

TABLE 2. Comparison with different design of decoder. We compute the MACs of each model by simultaneously predict the trajectories of 10 agents.
Params is the parameter quantity of the entire model. The Lower the better.

TABLE 3. Ablation Study on METF. We removed the macro encoder and micro encoder from METF separately. WITHOUT MACRO denotes removed the
macro encoder from METF; WITHOUT MICRO denotes removed the micro encoder from METF.

is (1t = 0.4s). The ETH and UCY have five scenes in
total:ETH, HOTEL, UNIV, ZARA1 and ZARA2.

We following previous studies [7], [10], [22], we set Tobs =

8, Tpred = 12, that is take 8 frames (3.2s) as observation and
the next 12 frames (4.8s) as prediction. This setting has been
recognized and adopted by the vast majority of studies.And
besides pedestrian coordinates, we did not use any additional
data, such as map information, etc.

B. METRICS
In model evaluation, We are also following previous studies
[7], [10], using ADE (Average Displacement Error) and
FDE (Final Displacement Error). The ADE evaluate average
error between model prediction trajectories and ground
truth trajectories in every time steps. The FDE evaluate
error between model prediction trajectories and ground truth
trajectories in the last time steps. The smaller the evaluation
numbers, the better the model results.

ADE =
1

Tpred

T∑
t=Tobs

||(xt − x̂t ) + (yt − ŷt )||2 (13)

FDE = ||(xtpred − x̂tpred ) + (ytpred − ŷtpred )||2 (14)

C. COMPARISON WITH STATE-OF-ART METHODS
We compared our proposed METF with a wide range meth-
ods, they are all highly representative methods, including
Social LSTM, Social GAN [22], SoPhie [23], STGAT, Social-
BiGAT [24], SGCN [25], CSCNet [31], Social-STGCNN
[15], STAR, social TAG [26] and STAGP [29]. Table 1
presents the ADE and FDE results of each model. The
performance of METF is noteworthy, particularly given that
our prediction results are derived from a single sample,
in contrast to over half of the models which require
20 samples to achieve their best results. As discussed in
Section III-F, while the best-20 protocol may provide a better
examination of a model’s upper limit, it poses challenges in
determining a model’s standard level.

METF has yielded results that are relatively ideal. With the
exception of CSCNet as shown in Table 1, METF performs
best among other deterministic results. It is worth noting
that STGAT uses GAT in modeling pedestrian interaction,
just like our method of modeling micro route changes for
pedestrians, and STGAT also only models macro routes
for pedestrians based on their own walking information.
However, Compared to STGAT deterministic result, the
ADE and FDE of our method has decreased by 18.0%
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FIGURE 6. Visualization Results. The solid red line in the figure are observed trajectory, solid blue line are ground truth, the yellow dashed line is the
predicted trajectory of our METF. The first row displays the model’s predicted trajectory of pedestrians over a continuous period of time. The second
row displays the behavior of pedestrians walking together in different scenarios. The third row shows the situation of complex scenes with multiple
pedestrians, as well as situations where pedestrians suddenly stop and slow down.

and 21.1% respectively. METF has achieved a 5% decrease
in ADE compared to STGAT’s Best-of-20 Samples result.
We believe that is to be due to STGAT’s use of LSTM
to summarize the macro and micro states of pedestrians.
LSTM can only linearly observe the embedded information
of pedestrians at each time point, potentially leading to
excessive compression or neglect of embedded information
at earlier time points. However, in pedestrian prediction, the
information at each time point is crucial. METF employs
an attention mechanism to observe the information of
pedestrians at each time point simultaneously and adaptively
allocate their importance. The Decoder structure of METF
further enables it to adaptively allocate the importance of
macro and micro information for pedestrians in subsequent
routes. Whether in the modeling of macro or micro infor-
mation, or in the process of outputting future pedestrian
trajectories through macro and micro information, METF
demonstrates a high degree of adaptability in capturing
more useful information for predicting future pedestrian
trajectories. This is also believed to be the primary reason for

METF’s significant decrease in ADE and FDE compared to
STGAT.

D. QUANTITATIVE EVALUATION
1) EFFECT OF THE SPECIAL DESIGN OF THE INPUT OF
DECODER
In the naive Transformer, the input of the Decoder is the
output of the previous time step Decoder, as predicted in [19]
using this method. To test the effectiveness of our redesign
of the decoder input, we trained and evaluated the decoder
design using the original Transformer while keeping the
remaining parameters of the model unchanged, in order to
compare the effectiveness of the two methods. The results are
shown in Table 2.
It can be seen that our design has reduced by 11.9%

and 7.8% in ADE and FDE, respectively, compared to
the naive transformer’s design.Moreover, we also listed
the number of model parameters and MACs of these two
methods. Calculation of MACs are based on the assumption
of predicting ten pedestrians simultaneously. It can be seen
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that our design has increased by 3.4% in params, compared
to the naive transformer’s design. But, this design makes our
model is only 9.2% of the designed for naive Transformers in
MACs. This is a fairly cost-effective deal, by spending only
an additional 3.4% of memory usage, the model’s error was
reduced by neraly 10% and the MACs were reduced tenfold.

Our design has significantly reduced the MACs, as it
allows the model to predict the position of pedestrians
simultaneously at all times when forecasting their future
trajectories, unlike the original Transformer. The naive
Transformer predicts the position of pedestrians sequentially,
as it requires the pedestrian position predicted by the model
at the previous time step when predicting the position at
the current time. This results in the naive Transformer
recalculating the encoder’s output and all the calculations
required in the previous time step predictions for each
prediction, leading to a substantial amount of duplicate
calculations.

2) EVALUATION OF MICRO-ENCODER AND
MACRO-ENCODER
To investigate the distinct roles and contributions of themacro
and micro encoders, we separately retained only the macro
andmicro encoders inMETF for testing on the ETH andUCY
datasets. The test results are presented in Table 3.

In comparison to METF with only macro encoders, the
complete METF has achieved a reduction of 19.7% and
17.0% in ADE and FDE, respectively. This implies that the
micro encoder contributes to a nearly 20.0% reduction in
the model’s error. As previously mentioned, the problem
of pedestrian trajectory prediction can be decomposed into
the macroscopic route intention of pedestrians. However, for
more accurate predictions, the model needs to capture the
changes in pedestrians’ microscopic routes. The role of the
micro encoder is to model these microscopic route changes
influenced by other pedestrians, such as following or avoiding
behaviors. In the following section, we will visualize the
prediction results of two models for a clearer observation of
this outcome.

As shown in Table 3, the performance of METF with
only the micro encoder is less than ideal. This outcome
aligns with our previous hypothesis that the pedestrian
trajectory prediction problem can be segmented into macro
and micro components. By modeling the macro aspect of the
pedestrian trajectory, we can approximate the path planning
of pedestrians. Coupled with the capability to model micro
changes in pedestrians, the model can more precisely predict
the micro alterations made by pedestrians in their own macro
path due to other pedestrians. Modeling the micro level
of pedestrians significantly enhances the model’s accuracy,
given that we initially have a model of the macro level route
of pedestrians for it to function effectively.

E. QUALITATIVE EVALUATION
Fig.6 presents the visualization ofMETF prediction results on
the ETH and UCY datasets, representing common scenarios

FIGURE 7. Comparison of METF with and without micro encoders. (a) and
(b) are the results of the complete METF for predicting crowd trajectories,
while (c) and (d) are the crowd trajectory prediction results of the METF
without a micro encoder.

and situations encountered in daily life. In the figure, the
solid red line denotes the observed trajectory, the solid blue
line represents the ground truth, and the yellow dashed line
illustrates the predicted trajectory of our METF.

The four images (a) - (d) in the first row depict
the continuous movement of pedestrians within the same
scene, encompassing behaviors such as walking together
and turning. The METF’s prediction results demonstrate
commendable performance in this continuous prediction,
accurately forecasting the pedestrians’ turning and accom-
panying behaviors. This suggests that METF has effectively
learned specific behavioral patterns of pedestrians, thereby
ensuring a high degree of accuracy.

In the second row of Fig.6, images (e) - (h) illustrate
the METF’s modeling of pedestrian walking behavior across
various scenarios, a frequent occurrence in our daily lives.
When people walk together, they keep a certain distance,
preserving a walking posture while evading collisions with
each other. Images (e) - (h) underscore the effectiveness
of METF in micro modeling, given its ability to model
pedestrian walking behavior in diverse scenarios.

Scenes (i) and (j) depict a higher density of pedes-
trians, leading to more intricate interactions. These
include behaviors such as detouring, group walking, and
counter-directional movement to prevent collisions. The
METF model has demonstrated its proficiency in accurately
simulating these diverse pedestrian behaviors, thereby
validating its effectiveness in complex scenarios. Scene
(k) and (j) illustrate another prevalent pedestrian behavior:
abrupt stopping or deceleration duringmovement. TheMETF
model’s successful prediction of this behavior underscores its
robust macro-modeling capabilities and its ability to learn and
replicate pedestrian behavior patterns.
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Fig.7 provides a visual comparison of the METF model
with only a macro encoder and the complete METF model
in a scenario involving multiple pedestrian interactions. The
predicted results of the complete METF model are depicted
in (a) and (b), while (c) and (d) represent the outcomes of the
METFmodel with just a macro encoder. The completeMETF
model, as shown in (a) and (b), effectively models pedestrian
walking behavior due to its micro encoder, yielding accurate
predictions. Conversely, in (c) and (d), the METF model with
only a macro encoder makes generally correct predictions in
the macro direction. However, the absence of a micro encoder
prevents themodel from acquiring information about all other
pedestrians. This limitation hinders the model’s ability to
adjust its route based on other pedestrians’ influence and
to effectively model behaviors such as group walking and
avoidance. Consequently, it struggles to produce accurate
predictions in scenarios with a high density of pedestrians and
complex interactions.

V. CONCLUSION
This section summarizes the main contributions and findings
of the paper, and discusses the potential and limitation
for further development of the proposed Multi-Encoder
Transformer.

We introduce a novel framework, the Multi-encoder
Transformer, designed specifically for pedestrian trajectory
prediction tasks. We employ the attention mechanism to
capture the macroscopic route of pedestrians and integrate
it with the Graph Attention Network (GAT) to model
the microscopic pedestrian information, facilitated by a
novel decoder design. We put forth a unique solution that
bifurcates pedestrian trajectory prediction into macroscopic
and microscopic components. Our model yielded promising
results, with qualitative experiments illustrating that the
Multi-encoder Transformer Framework (METF) produces
socially acceptable human trajectories across diverse scenar-
ios. This underscores the rationale behind decomposing the
problem into macroscopic and microscopic levels.

However, our model has not yet taken into account
map information, obstacle information, etc. Therefore, when
modeling the microscopic path change of pedestrians in some
scenarios, the model fails to obtain sufficient information,
resulting in a decrease in the prediction effect. But this
does not affect the superiority of our approach. Moreover,
our Multi-encoder Transformer harbors significant potential
for further development. In future study, we aim to lever-
age the capabilities of multi-encoders to incorporate the
hitherto unused information, excluding other data such as
map information, obstacle information, scene context and
pedestrian speed. We will continue to explore how to exploit
the advantages of themulti-encoder structure and utilizemore
information to model the problem of pedestrian trajectories.
And we will also attempt to extend the model proposed in this
paper to other researches with commonalities, such as vehicle
trajectory prediction and ship trajectory prediction, in order
to test the universality of this model.

REFERENCES
[1] Z. Chen, C. Song, Y. Yang, B. Zhao, Y. Hu, S. Liu, and J. Zhang,

‘‘Robot navigation based on human trajectory prediction and multiple
travel modes,’’ Appl. Sci., vol. 8, no. 11, p. 2205, Nov. 2018.

[2] A. J. Sathyamoorthy, J. Liang, U. Patel, T. Guan, R. Chandra, and
D. Manocha, ‘‘Densecavoid: Real-time navigation in dense crowds using
anticipatory behaviors,’’ in Proc. IEEE Int. Conf. Robot. Automat. (ICRA),
May 2020, pp. 11345–11352.

[3] Y. Cai, L. Dai, H. Wang, L. Chen, Y. Li, M. A. Sotelo, and Z. Li,
‘‘Pedestrianmotion trajectory prediction in intelligent driving from far shot
first-person perspective video,’’ IEEE Trans. Intell. Transp. Syst., vol. 23,
no. 6, pp. 5298–5313, Jun. 2022.

[4] F. Marchetti, F. Becattini, L. Seidenari, and A. D. Bimbo, ‘‘Multiple tra-
jectory prediction of moving agents with memory augmented networks,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 6, pp. 6688–6702,
Jun. 2023.

[5] L. Rossi, M. Paolanti, R. Pierdicca, and E. Frontoni, ‘‘Human trajectory
prediction and generation using LSTM models and GANs,’’ Pattern
Recognit., vol. 120, Dec. 2021, Art. no. 108136.

[6] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, ‘‘Learning social
etiquette: Human trajectory understanding in crowded scenes,’’ in Proc.
Eur. Conf. Comput. Vis., Aug. 2016, pp. 549–565.

[7] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, ‘‘Social LSTM: Human trajectory prediction in crowded
spaces,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 961–971.

[8] T. Fernando, S. Denman, S. Sridharan, and C. Fookes, ‘‘Soft +

hardwired attention: An LSTM framework for human trajectory prediction
and abnormal event detection,’’ Neural Netw., vol. 108, pp. 466–478,
Dec. 2018.

[9] A. Vemula, K. Muelling, and J. Oh, ‘‘Social attention: Modeling attention
in human crowds,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2018, pp. 4601–4607.

[10] Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang, ‘‘STGAT: Modeling
spatial–temporal interactions for human trajectory prediction,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6271–6280.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inform. Process. Syst. (NIPS), Jul. 2017, pp. 5998–6008.

[13] W. Yu, R. Chen, L.-Y. Dong, and S. Dai, ‘‘Centrifugal force model for
pedestrian dynamics,’’ Phys. Rev. E, vol. 72, no. 2, pp. 1–19, Jan. 2005.

[14] P. Yadav, A. Mishra, and S. Kim, ‘‘A comprehensive survey on multi-agent
reinforcement learning for connected and automated vehicles,’’ Sensors,
vol. 23, no. 10, p. 4710, May 2023.

[15] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, ‘‘Social-STGCNN:
A social spatio-temporal graph convolutional neural network for human
trajectory prediction,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 14412–14420.

[16] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[17] P. Velič ković, G. Cucurull, A. Casanova, A. Romero, P. Lio, andY. Bengio,
‘‘Graph attention networks,’’ 2017, arXiv:1710.10903.

[18] L. Dong, S. Xu, and B. Xu, ‘‘Speech-transformer: A no-recurrence
sequence-to-sequence model for speech recognition,’’ in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2018,
pp. 5884–5888.

[19] F. Giuliari, I. Hasan, M. Cristani, and F. Galasso, ‘‘Transformer networks
for trajectory forecasting,’’ in Proc. 25th Int. Conf. Pattern Recognit.
(ICPR), Jan. 2021, pp. 10335–10342.

[20] C. Yu, X. Ma, J. Ren, H. Zhao, and S. Yi, ‘‘Spatio-temporal graph
transformer networks for pedestrian trajectory prediction,’’ in Proc. Eur.
Conf. Comput. Vis., Nov. 2020, pp. 507–523.

[21] X. Zhao, Y. Chen, J. Guo, and D. Zhao, ‘‘A spatial–temporal attention
model for human trajectory prediction,’’ IEEE/CAA J. Autom. Sinica,
vol. 7, no. 4, pp. 965–974, Jul. 2020.

[22] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, ‘‘Social GAN:
Socially acceptable trajectories with generative adversarial networks,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2255–2264.

VOLUME 12, 2024 96203



X. Hu et al.: METF: Modeling Macro-Micro Human Intention by Multi-Encoder Transformer

[23] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, and
S. Savarese, ‘‘SoPhie: An attentive GAN for predicting paths compliant to
social and physical constraints,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 1349–1358.

[24] V. Kosaraju, A. Sadeghian, R. Martín-Martín, I. Reid, H. Rezatofighi,
and S. Savarese, ‘‘Social-bigat: Multimodal trajectory forecasting using
bicycle-GAN and graph attention networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 32, 2019, pp. 1–10.

[25] L. Shi, L. Wang, C. Long, S. Zhou, M. Zhou, Z. Niu, and G. Hua, ‘‘SGCN:
Sparse graph convolution network for pedestrian trajectory prediction,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 8990–8999.

[26] X. Zhang, P. Angeloudis, and Y. Demiris, ‘‘Dual-branch spatio-temporal
graph neural networks for pedestrian trajectory prediction,’’ Pattern
Recognit., vol. 142, Oct. 2023, Art. no. 109633.

[27] B. I. Sighencea, I. R. Stanciu, and C. D. Caleanu, ‘‘D-STGCN: Dynamic
pedestrian trajectory prediction using spatio-temporal graph convolutional
networks,’’ Electronics, vol. 12, no. 3, p. 611, Jan. 2023.

[28] T. Maeda and N. Ukita, ‘‘Fast inference and update of probabilistic
density estimation on trajectory prediction,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2023, pp. 9761–9771.

[29] Z. Liu, L. He, L. Yuan, K. Lv, R. Zhong, and Y. Chen, ‘‘STAGP:
Spatio-temporal adaptive graph pooling network for pedestrian trajectory
prediction,’’ IEEE Robot. Autom. Lett., vol. 9, no. 3, pp. 2001–2007,
Mar. 2024.

[30] P. Zhang, W. Ouyang, P. Zhang, J. Xue, and N. Zheng, ‘‘SR-LSTM:
State refinement for LSTM towards pedestrian trajectory prediction,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 12077–12086.

[31] B. Xia, C. Wong, Q. Peng, W. Yuan, and X. You, ‘‘CSCNet: Contextual
semantic consistency network for trajectory prediction in crowded spaces,’’
Pattern Recognit., vol. 126, Jun. 2022, Art. no. 108552.

[32] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool, ‘‘You’ll never walk
alone: Modeling social behavior for multi-target tracking,’’ in Proc. IEEE
12th Int. Conf. Comput. Vis., Sep. 2009, pp. 261–268.

XINCHENG HU received the B.S. degree in
software engineering from the Wenhua College
(WHC), Wuhan, China, in 2022. He is cur-
rently pursuing the master’s degree in computer
technology with South-Central Minzu Univer-
sity (SCMU). He has published one articles.
His research interests include deep learning,
video image processing, and people trajectory
prediction.

BO YANG received the B.S. degree in com-
puter science and technology from the School
of Computer Science and Technology, Huazhong
University of Science and Technology (HUST),
in 2001, the M.S. degree in water conservancy and
hydroelectric engineering and the Ph.D. degree in
spatial information science and technology from
HUST, in 2004 and 2008, respectively. From
2008 to 2011, she worked as a Postdoctoral
Research Fellow at HUST. Since 2012, she has

been affiliated with South-Central Minzu University (SCMU), where her
research interests span computer modeling and simulation, GIS, computer
vision, and sign language recognition.

JIXING YANG received the B.S. degree in network
engineering from South-Central Minzu University
(SCMU), Wuhan, China, in 2022, where he is
currently pursuing the master’s degree in computer
technology. He has published two articles. His
research interests include deep learning and image
and video processing.

TENG ZHANG received the B.S. degree in
software engineering from Hubei University of
Economics, Wuhan, China, in 2023. He is cur-
rently pursuing the master’s degree in computer
technology with South-Central Minzu University
(SCMU). His research interests include deep
learning, video image processing, and people
trajectory prediction.

96204 VOLUME 12, 2024


