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ABSTRACT Deep learning (DL), a branch of machine learning (ML), is the core technology in today’s
technological advancements and innovations. Deep learning-based approaches are the state-of-the-art
methods used to analyse and detect complex patterns in large datasets, such as credit card transactions.
However, most credit card fraudmodels in the literature are based on traditionalML algorithms, and recently,
there has been a rise in applications based on deep learning techniques. This study reviews the recent
DL-based literature and presents a concise description and performance comparison of the widely used DL
techniques, including convolutional neural network (CNN), simple recurrent neural network (RNN), long
short-term memory (LSTM), and gated recurrent unit (GRU). Additionally, an attempt is made to discuss
suitable performance metrics, common challenges encountered when training credit card fraud models using
DL architectures and potential solutions, which are lacking in previous studies and would benefit deep
learning researchers and practitioners. Meanwhile, the experimental results and analysis using a real-world
dataset indicate the robustness of the deep learning architectures in credit card fraud detection.

INDEX TERMS Credit card, CNN, deep learning, fraud detection, GRU, LSTM, machine learning.

I. INTRODUCTION
Credit card transactions have grown due to the rapid
technological advancements and convenience of electronic
services [1], [2]. Consequently, there has been an increase in
security issues, such as credit card fraud, which has become
a significant concern for both financial institutions and cus-
tomers [3], [4]. According to the Nielsen report, losses from
credit card fraud in 2019, 2020, and 2021 were approximately
28.65, 28.50, and 32.34 billion dollars, respectively [5], [6],
[7]. Additionally, losses due to credit card fraud globally have
tripled in the last decade, from 9.84 billion dollars in 2011 to
32.34 billion dollars in 2021 [8].

Machine learning (ML) methods have been widely used
for credit card fraud detection (CCFD), achieving state-of-
the-art performances [9], [10], [11]. ML algorithms can be
classified into supervised, unsupervised, semi-supervised,
or reinforcement learning [12]. The most widely used ML
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method for identifying credit card fraud is the supervised
learning (SL) method [13]. Supervised learning entails
training an ML algorithm using a dataset where each data
point has a label. The label indicates the specific class the data
point belongs to, such as fraud or not fraud. SL techniques
tend to learn the relationship between the input features
(or independent variables) and the output labels (dependent
variables).

Several studies have demonstrated the ability of neural
networks to identify fraudulent transactions in complex
credit card data [14], [15]. A neural network is a type of
machine learning with a learning process that mimics the
human brain and can be supervised or unsupervised [16].
Neural networks with multiple layers in the network
also called deep learning (DL), can progressively extract
higher-level features and analyse complex patterns with
enhanced predictions. DL approaches have been used to
identify fraudulent transactions in credit card data. For
example, Mienye and Sun [17] developed an approach for
credit card fraud detection using a stacked ensemble of
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long short-term memory (LSTM) and gated recurrent unit
(GRU) networks, with a multilayer perceptron (MLP) as the
base learner. The DL-based ensemble performed excellently
compared to other ML algorithms and the individual DL
architectures. Similarly, Esenogho et al. [18] proposed a
DL-based approach for credit card fraud detection using the
LSTM neural network as the base learner in the adaptive
boosting (AdaBoost) implementation, achieving excellent
classification performance. Additionally, different studies
have used convolutional neural networks [19], [20].

Meanwhile, recurrent neural networks (RNN) and their
variants, such as LSTM and GRU, are the most widely used
DL-based networks for modelling and analysing credit card
transactions due to their ability to learn sequential data and
detect temporal relationships [21], [22], [23]. The LSTM
network is useful for learning long-term dependencies in a
sequence. It is powerful because it can remember information
from previous time steps and selectively forget or update that
information as new inputs are processed. Like LSTM, GRU
can selectively update or forget data from earlier time steps
due to its gating mechanism, making it suitable for time series
modelling.

However, despite the robustness of deep learning tech-
niques, there are certain benefits and limitations in using
them for credit card fraud detection. Therefore, this study
aims to review the application and role of deep learning in
credit card fraud detection. The significance of this study
lies in its comprehensive review of the current state of
deep learning applications in credit card fraud detection,
highlighting the primary challenges and potential solutions.
By systematically analyzing various deep learning techniques
and their performance, this study provides valuable insights
for researchers and practitioners. The main objectives and
contributions of this review are as follows:

• A review of the most current research on credit card
fraud detection, focusing on deep learning techniques.

• A concise but comprehensive overview of the main
deep learning techniques used in CCFD and their
performance comparison.

• A detailed evaluation of the widely used performance
evaluation metrics, focusing on their suitability for
CCFD.

• An in-depth analysis of existing challenges in using
DL-based techniques for credit card fraud detection,
potential solutions, and research directions.

Furthermore, to ensure a comprehensive and unbiased
review, a systematic approach was employed for literature
gathering. The literature selection began with a compre-
hensive search of multiple academic databases, including
IEEE Xplore, SpringerLink, ScienceDirect, and Google
Scholar. Keywords such as ‘‘credit card fraud detection,’’
‘‘deep learning,’’ ‘‘CNN,’’ ‘‘RNN,’’ ‘‘LSTM,’’ and ‘‘GRU’’
were used to identify relevant studies. We included articles
published between 2015 and 2024 to capture the most recent
advancements and trends in the field. Studies were further
filtered based on relevance, impact, and their contribution to

the understanding of deep learning applications in credit card
fraud detection.

The rest of the paper is structured as follows: section II
presents a discussion of credit card fraud detection and related
reviews. Section III discusses publicly available credit card
datasets, and Section IV presents a comprehensive overview
of deep learning and relevant architectures. Section V
discusses widely used performance evaluation metrics and
their suitability for credit card fraud detection. Section VI
presents a review of recent studies that applied deep learning
for credit card fraud detection. Section VII presents the
experimental results and analysis of the various DL methods,
and Section VIII discusses the challenges of using DL to
detect credit card fraud and possible solutions. Section IX
presents a general discussion and future research directions,
and Section X concludes the study and highlights future
research directions.

II. RELATED WORKS
A. CREDIT CARD FRAUD DETECTION
Credit card fraud occurs when an unauthorised user obtains
access to someone’s credit card details and performs trans-
actions. It is an inclusive term for fraud committed via a
bank card, including credit and debit cards [24]. Although
the transactions are frequently carried out online, they can be
carried out using the actual card when misplaced or stolen.
Fraudsters use different methods to obtain the cardholder’s
information, including phishing, where a fraudster poses as
a financial official to coerce a user into disclosing personal
information, and skimmers use an interface to an automated
teller machine (ATM) or point-of-sale device that can read a
card directly [25], [26].

Detecting credit card fraud is essential in ensuring the
security of consumers’ finances and financial information.
The two main approaches to detecting fraudulent activity
are automated systems and manual investigation. While
automated systems rely on algorithms and machine learning
techniques to identify patterns of fraudulent behaviour,
manual investigation involves human intervention to analyse
suspicious activities and gather evidence. Automated systems
are more popular due to their ability to process large volumes
of data quickly and efficiently, and they utilize advanced
statistical and machine learning models [27].

Furthermore, machine learning algorithms, including neu-
ral networks, are widely employed for detecting credit
card fraud. For example, Mienye and Sun [28] proposed
a CCFD method using hybrid feature selection based on
genetic algorithm and information gain, and the learning
algorithm was the extreme learning machine (ELM). The
genetic algorithm’s fitness function employed in the study
was the geometric mean, which was used to tackle the
class imbalance problem, leading to improved classification
performance. Similarly, Karthik et al. [29] proposed a hybrid
ensemble approach for credit card fraud detection to solve
the imbalance class problem. The study combined boosting
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and bagging methods, i.e., adaptive boosting (AdaBoost) and
random forest, respectively, achieving superior performance
compared to the individual classifiers.

Randhawa et al. [30] developed a hybrid ensemble based
on majority voting and adaptive boosting. They compared
the performance with some single classifiers, including
decision tree, support vector machines (SVM), and naïve
Bayes. The proposed hybrid method achieved the best
Matthews Correlation Coefficient (MCC) score of 1. Other
examples of ML algorithms in credit card fraud detection
include random forest [31], XGBoost [32], convolutional
neural network (CNN) [33], [34], RNN [35], LSTM [22],
[36], [37], GRU [38], and bidirectional gated recurrent unit
(BiGRU) [39].

Meanwhile, apprehending credit card scammers often
relies on the availability and quality of data. Law enforce-
ment agencies and financial institutions utilize transactional
data, along with advanced machine learning algorithms,
to identify suspicious patterns indicative of fraud [24].
Collaboration between banks and cybersecurity firms enables
real-time monitoring and alerts, which are crucial in catching
fraudsters. For instance, data-sharing agreements allow for
the aggregation of data across different banks, providing
a broader view of fraudulent activities. This collaborative
effort enhances the detection and prevention of credit
card fraud, thereby increasing the chances of apprehending
scammers [40]. Furthermore, anonymized and synthetic data
generation techniques can be used to augment training
datasets, allowing models to better generalize and detect
new types of fraud, ultimately aiding in the apprehension of
scammers.

B. RELATED REVIEWS
Several research works have examined fraud detection in
many reviews and surveys that have appeared in peer-
reviewed articles. For instance, Modi and Dayma [41]
presented reviews regarding the application of ML in
detecting credit card fraud. Lucas and Jurgovsky [42]
examined the difficulties in detecting credit card fraud. They
concentrated on methods proposed to handle the concept drift
and imbalance problems, which are two major challenges
faced when analysing credit card transaction data. Concept
drift occurs when the statistical properties of the data used
to train an ML model change over time. As a result, the
model may function differently than intended or produce
less accurate predictions. The review provided a detailed
discussion of concept drift, imbalance classification and
approaches to handling them.

Al-Hashedi and Magalingam [43] provided a broad review
of fraud detection, including insurance, credit card, and
other financial fraud. The review described the ML methods
used for the different fraud detection problems. Additionally,
datasets and performance evaluation metrics were discussed.
Also, the article lists the benefits and drawbacks of each ML
method. Nevertheless, the review is limited to the following

ML techniques: SVM, logistic regression, artificial neural
network, k-nearest neighbor (KNN), GA, Bayesian network,
decision tree, fuzzy logic, and hidden Markov model.

Popat and Chaudhary [44] examined several ML-based
CCFD studies, focusing on the difficulties encountered by
the ML models when detecting fraud. The methods studied
include logistic regression, SVM, decision tree, ANN, and
Bayesian Belief Network.. Ryman-Tubb et al. [45] conducted
a review and analysed current techniques for detecting card
fraud via transactional volumes. The methods reviewed
include SVM, KNN, CNN, MLP, decision tree, and random
forest. Pandey et al. [46] reviewed CCFD, focusing on the
different types and statistics of credit card fraud in India.

Alamri and Ykhlef [47] presented a survey of credit
card fraud detection studies that employed sampling tech-
niques after identifying the imbalance class problem as
the main challenge researchers face when building CCFD
models. The study considered oversampling techniques, such
as synthetic minority oversampling technique (SMOTE)
and Borderline-SMOTE, undersampling methods, such as
random undersampling (RUS) technique and Tomek links,
and hybrid sampling methods, such as SMOTE-ENN and
SMOTE-Tomek links. The study identified hybrid sampling
methods as more efficient in handling the imbalance class
problem in CCFD, while noting that oversampling techniques
can lead to overfitting and undersampling can discard
essential samples.

While several reviews examine credit card fraud detection
systems, most of them have a very narrow scope, such
as those focusing on sampling techniques [47], where the
authors specifically reviewed studies that aimed to solve
the imbalance problem in credit card fraud detection using
resampling methods, showing the importance of effective
data resampling. Meanwhile, some of the reviews have a
broad scope, including [41], [43], and [44]. While they
touched on vital areas of fraud detection, they have some
limitations. For instance, Modi and Dayma [41] focused on
performance evaluation of the machine learning algorithms
without delving deep into the inner workings of the algo-
rithms, Al-Hashedi and Magalingam [43] only surveyed the
period 2009 to 2019, and Popat and Chaudhary [44] reviewed
selected ML algorithms. Meanwhile, credit card fraud has
increased considerably in recent years, and considering the
robustness of deep learning methods in different areas,
it has become imperative to explore their applicability and
performance in credit card fraud detection. Therefore, this
study aims to review deep learning methods and their
performance in detecting credit card fraud. In addition, this
review also covers specific gaps in related reviews, such
as identifying and reviewing suitable evaluation metrics,
challenges in building CCFDmodels, and potential solutions.

III. CREDIT CARD DATASETS
Due to privacy and security concerns, credit card datasets
are not easily accessible. However, there are a few publicly
available credit card datasets that are used for fraud detection,
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and they are described in this section. Meanwhile, other
publicly available credit card datasets are not considered in
this section since they were not curated for fraud detection.
For example, the Taiwan and Australian credit card datasets
were designed for credit card default and risk prediction. The
fraud detection datasets include the following:

• European credit card dataset: The European credit card
dataset [48] has been widely used by researchers in
building robust CCFD models. This dataset contains
284,807 transactions from European countries, which
have been labeled as either normal or fraudulent. Each
transaction includes 28 features, such as time of the
transaction, amount, and various anonymized variables.
The dataset has become a benchmark for evaluating
the performance of fraud detection algorithms. Of the
284,807 transactions, only a tiny fraction (0.17%)
belong to the positive class (i.e., fraud transactions),
while the majority class (99.83%) represents the neg-
ative class or legitimate transactions. This imbalanced
distribution poses a significant challenge for many
machine learning algorithms and requires careful con-
sideration during model development. The dataset was
released in 2013, and while it is older, it remains relevant
for current research due to its comprehensive nature.

• Brazilian credit card dataset: This dataset was obtained
from a large Brazilian bank, and it contains 374,823
transactions [29]. The fraud samples comprise 3.74% of
the records. Each record in the dataset has 17 numerical
features, including merchant category code, post/zip
code of current and previous transactions, current
transaction amount, previous transaction amount, trans-
action type (card present), credit limit, card type (e.g.,
Mastercard, Visa, Diners), local/international transac-
tion, previous transaction fraud score, and time since
last transaction. Despite its age, this dataset provides
valuable insights into transaction patterns and fraud
detection.

• IEEE-CIS Fraud Detection Dataset: Released in 2019,
the IEEE-CIS dataset is one of the more recent publicly
available datasets [49]. It contains transaction data
provided by Vesta Corporation and includes a mix of
fraud and non-fraud transactions over a period. The
dataset consists of two files: one with identity infor-
mation and another with transaction details, comprising
approximately 590,000 transactions. Features include
device type, device information, card information,
transaction amount, and timestamp. The dataset is
highly imbalanced, with a small fraction representing
fraudulent transactions.

• PaySim Synthetic Dataset: PaySim is a synthetic dataset
generated using a simulation based on real transaction
data [50]. Although it is not real-world data, it was
created to mimic the transaction behaviors found in a
real financial institution. Released in 2017, the dataset
includes features such as transaction type, amount,
balance, and origin and destination accounts. PaySim is

valuable for its realistic simulation of fraud scenarios,
and it contains over 6 million transactions.

IV. OVERVIEW OF DEEP LEARNING
In this Section, an overview of DL is presented, including
a detailed description of the widely used DL architectures.
Deep learning, a branch of ML, maps input data to
new representations or generates predictions using neural
networks [51]. Meanwhile, neural networks consist of
interconnected neurons with weighted connections. The
neuron converts its input into a single output by summing its
weighted inputs using a non-linear activation function [52].
The network’s weight parameters are modified using gradient
descent optimisation, reducing the loss function, i.e., the
discrepancy between the expected and actual outputs. A neu-
ral network can have one or more hidden layers. A neural
network with one hidden layer is often referred to as a shallow
network, while a network with many hidden layers is called
a deep neural network (DNN). Figure 9 shows a general
shallow neural network (or simple ANN) and deep neural
network architectures, where the latter has multiple hidden
layers.

Furthermore, deep learning is a broader term used to
describe ML techniques that are based on neural networks
with many layers (deep architectures). Deep learning can
be unsupervised, semi-supervised, or supervised [54]. Deep
learning methods perform better than shallow machine
learning methods in most applications with big and high-
dimensional data [55], [56]. Additionally, the ability of deep
learning to achieve excellent performance when the data
increases sets it apart from conventional machine learning.
Because DL architectures can handle massive datasets to
create an efficient data-driven model, it is beneficial when
working with large volumes of data, such as credit card
transaction data [56], [57].

Deep-learning architectures include DNN, RNN, CNN,
transformers, and deep reinforcement learning. These DL
architectures have produced results that are as good as
human expert performance and sometimes outperforming
the human experts in domains such as image recognition,
natural language processing, computer vision, and speech
recognition. Meanwhile, RNNs are well-suited for sequential
data modelling, such as credit card transactions, and are a
significant focus of this study. Though RNNs can model
sequence data effectively, they are challenging to train due
to issues with vanishing and exploding gradients [58], which
led Hochreiter and Schmidhuber [59] to develop the LSTM
to tackle the vanishing gradients problem effectively. The
GRU, first presented in [60], manages the data and performs
LSTM-like tasks without requiring an additional memory
unit. The bidirectional variants of these networks are unique
variations that enable the system to forecast the current state
more accurately by utilising data from subsequent time steps
in addition to earlier time steps. The following subsections
present brief but concise overview of these deep learning
methods.
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FIGURE 1. Simple ANN vs deep learning [53].

A. MULTILAYER PERCEPTRON
Multilayer Perceptron is a feedforward artificial neural
network for supervised learning problems.MLP is considered
the foundation network of deep learning or deep neural
networks. It is a fully connected network comprising an input
layer where input data is received, one or more hidden layers
that serve as the neural network’s computational engine, and
an output layer that makes the prediction based on the given
inputs [61]. Furthermore, backpropagation, a supervised
learning algorithm, is widely utilised for training the MLP.
The backpropagation is considered as the primary building
block of network networks. Meanwhile, the widely used error
function in the MLP is the mean squared error, represented as
follows:

E =
1
2

n∑
i=1

|| pi − ti ||
2 (1)

where n represents the sample size, while pi and ti represent
the predicted and actual outputs for the i − th sample.
Meanwhile, the MLP network uses activation functions to
determine its output, and examples of the activation functions
include Softmax, rectified linear unit (ReLu), Sigmoid, and
hyperbolic tangent (Tanh) [62]. In training the MLP, different
optimisation techniques can be used, including stochastic
gradient descent (SGD) and adaptive moment estimation
(Adam). Lastly, the MLP hyperparameters mainly need to
be tuned for optimal performance, and these hyperparameters
include the number of neurons, hidden layers, and iterations.

B. CONVOLUTIONAL NEURAL NETWORK
The convolutional neural network is a well-known deep
learning architecture with wide applications in image
recognition [63], [64], [65], achieving state-of-the-art per-
formances, and has recently been applied in several cCCFD
models [66], [67]. It consists of neurons that have learnable
weights and biases. Meanwhile, the CNN’s hidden layers
are made up of convolutional, pooling, and fully connected
layers [68]. A CNN showing this multi-layer architecture
is shown in Figure 2. The convolutional layer, CNN’s core

component, uses learnable filters to compute a convolution
operation on the input. A set of feature maps is produced
after the convolution operation. The pooling layer is utilized
to reduce the feature maps’ spatial dimensions [69]. After
the feature extraction and downsampling by the convolutional
and pooling layers, respectively, their output is mapped by the
fully connected layers to the final output of the CNN [70]. For
a classification problem like CCFD, this mapping returns the
probability for each class (fraud or not fraud).

C. SIMPLE RNN
Conventional neural networks assume that each unit in the
input vectors is independent. As a result, sequential data
cannot be predicted by the typical neural network. However,
recurrent neural networks are built to have time series
memory, making them suitable for processing sequential
data [72]. They can effectively model temporal dependencies
in the data. Figure 3 shows a simple RNN architecture.

The autoregressive architecture of RNNs allows them to
maintain a hidden state that can capture information from
prior time steps. This feature is significant when working
with sequential data like credit card transaction records. In the
simple RNN implementation, the current hidden state ht is
computed according to:

ht = tanh(Uxt +Wht−1) (2)

where U is the matrix of trainable weights for the input xt ,
W is the matrix of trainable weights for the previous hidden
state ht−1, and tanh is the activation function applied element-
wise.

D. LONG SHORT-TERM MEMORY
The LSTM network is a well-known RNN variant that
was developed primarily to solve the vanishing gradient
issue associated with the simple RNN, which made it
challenging to identify long-term dependencies in the data.
LSTMs have unique gating mechanisms that enable them to
store information better over longer sequences, as shown in
Figure 4.
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FIGURE 2. CNN Architecture [71].

FIGURE 3. The architecture of Simple RNN.

FIGURE 4. Architecture of the LSTM network [73].

LSTM models have performed excellently in many time
series prediction applications, including credit card fraud
detection. It comprises three types of gates: forget, output,
and input [18]. An LSTM’s forget gate decides what data
from the previous hidden state should be kept or discarded.
During training, the LSTM can focus on relevant inputs
better and maintain a steady gradient by selectively ignoring
certain information. Only necessary information is added
to the cell state because the input gate regulates new data
flow into the cell state. The output gate then uses the
updated cell state and the input data to determine what
information should be transmitted to the next block. The
gating mechanism enables LSTM to extract the sequence’s

FIGURE 5. A stacked LSTM.

long-term properties. Assuming xt is the input, the following
functions are computed by the LSTM cell:

it = σ (Vixt +Wiht−1 + bi) (3)

ft = σ (Vf xt +Wf h(t−1) + bf ) (4)

c̃t = tanh(Vcxt +Wch(t−1) + bc) (5)

ct = ft ⊗ c(t−1) + it ⊗ c̃t (6)

ot = σ (Voxt +Woh(t−1) + bo) (7)

ht = ot ⊗ tanh(ct ) (8)

where it , ft , ct , and ot denote the input, forget, cell, and output
gates, respectively. Meanwhile, V∗, W∗, and b∗ represent the
learnable parameters, while h∗ represents the hidden state.
Furthermore, σ is the sigmoid activation function and ⊗

denotes the element-wise product [74].
The standard LSTM network is made up of one hidden

LSTM layer and a feedforward output later, but it can be
extended to have many hidden layers and every layer to have
several memory cells, and this is called a stacked LSTM
network. By stacking the LSTM hidden layers, the network
becomes deeper, which is important because the success
of deep learning models has been linked to how deep the
network is [75]. A general block diagram of a stacked LSTM
is shown in Figure 5.

E. GATED RECURRENT UNIT
The GRU was introduced by Cho et al. [60]. They also have
gating mechanisms that aid in managing the information
flow inside the network but without an output gate. A model
can be trained using the GRU to keep previous information
or remove irrelevant information. The GRU architecture is
shown in Figure 6. In contrast to LSTMs, GRUs have a
simpler architecture with just two gates: an update gate zt and
a reset gate rt . The reset gate regulates howmuch the previous
hidden state influences the current hidden state, whereas the
update gate controls how much the prior hidden state is
kept [76]. With a less complex and more computationally
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efficient network than LSTMs, GRUs are able to capture
long-term dependencies in sequential data more effectively
because of this gating mechanism. The functions that a GRU
cell computes are as follows:

rt = σ (Vrxt +Wrh(t−1) + br ) (9)

zt = σ (Vzxt +Wzh(t−1) + bz) (10)

c̃t = tanh(Vcxt +Wc(rt ⊗ ht−1) + bc) (11)

ct = (1 − zt ) ⊗ c(t−1) + zt ⊗ c̃t (12)

ht = ct (13)

where Wr , Wz, Vr , and Vz are weight matrices while br and
bz represent the bias vectors [77].

FIGURE 6. Architecture of the GRU network.

F. BIDIRECTIONAL LONG SHORT-TERM MEMORY
Unidirectional Long Short-Term Memory, or LSTM, only
stores past data since its inputs are limited to the past andmust
be fed in the correct order. On the other hand, a bidirectional
long short-term memory network (BiLSTM) combines two
hidden states to process the inputs in both forward and
backward directions, as shown in Figure 7. This feature
allows the network to store information from incoming
inputs, guaranteeing that information about previous and
upcoming states is always accessible. In other words,
a BiLSTM is precisely like an LSTM, except that it employs
historical and future data to compute the weights [17]. The
BiLSTM’s network structure comprises two LSTMs with
opposite information propagation directions. At each time
unit, the current pre-hidden state output and post-hidden
state output are derived and recorded. The BiLSTM’s output
value is then determined by connecting the two hidden states.
The mathematical formulation of the BiLSTM network is as
follows:

hft = LSTM (xt , h
f
t−1) (14)

hbt = LSTM (xt , hbt−1) (15)

ot = Wf .h
f
t +Wb.hbt + b (16)

where LSTM (·) represent the mapping of the LSTM layers,
while Wf and Wb are the weight matrix of the forward and
backward LSTM layers, and b is the output layer’s deviation
vector. Furthermore, BiLSTM models are substantially more
efficient in natural language processing and can outperform

conventional unidirectional LSTMs in time series predic-
tion [78]. Because of its dual model architecture, BiLSTMs
have the drawback of requiring longer training times.

FIGURE 7. The architecture of the BiLSTM network [78].

G. BIDIRECTIONAL GATED RECURRENT UNIT
Bidirectional gated recurrent unit (Bi-GRU) is a variant
of the popular GRU recurrent neural network designed to
improve temporal modelling accuracy. It is an example
of a bi-directional RNN, meaning it can process input
sequences in both forward and backward directions. In recent
years, Bi-GRU has become a popular choice for temporal
modelling in deep learning applications. It is an efficient
model that combines forward and backwards information
propagation to improve accuracy when predicting future
events or sequences. Its main strengths over GRU are its
ability to capture bidirectional dependencies and its improved
performance in tasks involving long-term dependencies.
In the Bi-GRU implementation, the input sequences are
computed in both directions using two sublayers, modelling
forward and backward hidden sequences, which are com-
bined to obtain the current hidden state ht and output ot of the
network [79]. The mathematical formulation is represented
by the following:

hft = GRU (xt , h
f
t−1) (17)

hbt = GRU (xt , hbt−1) (18)

ht = Wf .h
f
t +Wb.hbt ) (19)

ot = φ(W oht ) (20)

where hft and hbt represent the forward and backward
hidden sequences, the GRU function denotes the nonlinear
transformation of the input, W o represents the weight
coefficient in the network’s hidden and output layers, and φ

denotes the activation function applied to the output layer.

H. TRANSFORMER MODELS
While traditional deep learning architectures, such as CNNs,
LSTM, and GRU, have been widely used in fraud detection
and have achieved excellent performance, they have limita-
tions, particularly in capturing long-range dependencies and
processing large-scale datasets efficiently. Transformer mod-
els have recently gained attention in the field of credit card
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fraud detection due to their robust performance in sequence
modelling and anomaly detection tasks. Unlike traditional
RNNs and CNNs, Transformers employs a self-attention
mechanism that allows them to weigh the importance of
different parts of an input sequence dynamically. The core
component of a Transformer model is the self-attention
mechanism, which computes attention scores for each pair of
tokens in the input sequence [80]. The attention mechanism
is defined as follows:

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V (21)

where Q (queries), K (keys), and V (values) are the input
matrices, and dk is the dimension of the keys. The softmax
function ensures that the attention scores sum to one,
highlighting the most relevant tokens [81]. Meanwhile, the
Transformer model uses multiple self-attention heads to
capture different aspects of the relationships within the input
sequence:

MultiHead(Q,K ,V )=Concat(head1, head2, . . . , headh)WO

(22)

where each attention head headi is computed as:

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (23)

where WQ
i , W

K
i , and WV

i are learned projection matrices,
and WO is the output projection matrix. Furthermore, Trans-
formers can be pre-trained on large datasets and fine-tuned
on specific fraud detection tasks, leveraging transfer learning
to improve performance. The pre-training phase typically
involves learning general representations from a large corpus
of transaction data, while the fine-tuning phase adapts these
representations to the specific characteristics of fraudulent
transactions.

Ltotal = Lpre-train + λLfine-tune (24)

where Lpre-train is the loss during the pre-training phase,
Lfine-tune is the loss during the fine-tuning phase, and λ is a
weighting factor.

V. PERFORMANCE EVALUATION METRICS
An essential step in ensuring effective credit card fraud
detection is the performance metrics used to assess the
model’s prediction performance. This section discusses
metrics that are widely applied and their suitability in
credit card fraud detection. The confusion matrix provides a
summary of the binary classification results, and it is shown
in Table 1, indicating true Positive (TP), true negative (TN),
false position (FP), and false negative (FN).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(25)

ErrorRate = 1 − Accuracy (26)

When assessing the performance of ML models, the
most commonly utilised measures are accuracy and error

TABLE 1. Confusion matrix.

rate [82], [83], i.e., Equation 25 and Equation 26, respectively.
However, when dealing with CCFD, which is mostly an
imbalance classification task, neither is sufficient because the
majority class, or the non-fraud class, dominates the final
value. Hence, a naïve classifier can achieve 99% accuracy
by labelling all samples as not fraud when given input data
where the positive class distribution makes up only 1% of the
data set. There would be no actual benefit to such a model.
Other commonly used metrics are sensitivity, specificity, and
precision, and their mathematical formulations are shown
below:

Precision =
TP

TP+ FP
(27)

Sensitivity =
TP

TP+ FN
(28)

Specificity =
TN

TN + FP
(29)

Precision represents the fraction of positively predicted
samples that are classified correctly. Because precision
takes into account the number of negative instances that
are wrongly predicted as positive, it is sensitive to class
imbalance [84], [85]. However, precision on its own is
inadequate as it does not reveal how many positive instances
were mistakenly classified as negative. Sensitivity, also
known as the true positive rate (TPR), quantifies the
proportion of the positive instances that the classifier
accurately predicted to be positive. The class imbalance has
no effect on sensitivity since it solely depends on the positive
class. Meanwhile, the number of negative instances that are
incorrectly classified as positive is not taken into account by
sensitivity. Specificity, also called true negative rate (TNR),
quantifies the proportion of the negative instances that were
classified correctly. Furthermore, there are other metrics
that tend to combine earlier discussed metrics to obtain a
more comprehensive evaluation of the model performance,
including F-measure, G-mean, and balance accuracy. Their
mathematical formulations are shown as follows:

F −Measure =
2XPrecisionXSensitivity
Precision+ Sensitivity

(30)

G−Mean =
√
SensitivityXSpecificity (31)

BalancedAccuracy =
Sensitivity+ Specificity

2
(32)

F-measure is the harmonic mean of sensitivity and preci-
sion. It presents a way to combine sensitivity and precision
into one metric that captures the properties of both metrics.
The geometric mean (G-mean) combines specificity and
sensitivity into one metric that considers a balance between
bothminority andmajority class performances. Like G-mean,
the balanced accuracy metric computes a metric sensitive to
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the minority class instances by combining TPR and TNR.
When evaluating the performance of classifiers trained with
imbalanced data, F-measure, G-Mean, and balanced accuracy
are better metrics compared to accuracy and error rate [86].

Furthermore, the receiver operating characteristic (ROC)
curve, the area under the ROC curve (AUC), and the
precision-recall curve are other important metrics. The ROC
curve is a plot of the true positive rate versus the false positive
rate at various classification thresholds, and it demonstrates
the ability of a classifier to distinguish between the positive
and negative classes [65]. The AUC is a summary of the ROC
curve. It has a value range of 0 to 1, with 1 indicating that all of
the classifier’s predictions are accurate and 0 indicating that
all of the predictions are incorrect. The precision-recall (PR)
curve demonstrates the tradeoff between precision and recall
at various thresholds [87]. Since high precision indicates a
low false positive rate, while high recall indicates a low false
negative rate, an area under the precision-recall curve with a
high value indicates high recall and precision values.

In imbalance classification tasks, such as credit card
fraud detection, the ROC curve can be misleading because
a small number of correct or wrong classifications can
lead to a significant change in the ROC curve or AUC
value. Meanwhile, the PR curve focuses on the minority
class, making it a more suitable metric for imbalance
classification [88]. Hence, the PR curve, together with
other metrics previously discussed, is recommended for
imbalanced credit card fraud detection.

VI. DEEP LEARNING APPLICATIONS IN CREDIT CARD
FRAUD DETECTION
Benchaji et al. [23] developed a CCFD model via sequential
modelling of the credit card data using deep LSTM neural
networks and attention mechanisms. The proposed approach
takes into account the sequential nature of the credit card data
and enables the classifier to determine which transactions
in the input sequence are the most significant. Specifically,
in the proposed approach, the LSTM was used to ensure
sequential modelling of the data, the attention mechanism
was employed to improve the performance of the LSTM, and
the uniform manifold approximation and projection (UMAP)
was introduced to select the most significant attributes. The
models yielded good performancewith an accuracy of 96.7%.

Similarly, Femila et al. [89] developed a credit card fraud
detection model with the aim of lowering losses caused by
credit card fraud. This study aimed to identify credit card
fraud using an LSTM model. An attention mechanism was
also incorporated to boost the LSTM’s performance since
models with such a structure have shown to be effective
in sequence modelling. Other classifiers like SVM, naive
Bayes, and ANN were contrasted with the LSTM, and the
experimental results showed that the LSTM yielded robust
outcomes, including an accuracy of 100%.

Najadat et al. [90] developed a model based on BiLSTM
and BiGRU with MaxPooling layers. Meanwhile, the dataset
was preprocessed using three resampling techniques: random

oversampling, random undersampling, and SMOTE. The
study compared the performance of the deep learning-based
classifier and other ML classifiers, including logistic regres-
sion, random forest, voting, naïve base, AdaBoost, and
decision tree. When random oversampling was applied, the
proposed BiLSTM-BiGRU obtained excellent performance,
with an AUC of 91.4%.

Forough and Momtazi [91] developed a credit card fraud
detection model that considers the sequential structure of
credit card transactions. The method used LSTM models
as base classifiers in an ensemble implementation, where a
feed-forward neural network (FFNN) was used as the voting
mechanism. The proposed LSTM ensemble outperformed
other ML and DL techniques when experimented on two
credit card datasets. Specifically, the proposed ensemble
achieved an AUC of 0.879 and 0.88 on the European and
Brazilian datasets.

Aurna et al. [92] proposed a federated learning (FL)
based CCFD approach in order to protect the privacy of
sensitive credit card data. This allows the model to be trained
without exposing credit card information to third parties on
the cloud. The study considered three deep learning models
based on LSTM, MLP, and CNN. The influence on the
conventional centralised and FL systems is then examined
using four different sampling procedures to address the data
imbalance problem. The proposed approach was compared
with other well-performing methods in the literature, and
the experimental results show that the proposed method
obtains excellent performance with accuracies for CNN,
MLP, and LSTMmodels being 99.51%, 98.77%, and 98.20%,
respectively.

Xie et al. [93] developed a time-aware attention-based
interactive LSTM (TAI-LSTM) method for credit card
fraud detection. The method contains two time-aware gates,
a time-aware attention module and an interaction module.
The approach was built to capture the customer’s long
and short-term spending behaviour and detect behavioural
changes over time. The time-aware attention model aims to
extract behavioural information from the sequential credit
card data, while the interactive module aims to acquire
more thorough and logical representations. The findings
demonstrate that the learned representation can accurately
differentiate between fraudulent and genuine behaviours and
that the suggested approach outperforms similar methods
with a sensitivity of 99.6%.

Sehrawat and Singh [21] used an auto-encoder with
LSTM and GRU neural networks to detect credit card
fraud. In the proposed approach, the autoencoder performed
representation learning from the data, which was achieved
by excluding the class labels. The auto-encoder’s output
combined with the class labels were supplied as input to the
LSTM and GRUmodels to detect fraud. The LSTM obtained
a classification accuracy of 99.1%.

Ajitha et al. [94] compared the performance of a CNN
model with other ML algorithms, including XGBoost, SVM,
random forest, KNN, logistic regression, and decision. The
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CNN model consists of one flattened layer, one fully
connected layer, and two convolutional layers with the
ReLu activation function. The experimental results indicated
that the CNN obtained a classification accuracy of 97.2%,
outperforming the other classifiers.

Yousuf Ali et al. [95] developed DLmodels combined with
the SMOTE oversampling approach to forecast credit card
fraud. The paper employed three widely used deep learning
architectures: LSTM, CNN, and a DNN. The experimental
results showed that the CNN model achieved a significant
increase in accuracy after the SMOTE-based resampling,
especially in detecting fraud instances. The CNN obtained
an accuracy of 99.9%. The study concluded that the CNN
architecture can aid in reducing financial losses due to credit
card fraud. Gambo et al. [19] also employed CNN for credit
card fraud detection, combining it with the adaptive synthetic
(ADASYN) sampling method. After the resampling of the
credit card dataset, the CNN model achieved an accuracy
of 99.8%.

Mizher and Nassif [96] presented credit card fraud
detection models based on the convolutional neural network
technique and two machine learning algorithms: SVM
and random forest. Using highly skewed real-world credit
card data, the models were assessed and contrasted, and
the random forest achieved the best performance with
an accuracy of 99.7%. Meanwhile, the CNN obtained an
accuracy of 93.5%.

Furthermore, recent advancements in deep learning have
seen the rise of Transformer-based models, which have
revolutionized various fields, including natural language
processing and, more recently, fraud detection. Transformers,
such as the Bidirectional Encoder Representations from
Transformers (BERT) model and its variants, have demon-
strated exceptional performance in sequence modelling and
anomaly detection tasks due to their ability to capture
long-range dependencies and contextual information effec-
tively. The application of Transformer models in credit card
fraud detection offers several advantages over traditional
DL architectures like LSTM and CNN. For example, their
self-attention mechanism allows them to focus on the
most relevant parts of a transaction sequence, improving
the accuracy of fraud detection. Studies such as those
of Igbal and Amin [97] and Tang and Liu [98] have
explored the application of Transformers in credit card fraud
detection, showing promising results, with accuracy of 100%
and 98.98%, respectively. Table 2 summarises the deep
learning methods reviewed in this study, comparing their
performances based on the accuracy metric.

VII. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we analyze the performance of the MLP
and deep learning architectures trained with the European
credit card dataset. The DL techniques include CNN, simple
RNN, LSTM, GRU, BiLSTM, and BiGRU. To ensure a fair
comparison, the models were trained using the parameters
listed in Table 4. These parameters were chosen based on

their widespread use in the literature and their effectiveness
in similar tasks. To ensure robust evaluation, the models
were trained and validated using k-fold cross-validation.
Specifically, we used 5-fold cross-validation, where the
dataset was randomly partitioned into five equal-sized
subsets. Each subset was used as a validation set once,
while the remaining four subsets were used for training.
This process was repeated five times, and the performance
metrics were averaged over the five folds to provide a reliable
estimate of model performance.

Table 4 and Figure 8 show the performance of the various
models in terms of accuracy, sensitivity, specificity, precision,
and F-measure. Additionally, Figure 9 shows the ROC curves
of the models. The results reveal interesting insights into the
behaviour of themodels, especially regarding the near-perfect
accuracy and specificity values compared to the relatively
lower sensitivity and F-measure.

FIGURE 8. Performance comparison.

FIGURE 9. ROC curves of the various models.

Firstly, all the models performed well in classifying the
majority class (non-fraud samples), indicated by the high
accuracy and specificity scores. Specificity and accuracy
metrics reflect the model’s performance on the majority
class samples. Precisely, specificity measures the correctly
classified non-fraud samples or true negative rate, which
was very high due to the high number of negative samples.
The European credit card dataset is highly imbalanced,
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TABLE 2. Summary of the DL-based credit card fraud studies.

TABLE 3. Parameters of the various deep learning models.

TABLE 4. Performance evaluation of the various classifiers.

with most records being legitimate and only a few being
labelled as fraud. Therefore, training the models on such an
imbalanced dataset ensured they were efficient at classifying
themajority class samples, contributing to their high accuracy
and specificity values,

However, the GRU model achieved superior performance
across the various metrics, including having the best sensitiv-
ity. The GRU is known for its effectiveness in capturing tem-
poral dependencies with lesser parameters compared to the
LSTM, a possible reason for the high scores. Meanwhile, the

high sensitivity value demonstrates that the GRU is relatively
better at identifying fraud instances, which is crucial in credit
card fraud detection engines. Also, its balance between preci-
sion and sensitivity, as indicated in the F-measure of 0.8254,
implies that the GRU efficiently manages the trade-off
between detecting fraud instances and minimizing false
positives.

Furthermore, the MLP model achieved good performance,
especially with regard to accuracy and specificity. However,
its sensitivity indicates a limitation in predicting fraud cases
compared to the GRU. Meanwhile, Simple RNN and CNN
seem to have the lowest performance compared to the
other models. The RNN achieved the least F-measure of
0.772. RNNs are inefficient when faced with long-term
dependencies due to the vanishing gradient issue, which
could explain the poor performance. The CNN obtained an
F-measure of 0.780, which is better than the RNNs but less
than the remaining models. Lastly, the discrepancy between
the high performance in the majority class samples and
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the poor performance in the minority class (fraud) samples
can be mainly attributed to the imbalanced credit card
data. In order to enhance the performance of the minority
class, researchers can explore methods such as oversampling,
ensemble learning, and cost-sensitive learning that penalize
wrong predictions in the minority class more than the other
class.

VIII. CHALLENGES AND POTENTIAL SOLUTIONS
Researchers and practitioners usually encounter challenges
when developing deep learning-based credit card fraud
detection models. In this section, an attempt is made to
discuss some of these challenges and potential solutions.

A. CLASS IMBALANCE
In binary classification problems, such as credit card fraud
detection, a class imbalance occurs when one class (also
called the majority class) significantly outnumbers the other
class, known as the minority class. This results in a skewed
dataset, making the learning process challenging for machine
learning algorithms. Most credit card transaction data have
a class imbalance, making it challenging to identify fraud.
Meanwhile, the minority class (fraud samples) is more
important than the majority class, and wrongly predicting
a fraud case as legitimate has a higher cost than predicting
a legitimate transaction as fraud [99]. Also, most machine
learning algorithms used for classification tasks assume that
there are equal amounts of samples in each class.

Furthermore, class imbalance can also lead to biased
and poor results. Therefore, addressing this problem is
essential when building ML and DL models. Some meth-
ods to address the imbalance class problem include data
resampling techniques like oversampling and undersampling,
ensemble methods that can handle imbalanced datasets,
and cost-sensitive learning algorithms that assign different
weights to minority and majority classes [100]. However,
when building deep learning models for credit card fraud
detection, the following approaches have attracted a lot of
attention from the DL community:

• Loss function adaptation: This can be used to make deep
learning methods learn effectively from imbalanced
data. It involves changing the loss function of the DL
model to make it insensitive to the skewed distribution.
The loss function adaptation is an algorithm-level
modification and has been successfully applied in
several DLmodels [101], [102]. This approach is similar
to cost-sensitive learning as it is based on the premise
that instances should not be treated equally during
training and that errors in minority class instances are
costlier than those in the majority class and, hence,
should be penalised more severely [103]. Based on this
idea, Wang et al. [104] and Lin et al. [105] proposed
mean false error and focal loss, two robust adapted
loss functions for deep learning modelling. Other loss
functions include generalised cross-entropy loss [106]

and class-balanced loss [107], which were introduced
more recently.

• Hybrid Models: Hybrid models that combine deep
learning algorithms with traditional machine learning
algorithms that are better suited for imbalance clas-
sification, such as decision trees and random forests,
have been studied recently and have achieved excellent
results. For example, Dar et al. [108] developed a
hybrid model, combining DNN and XGBoost and
Semwal et al. [109] combined CNN with LSTM and
GRU. The performance of hybrid methods has been
shown to be superior to standard DL classifiers [110].

• Ensemble methods: Ensemble learning can be employed
in combining deep learning models. Additionally, the
models can be trained on different resampled data.
Ensemble techniques such as EasyEnsemble [111] and
Balanced Bagging [112] are effective in creating ensem-
ble models that are well-suited to handle imbalanced
data.

B. LACK OF SUFFICIENT DATA
At the moment, there are not enough real-world credit card
datasets to create reliable models for a variety of reasons,
mostly pertaining to privacy concerns [113]. Also, most
available data are unlabelled. Hence, it takes extra effort
to label the data. Therefore, a frequently used technique
to identify fraud is anomaly detection. However, anomaly
detection depends on user behaviour, and any deviation can
be interpreted as fraud. Systems that detect anomalies rely on
users’ past behaviour, which has limitations.

A potential approach used to solve this problem includes
instance generation using DNNs: Generative models based
on deep neural networks can be adapted to function similarly
to oversampling methods, where artificial instances can be
effectively introduced into a particular embedding space by
an encoder/decoder pair. To learn the latent distribution of
data, researchers have successfully used generative adversar-
ial networks (GANs), variational autoencoders (VAEs), and
Wasserstein autoencoders (WAEs) [114]. These methods can
be expanded to generate more data for CCFD modelling.

C. INTERPRETABILITY
Deep learningmodels are often considered black-boxmodels,
making it challenging to interpret their results. Understanding
why a transaction was classified as fraud or legitimate can be
difficult. Meanwhile, achieving complete interpretability in
DL models can be difficult. The following techniques can be
employed to enhance the transparency and understandability
of the deep learning model’s decision-making process,
making it more useful in practical applications, such as credit
card fraud detection.

• Regularization Techniques: Applying regularization
techniques, such as L1 regularization that encourages
sparsity in the model’s parameters, could result in
simpler and more interpretable models [115].
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• SHapley Additive exPlanations (SHAP): This method
uses Shapley values from game theory in explaining a
given prediction. The SHAP values assign contributions
to every feature used in making the prediction [116].
It provides a method to understand the significance of
each feature in the decision-making process of the deep
learning model.

• Model Distillation: This technique involves transferring
knowledge from a large model to a smaller model [117].
Examples of large models include deep learning and
ensemble learning-based models. Using this approach,
a simpler and interpretable model can be trained on
the predictions of the DL model. Smaller models, such
as decision trees and logistic regression, are easy to
interpret.

D. DATA DRIFT
Many ML models are built on the assumption that the data
distribution used in training and testing remains stationary.
Data drift, also known as covariate shift, occurs when the
distribution of the data used in training the model differs
from the distribution of the data on which the model is
being applied [118]. It is a common problem in many real-
world systems, such as credit card fraud detection. Therefore,
credit card data needs to be monitored regularly for changes
in the statistical properties, and this can be achieved via
visualisation, statistical tests, and observing key metrics.
Models trained on older data may not effectively detect new
fraud patterns. Some of the methods used in solving this
problem include:

• Incremental Learning: Incremental learning is an
approach used to update a model with the latest data
while retaining the learned knowledge from the previous
training. This ensures the entire model is not retrained,
and methods such as transfer learning, online learning,
and fine-tuning can be used to achieve such incremental
learning [119].

• Adaptive Learning Rate: The learning rate of deep
learning models can be adjusted during training to adapt
to changes in the data distribution [119]. Specifically,
lower learning rates can be used to ensure the model
converges to a new distribution without forgetting the
previous data.

• Model retraining: A well-known method for handling
data drift is retraining the DLmodel with new data. Such
retraining can be automated and set at regular intervals
or manually triggered when sufficient drift is observed.

• Ensemble modelling: Ensemble models can be used
to combine the predictions from multiple DL models,
where one or more models can be used to determine
data drift and modify the ensemble model’s composition
accordingly [120].

E. PRIVACY AND SECURITY CONCERNS
Using credit card transaction data containing personal and
financial information raises concerns about data breaches and

unauthorized access. To address these concerns, researchers
and practitioners must implement robust security measures,
such as data anonymization and encryption, to ensure
the confidentiality and integrity of the data [121]. Data
anonymization involves removing or obfuscating personally
identifiable information from the data while maintaining the
core patterns and characteristics necessary for training the
deep learningmodels. It can be achieved using generalization,
suppression, or perturbation techniques.

Generalization involves substituting specific values with
more general categories or ranges [122]. For example,
instead of using exact transaction amounts, the data can be
grouped into ranges, such as <USD20, USD20-USD50, and
USD50-USD100, etc., preserving the overall distribution of
transaction amounts while protecting individual transaction
details. Suppression entails removing sensitive attributes,
such as credit card numbers and the cardholder’s name,
ensuring that no personal information is accessible. Another
method for anonymizing sensitive financial data is perturba-
tion. It entails adjusting the values of particular attributes or
introducing random noise [123]. In perturbation, transaction
amounts can be perturbed by adding a small random value to
each amount, making it difficult to determine the exact values
while maintaining the data’s statistical properties.

In addition to data anonymization, encryption is crucial
in ensuring the security of sensitive financial data used for
training deep learning models. Encryption entails converting
the data into a format only accessible with the correct
decryption key [124]. It ensures that the data will remain
unreadable and unusable even if it is intercepted or viewed
without authorization. Asymmetric and symmetric encryp-
tion are two examples of the different encryption methods
that can be used. Asymmetric encryption employs two keys:
a public key for encryption and a private key for decryption.
Symmetric encryption uses a single key for both encryption
and decryption.

F. ETHICS AND FAIRNESS
When constructing credit card fraud detection models using
deep learning techniques, it is crucial to ensure that these
models do not exhibit bias towards particular individuals
or groups based on factors such as ethnicity, gender,
or socioeconomic status [125]. One challenge in achieving
fairness is the potential for bias in the training data. If the
training data is skewed towards specific groups, the resulting
model may likewise demonstrate bias in its predictions.
For instance, if the majority of the training data consists
of fraudulent transactions from a particular demography,
the model can unfairly identify transactions from that
demographic as fraudulent, resulting in biased treatment.

To address this challenge, researchers and practitioners
must carefully curate the training data to ensure the inclusion
of a wide range of demographic groups. This can be
accomplished by gathering data from diverse sources and
ensuring that the data is evenly distributed among different
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groups. In addition, methods such as data augmentation can
be employed to artificially enhance the presence of under-
represented groups in the training data. Another approach
to addressing bias in deep learning models is the utilization
of fairness metrics and algorithms. Fairness metrics measure
the degree of fairness or bias in the predictions made by
the model, whereas fairness algorithms aim to reduce any
identified bias [126]. For example, one approach involves
modifying the decision threshold of the model according
to various demographic groupings to provide equivalent
sensitivity to fraudulent transactions across all groups.

G. ADAPTABILITY AND SCALABILITY
Another challenge is the adaptability and scalability of deep
learning-based credit card fraud detection models. Given the
ever-changing nature of fraud, it is imperative for the models
to be adaptable and have the ability to identify new and
emerging patterns of fraudulent activity [127], [128]. One
challenge in achieving adaptability is the need for continuous
model updates and retraining. Conventional machine learning
models sometimes necessitate manual feature engineering
and the retraining of models, which can consume significant
time and resources. However, deep learning models have
the ability to automatically learn and adapt to new patterns
without requiring user intervention. Meanwhile, this requires
access to up-to-date and relevant data for training.

Possible solutions to this problem include the use of
techniques such as transfer learning and online learning.
Transfer learning is utilising pre-trained deep learningmodels
trained with large-scale datasets and fine-tuning them for the
specific objective of credit card fraud detection. It enables
the model to leverage the information and patterns acquired
from the large datasets while adjusting to the particular
fraud detection objective. Online learning enables the model
to consistently update and acquire knowledge from newly
accessible data. Online learning allows for incremental
modifications based on new data rather than retraining
the entire model from scratch [129]. This makes it more
adaptable and scalable in detecting new fraud patterns.
Furthermore, a vital aspect of the adaptability and scalability
challenge pertains to the computational resources necessary
for the training and deployment of deep learning models.
Organisations with limited resources or infrastructure often
face challenges while training deep learning models due to
the substantial data and processing power requirements.

Lastly, to tackle this issue, academics can investigate
methodologies like distributed computing and cloud com-
puting. Distributed computing entails the distribution of
computational tasks among numerous machines or nodes,
enabling accelerated and more efficient training of deep
learning models. Distributed computing can be achieved
by utilising parallel processing and distributed training
frameworks [130]. Cloud computing enables users to access
flexible and readily available computing resources via the
internet. Organisations can optimise the training and deploy-

ment of DL models by utilising cloud computing systems,
which enable them to flexibly adjust their computational
resources according to their requirements.

IX. DISCUSSIONS AND FUTURE RESEARCH DIRECTIONS
Deep learning models have significantly transformed numer-
ous domains, including fraud detection. This research con-
cisely describes the main deep learning-based architectures
used for credit card fraud detection, including simple RNN,
LSTM, GRU, BiLSTM, BiGRU, and CNN. The effectiveness
of these models in real-world situations, particularly in the
dynamic credit card fraud detection field, varies. Firstly,
MLP has gained extensive usage in diverse applications due
to its ability to learn complex patterns and make accurate
predictions. However, its effectiveness in credit card fraud
detection needs has been examined and found to be limited.
The fundamental reason for this is that MLP does not possess
the ability to capture temporal dependencies and sequential
patterns, which are essential in detecting fraudulent activities.

On the other hand, initially designed for image analysis,
CNN has demonstrated encouraging results in detecting
credit card fraud, as shown in Table 2. By considering
the transaction data as a two-dimensional image, CNN can
effectively extract relevant features and identify fraudulent
patterns. However, it is also limited with regard to credit
card fraud detection. Furthermore, simple RNN, LSTM,
GRU, BiLSTM, and BiGRU have been explored for
credit card fraud detection. Simple RNN, although capable
of capturing temporal dependencies, has struggled with
long-term dependencies, limiting its effectiveness in this
domain. Conversely, LSTM has demonstrated exceptional
performance due to its ability to retain information over
long sequences, making it well-suited for credit card fraud
detection [18]. GRU, a variant of LSTM, has also shown
promising results, combining the ability to retain information
with a simplified architecture. BiLSTM and BiGRU, which
incorporate bidirectional processing, have been found to
further improve the accuracy of fraud detection models by
considering both past and future contexts.

Several key conclusions can be drawn from this research.
Firstly, deep learning architectures play a crucial role in
efficiently detecting credit card fraud. The performance of the
models differs with changes in the distribution of the samples.
For example, models trained with balanced datasets achieve
more robust performance than those trained with imbalanced
data. Therefore, effective data resampling and engineering
should be considered before model training. Also, optimizing
deep learningmodels to consider the imbalanced nature of the
data is beneficial.

Secondly, though several deep learning-based architectures
have been employed for detecting credit card fraud, the
following architectures have been widely utilized: CNN,
LSTM, GRU, and other RNN variants. Even though they can
be computationally expensive compared to traditional ML
algorithms, they usually achieve higher performance. Thirdly,
different research works have used single DL classifiers,
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achieving excellent classification performance. However,
some researchers have explored hybrid deep learning models,
which perform significantly better than single deep learning
models. Also, the ensemble of deep learning models has led
to superior performance compared to single deep learning
models. However, it increases the computational complexity
of the model.

Furthermore, future research in credit card fraud detection
using deep learning can explore several promising avenues
to enhance the robustness, accuracy, and applicability of
detection systems. One critical area is the development
and implementation of hybrid and ensemble deep learning
architectures. Combining different models, such as LSTM
with CNN or GRU with Transformer models, can leverage
the strengths of each architecture to improve overall perfor-
mance. These hybrid models can potentially provide more
accurate detection by capturing both temporal dependencies
and spatial features of transaction data. Additionally, ensem-
ble methods, which integrate multiple models’ predictions,
can enhance the system’s robustness by reducing the variance
and bias associated with individual models.

Moreover, while hybrid and ensemble models hold great
promise, their practical deployment often faces challenges
related to computational complexity and resource require-
ments. Future research can focus on optimizing these models
to make them more efficient and scalable for real-world
applications. Techniques such as model pruning, quantiza-
tion, and the use of efficient neural network architectures
can significantly reduce computational overhead without
sacrificing accuracy. Investigating the trade-offs between
model complexity and performance and developing adaptive
models that can dynamically adjust their complexity based
on the available computational resources will be crucial for
deploying these advanced systems in operational environ-
ments.

Another important direction for future research is enhanc-
ing the interpretability and explainability of deep learning
models in fraud detection. As these models become more
complex, understanding their decision-making processes
becomes more challenging, yet it is essential for gaining trust
from users and meeting regulatory requirements. Research
should focus on developing methods that can provide clear
and actionable insights into how models make predictions.
Techniques like attention mechanisms, SHapley Additive
exPlanations, and layer-wise relevance propagation can
help explain the inner workings of deep learning models.
Additionally, integrating these interpretability methods with
real-time fraud detection systems will ensure that finan-
cial institutions can respond quickly and transparently to
fraudulent activities, thereby improving the overall security
and trustworthiness of credit card transaction systems.

X. CONCLUSION
Deep learning methods have been widely applied in different
fields due to their robustness and performance. Recently,
deep learning architectures have produced exceptional

performance in credit card fraud detection. This paper
presents a comprehensive review of the current state of
deep learning applications in credit card fraud detection,
highlighting the primary challenges and potential solutions.
The study provides valuable insights for researchers and
practitioners and can guide the development of more robust
and efficient fraud detection models, ultimately contributing
to more secure financial transactions and reducing the
economic impact of fraud.
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