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ABSTRACT Droughts typically develop gradually, and early prediction is crucial for the government to
formulate effective mitigation plans. Our approach does not involve predicting specific drought index values.
Instead, we forecast whether a particular year will experience drought. Insufficient investigation has been
carried out regarding variations in additional climatic indicators like shortwave radiation, wind speed, sea
level, and pollution in the context of droughts in the state of Tamil Nadu, India. In the study period taken
from 1995 to 2020, only three years (2002, 2009, and 2017) experienced drought occurrences, resulting in
an imbalanced dataset. To enhance the classification performance of this imbalanced dataset, a weighted
dataset is constructed using a feature weighting approach known as the Single Objective Scorer (SOS) based
Multi-objective PSO(MPSO) in conjunction with the Gradient Boosting Classifier. The proposed model
facilitates objective-based multi-population formation and neighborhood learning. Precision and recall are
crucial metrics, particularly in measuring imbalanced dataset classification performance. The application
of multi-objective optimization techniques helps to strike a suitable balance between precision and recall.
In addition to the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration
Index (SPEI), 14 climatic indicators based on land, atmosphere, and sea are utilized. By employing the
weighted dataset created with SOS-based MPSO, a significant improvement in recall value of 0.81 is
achieved. Based on the weights assigned to the features, it is identified that the Mean Sea Level of the
Arabian Sea and CO2 are significant indicators for predicting meteorological drought. The Explainable AI
techniques SHAP and LIME are employed for interpreting the drought prediction model, providing insights
into its workings.

INDEX TERMS Particle swarm optimization algorithm, multi-population, climatic indicators, imbalanced
dataset, pollution, mean sea level.

I. INTRODUCTION
This section provides an introduction to various concepts
utilized in this work, including feature weighting, the
neighborhood learning strategy of the Particle Swarm Opti-
mization (PSO) algorithm, the precision-recall trade-off,
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multi-objective optimization, drought indices, and climatic
indicators.

A. FEATURE WEIGHTING
Feature weighting refers to the determination of the sig-
nificance of features in the classification process [1]. The
magnitude of a feature indicates its level of influence on
classification performance, whether it is high or low. Various
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methods exist for feature weighting, including those based
on the Pearson correlation coefficient, Fisher coefficient,
Information theory, and decision tree ranking. In addition,
the Intelligent Minkowski k-means (imwk-means) approach
is employed to weigh features for selection purposes. When
multiple weights are assigned to a single feature, either
the maximum or the mean value is typically chosen. Fea-
ture weighting methods can be categorized according to the
learning approach, techniques utilized, and the presence of
feedback [2].

B. STANDARD PSO ALGORITHM
The standard Particle Swarm Optimization (PSO) algorithm
was originally introduced by Kennedy and Eberhart in 1995
[3]. Since then, numerous researchers have made advance-
ments to the algorithm, making it widely applicable across
various fields [4], [5]. The formulas for updating particle
positions and velocities are presented in Equations 1 and 2.

X (t + 1) = X (t) +V (t + 1) (1)

V (t + 1) = wi ∗ V (t) +c1 ∗ rand() ∗ (Xpbest − X (t)

+ c2 ∗ rand() ∗ (Xgbest − X (t)) (2)

wi Inertia weight
V(t) Particle’s velocity at the time ‘t’
X(t) Position of the particle at the time ‘t’
c1 Personal learning factor
c2 Neighborhood learning factor
Rand Random number distributed between 0 and 1

uniformly
Xpbest Particle’s best position
Xgbest Global best position
A linearly decreasing inertia weight is utilized in this

approach. The value of the inertia weight is determined
according to the current iteration and is represented by
Equation 3.

wi= wmax−
(
wmax − wmin
max_iteration

)
∗I (3)

wmax = 0.9, wmin = 0.2, wi = weight at iteration ‘i ‘,
max_iteration =Maximum Iteration

The PSO algorithm has experienced improvements in
various aspects, including population initialization, neighbor-
hood learning, parameter tuning, multi-population strategies,
and learning methodologies [6].

C. MULTI-OBJECTIVE OPTIMIZATION
Evolutionary algorithms have proven to be successful in
solving a wide range of multi-objective optimization prob-
lems due to their ability to generate diverse populations.
Various applications of multi-objective optimization using
PSO include reservoir operation for flood control [7], reac-
tive power optimization in distribution network systems
to minimize power loss and voltage deviation [8], declus-
tering seismic catalogs into mainshocks, aftershocks, and
foreshocks using the Chimps multi-objective optimization

algorithm [9], determining reservoir operation policies for a
three-reservoir hydropower system in different time periods
in Iran [10], and fault location in distributed networks [11].
Several methodologies are employed in the search for
multi-objective optimized solutions, such as grid dominance
ranking, grid clustering in grid space [12], dynamic neighbor-
hood learning, offspring competitive learning, and reference
point mechanisms [13], among others. Particle ranking with
multi-objective optimization serves as a key tool for feature
weighting [14].

D. MULTI-POPULATION
In the implementation of multi-population techniques, var-
ious parameters need to be determined. These include
deciding whether a fixed or variable subpopulation count is
required, determining the communication interval and policy,
establishing the connection topology between subpopula-
tions, defining the search area size, determining whether
overlapping is needed, and specifying whether the search
strategies of subpopulations should be uniform or differ-
ent [15]. The utilization of multi-population techniques has
shown greater success in addressing combinatorial optimiza-
tion, multi-objective optimization, and large-scale optimiza-
tion problems.

E. CLIMATE INDICATORS AND DROUGHT INDICES
The Global Climate Observing System (GCOS) is jointly
sponsored by the World Meteorological Organization
(WMO), the United Nations Environment Programme
(UNEP), the Intergovernmental Oceanographic Commission
of the United Nations Educational, Scientific, and Cultural
Organization (IOC-UNESCO), and the International Science
Council (ISC). Given the increasing complexity of studying
the global climate, GCOS, in collaboration with WMO,
has identified seven climatic indicators that are particularly
effective for climate research, as depicted in Figure 1.

FIGURE 1. Climatic Indicators given by GCOS (Courtesy:https://gcos.
wmo.int/en/global-climate indicators).
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The global climatic indicators identified by GCOS are
divided into four categories: Temperature and Energy, Atmo-
spheric Composition, Ocean and Water, and Cryosphere [16]
(gcos.wmo.int). However, in the specific study area of Tamil
Nadu, the cryosphere category is not applicable since it lacks
glaciers and sea ice. Under the Temperature and Energy
category, the indicators considered are minimum, maximum,
and mean land temperatures. From the Atmospheric Compo-
sition category, the focus is on the CO2 levels. Finally, for
the indicators from the Ocean and Water category, there is
no open-source data discovered for the ocean acidification
parameter for the supplied geographical area and the selected
study period. And regarding the sea level, a relative mea-
sure of the mean sea level changes of the Arabian Sea, Bay
of Bengal, and Indian Ocean are taken. The Essential Cli-
mate Variables (ECV) list [17] (public.wmo.int) provided by
WMO consists of physical, chemical, or biological variables,
or a set of related variables, that significantly contribute to the
understanding of Earth’s climate. These variables are further
grouped and listed under the Atmosphere, Land, and Ocean
categories. Precipitation, wind speed, and shortwave radia-
tion are examples of variables falling under the Atmosphere
category.

Water vapour is a very good measure for determining
atmospheric temperature and precipitation. Water vapour sig-
nificantly affects the climate system’s dynamic and radiative
properties. Vapour pressure describes the partial pressure of
water vapour in the atmosphere [18]. Dew point temperature
refers to the atmospheric temperature lowered to the point of
saturation [19]. The changes occurring in the sea also affect
the climate of the earth. Various factors bring changes to the
ocean volume of the world, resulting in global uniform mean
sea level changes [20].
The two most commonly used indicators worldwide for

detecting and characterizing meteorological droughts are SPI
and SPEI [20]. SPI indicates the precipitation conditions for a
specific period within a long time series. It uses precipitation
data alone and can characterize both wetness and dryness.
SPEI is an extension to the SPI that takes potential evapo-
transpiration into account. It measures normalized anomalies
in precipitation minus potential evapotranspiration. SPI and
SPEI are calculated at various timescales and represented as
SPI1, SPI6, SPEI3, SPEI6, and so on. SPEI1 is the index
determined over a 1-month period, SPEI3 over a 3-month
period, and SPEI6 over a 6-month period.

F. STUDY AREA
The state of Tamil Nadu, India, receives roughly 945 mm
(37.2 in) of rainfall annually, of which 48% comes from the
northeast monsoon and 32% from the southwest monsoon.
Because the state’s water resources are entirely dependent on
rainfall, monsoon failures result in severe drought and acute
water scarcity. The seven agroclimatic zones of Tamil Nadu
are as follows: heavy rainfall, high altitude hilly, west, south,

northeast, and Kaveri Delta (the most fertile agricultural
zone). The elevation map [21] of the state is given in
Figure 2.

FIGURE 2. Tamil nadu elevation map.

G. PRECISION AND RECALL TUG OF WAR
Precision refers to the proportion of correctly classified posi-
tive instances out of the total instances classified as positive,
regardless of whether they are actually correct or incorrect.
On the other hand, recall specifically measures the number of
positive instances that are correctly classified. The formulas
for precision and recall are provided below in Equation 4 and
Equation 5.

Precision =
True Positive

True Positive + False Positive
(4)

Recall =
True Positive

True Positive + False Negative
(5)

The classification threshold plays a crucial role in deter-
miningwhether an instance belongs to the positive or negative
class. Depending on the value of the classification threshold,
the number of false positives or false negatives can increase
or decrease. An increase in false positives leads to a decrease
in precision, while an increase in false negatives results in a
decrease in recall [22].
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H. MACHINE LEARNING APPROACHES USED
1) DECISION TREE
The decision tree is a supervised machine learning algorithm
used to solve classification as well as regression problems.
The internal nodes or decision nodes hold the attribute values,
and new branches originate based on its value. The leaf nodes
give the final outcome.

A decision tree algorithm operates by recursively choosing
the attribute for each internal node that holds the maximum
information gain. This step is repeated until the tree reaches
a maximum depth or minimum number of samples in a leaf
node.

2) RANDOM FOREST
Random Forest is also a supervised machine learning
algorithm used in solving classification and regression task.
Construct decision tree for each random subsets of training
data. The final outcome is the based on the majority voting of
the decision tree outcomes [23].

3) GRADIENT BOOSTING
Gradient boosting is one type of ensemble approach; it first
builds a model on the training dataset and then the second
model is built to rectify the errors in the first model. The base
model prediction was done initially by taking the average of
the outcomes. The loss function commonly used for regres-
sion in Mean Square Error (MSE) and for classification is
cross entropy. Our target is to minimize the loss function.
In the second step, the residuals are calculated which is
the difference between the observed value and the predicted
value. In the third step, decision tree is built to predict these
residuals. Last step, is to iterate over the third step [23].

In Gradient Tree Boosting, the employment of fixed-size
decision trees as base learners is a prevalent approach. This
technique is distinguished by its capacity to enhance the
accuracy and efficiency of predictions. It achieves this by
integrating multiple decision trees into a cohesive, unified
model.

I. MOTIVATION AND CONTRIBUTION OF THIS WORK
Many real-world problems involve imbalanced datasets, such
as spam prediction, disease diagnosis, and natural disaster
prediction (e.g., drought, earthquake, landslide databases).
Recognizing the significance of these imbalanced datasets,
our motivation was to enhance classification performance
while achieving a balance between precision and recall. Our
research focuses on studying various climatic indicators in
meteorological drought occurrences, driven by the health
risks faced by livestock, plants, and humans due to drought.
We also aim to improve multi-objective optimization using a
multiswarm approach and refine the learning strategy.

The increase in PM2.5 affects the metrological param-
eters. The increase in CO2 increases the global warming
and hence affects the precipitation and evapotranspiration
[24]. Naumann [25] studied the relation between the duration

of drought and the increase in global warming. It is seen
that global mean drought length will be 2.0 months per
degree Celsius and accelerating quickly to reach 4.2 months
per degree Celsius when global warming approaches 3◦C.
Dai [26] in his work concludes that there will be increased
frequency of drought in the next 30–90 years over many land
areas resulting from either decreased precipitation and/or
increased evaporation.

The contributions of this work include:
1. Development of a novel Single Objective Scorer

(SOS) -based MPSO algorithm, which creates multiple
swarms. Each swarm group excels in a specific objec-
tive, and learning is facilitated among these swarms.

2. Creation of a weighted dataset using the weights
obtained from the SOS-based MPSO in combination
with the Gradient Boosting classifier for meteorologi-
cal drought forecasting.

3. Investigation of the influence of climatic indicators and
drought indices on meteorological drought occurrence
prediction in the state of Tamil Nadu using Explainable
AI techniques.

II. LITERATURE SURVEY
The problem statement for the proposed work was identified
through a survey conducted in areas such as feature weight-
ing, multi-objective optimization, and the development of
PSO variants.

A. FEATURE WEIGHTING
A feature-weighted Naïve Bayes model was designed by
incorporating feature weights into the Naïve Bayesian for-
mula [25]. These feature weights are calculated based on the
correlation between features and classes, as well as the inter-
correlation between features. To ensure their relevance, the
weights are normalized using a sigmoidal function, bringing
them within the range of 0 to 1. Jiang introduced a class-
specific attribute-weighted Naïve Bayesian approach [27].
Wrapper-based techniques were employed to determine the
attribute weights, and two gradient-based feature weighting
techniques were also proposed by Jiang. In another study,
Jiang incorporated feature weights into the conditional prob-
ability estimation and referred to it as the deep feature
weighting approach [28]. Correlation-based measures were
utilized to calculate the feature weights. This method was
subsequently applied to text classification tasks [29].

B. PSO IMPROVEMENTS
Cui designed two archive mechanisms aimed at improv-
ing the convergence and divergence processes. The con-
vergence archive population focuses on achieving Pareto
dominance [30], while the diversion archive population aims
to enhance population diversity. The global leader is selected
from these two archives, and flight parameters are adjusted
adaptively. Building on this work, Xia et al. [31] devised the
Expanded PSO algorithm, inspired by human learning from
multiple exemplars and forgetting ability.
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In a related study, Wei et al. [32] applied distinct learning
strategies to each sub-swarm. Particle behavior is influenced
by Adaptive Learning Exemplars (ALE), which are dynam-
ically selected exemplars, and the adaptive population size
(APS). However, this approach is time-consuming, making it
less suitable for simple unimodal functions.

De Campos et al. [33] explored two parallel PSO
techniques, namely Pareto dominance and decomposi-
tion, to enhance communication between sub-swarms. The
Pareto dominance approach selects dominant solutions for
multi-objective problems and identifies the best particles.
In the decomposition approach, fitness evaluation is per-
formed for each sub-problem in multi-objective optimization
to find the best particle. Both strategies were tested under
asynchronous and synchronous communication models.

Building upon these studies, Li et al. [34] proposed
the multi-population cooperative particle swarm optimiza-
tion (MPCPSO) algorithm, which incorporates two learning
strategies: the dynamic segment-based mean learning strat-
egy (DSMLS) for exemplar selection and coevolution of pop-
ulations, and the multidimensional comprehensive learning
strategy (MDCLS) for convergence. However, this algorithm
encounters challenges in finding the global optimum for
complex functions. To address this, a novel mutation oper-
ator was introduced to increase diversity, although further
improvements are still needed.

Ye et al. [35] classified particles into two categories:
communication particles and ordinary particles. Communi-
cation particles are utilized for exploitation, using local best
solutions, while ordinary particles aid in exploration by con-
sidering ‘m’ local best solutions within the subswarms. The
algorithm employs a dynamic searching process based on
probability values. Evaluations conducted on 10-Dimension
and 30-Dimension problems revealed that convergence is
slowed down.

Sun et al. [36] introduced two neighborhood selection
strategies: all-dimension-neighborhood (ADS) and randomly
selected neighbors (RSN). RSN facilitates exploration and
is primarily used in earlier stages, while ADS promotes
exploitation and is employed in later stages, employing
shrinking and random expansion operators.

In the context of feature selection, Kilic et al. [37] proposed
a novel multi-population-based PSO algorithm. During pop-
ulation initialization, two population categories are created:
one with random initialization and the other with Relief-
based measures. The Relief-based measure assigns relevance
values between -1 and 1 to each feature, while the random
initialization assigns a value between 0 and 1 to each feature.
To convert from continuous space to binary space, transfer
functions are required.

Wang et al. [38] addressed the time-consuming nature
of calculating diversity levels in the population by propos-
ing the diversity-enhanced PSO with neighborhood search
(DNSPSO). This approach introduces trial particles into
every particle to enhance diversity. Two search strategies,
namely Local Neighbourhood Search (LNS) and Global

Neighbourhood Search (GNS), are employed. LNS creates
new particles based on position values from the ‘K’ near-
est neighbors, while GNS generates particles by combining
two randomly selected particles in the swarm to facilitate
exploration.

Li et al. [39] developed a multi-population approach
consisting of an elite population and a shoddy population
based on the fitness of solutions. Notably, the Dynamic
Opposition-Based Learning strategy allows for a comeback
after a stagnated search. This is achieved by monitoring fit-
ness improvement at each iteration andmodifying the particle
update formula if no improvement occurs consecutively for
five iterations, thus avoiding learning from the previous best
solution.

Zhang et al. [40] proposed a Dynamic Neighborhood
Learning strategy and an offspring competition mecha-
nism. The neighborhood selection is done randomly, and
a cross-mutation operator is used for breeding. Through
experiments conducted on 11multimodal functions, the mod-
ified particle swarm optimization approach demonstrated
improved efficiency.

Yazd et al. [41] applied KNN for selecting the days which
are similar to the days of our interest from historical record.
Totally 3 variables precipitation, minimum temperature and
maximum temperature are taken and choice of data selection
is from 4 stations.

C. DROUGHT PREDICTION WITH MACHINE LEARNING
Nabipour et al. [42] forecasted hydrological drought, which
is essential for water resource management. They com-
pared the forecasting performance of the standard Artificial
Neural Network (ANN) with a hybridized ANN that incor-
porates nature-inspired optimization algorithms, namely the
Salp Swarm Algorithm (SSA), Grasshopper Optimization
Algorithm (GOA), Particle Swarm Optimization (PSO),
and Biogeography-based optimization (BBO). The PSO
algorithm demonstrated the best forecasting performance.

Dikshit et al. [43] conducted research on spatiotemporal
drought forecasting using the Standard Precipitation Evapo-
ration Index (SPEI) and climatic indicators such as rainfall,
cloud cover, potential evapotranspiration, vapor pressure,
and temperature (maximum, minimum, and mean). They
employed the Random Forest Regressor for index value
prediction and Random Forest classifier for drought class
classification. The results indicate that the model performs
well in predicting SPEI1 and SPEI3, with potential evapo-
transpiration (PET) serving as a prominent indicator in the
forecasting process.

Danandeh Mehr et al. [44] proposed a fuzzy random for-
est model to predict SPEI in ungauged catchment areas.
The model utilizes global drought information from multiple
satellite images and meteorological data. Although the model
was tested only for a one-month lead time of SPEI6, fore-
casting at higher lead times is necessary for effective drought
mitigation planning.

96882 VOLUME 12, 2024



K. Sundararajan et al.: Improving Meteorological Drought Prediction in Tamil Nadu

Ali et al. [45] conducted research on monthly SPI pre-
dictions for Pakistan using a novel drought prediction
framework called the Committee Extreme Learning Machine
(Comm-ELM) model. This model is based on the committee
particle swarm optimization-adaptive neuro-fuzzy inference
system (Comm-PSO-ANFIS) and committee multiple linear
regression (Comm-MLR) models.

Behifar et al. [46] conducted research on 13 satellite-based
indexes. The best metrics for determining the standardized
precipitation index (SPI) with a three-month time scale were
found to be the indexes based on actual evapotranspiration,
precipitation, and soil moisture. Additionally, the drought
map was created using two additional ideal measures, the
precipitation condition index (PCI) and the evapotranspira-
tion condition index (ETCI), for prediction purposes using
RandomForest.

Nematchoua et al. [47] evaluated the performance of six
machine learning algorithms in predicting daily global solar
radiation and air temperature in 27 cities located across
27 countries. Among the six algorithms tested (Decision
Trees (DT), Linear model (LM), Random Forest (RF), Sup-
port Vector Machine (SVM), Deep Learning (DL), and
Gradient Boosted Trees (GBT)), the performance of Deep
Learning (DL) was outstanding. The input variables used for
the prediction included wind speed, daily air temperature,
solar radiation, and relative humidity recorded in these cities.

D. RESEARCH CHALLENGES AND LIMITATIONS
a) Bioinspired optimization algorithms have been uti-

lized to tune the hyperparameters of various classifiers,
including ANN, ANFIS [40], [45], and others. How-
ever, there is a lack of research exploring the use of
these algorithms to assess the strength or importance
of input features in drought prediction.

b) Many studies have focused on predicting the SPI
or SPEI values from their past values and based on
those value meteorological drought severity level is
predicted [43]. However, there is limited research on
the binary classification (Yes/No) of meteorological
drought occurrence using climatic indicators.

c) The literature commonly employs climatic indicators
such as El Nino, Southern Oscillation, Indian Ocean
Dipole Mode, and Atlantic Multidecadal Oscillation.
However, there is a dearth of studies examining the
impact of climatic indicators suggested by GCO, such
as pollution factors, sea level, shortwave radiation, dew
point, etc., on drought occurrences.

d) Using a variety of indices are critical for effec-
tive drought detection, monitoring and management.
Until date, there has been no universally accepted
drought index among the scientists worldwide. Hence,
researchers are still working to alter and reconstruct
a comprehensive, simple, and robust drought indicator
for effective water resource management and planning
[48]. There are uncertainties in the drought projection
done in the last decade using PDSI [49].

III. PROPOSED SYSTEM
Themeteorological drought occurrence predictionmodel was
designed with two primary objectives:

1. Predicting meteorological drought occurrences using
drought indices and climatic indicators.

2. Assessing the impact and contribution of climatic indi-
cators such as pollution and sea level on drought
occurrence prediction.

To enhance the prediction performance, a global wrapper-
based feature weighting approach is employed. Additionally,
a novel algorithm called SOS-based MPSO algorithm is
proposed to determine the feature weights.

A. DATA USED
The data utilized in this study to predict the occurrence of
meteorological drought were gathered frommultiple sources.
The data covers a time period from 1995 to 2020, spanning
a total of 26 years. The monthly data was collected and
hence there 312 instances and 21 attributes values. Within
this timeframe, the years 2002, 2007, and 2019 are declared
as meteorological drought years by the Government of Tamil
Nadu. Refer to Table 1 for a list of the data and their respective
sources.

To give a clearer picture about the drought situation of the
state SPI6 values for 312 months taken in the study period is
plotted and given in Figure 3. The statistical analysis of the
dataset is given in Table 2.

FIGURE 3. Monthwise SPI_6 value from 1995 to 2020.

B. METEOROLOGICAL DROUGHT OCCURRENCE
PREDICTION MODEL
The proposed meteorological drought prediction model uti-
lizes 21 input features, which include drought indices and
climatic indicators. It performs a binary classification, with
the output target variable indicating either Drought or Non-
Drought. The weights for these input features are determined
using the SOS-based MPSO algorithm. In this implemen-
tation, the position vector of the SOS-based MPSO holds
the feature weights, and the fitness function aims to max-
imize precision and recall, with the use of multi-objective
optimization.
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TABLE 1. List of the data used and its sources.

During each iteration, the proposed algorithm calculates a
new particle position value, which corresponds to the feature
weights. Using these weights, a weighted dataset is con-
structed, and Gradient Boosting is employed as the evaluating
classifier to determine the performance metrics of precision
and recall. Based on the current precision and recall values,
the proposed SOS-based MPSO Model seeks new position

TABLE 2. Statistical test results of the dataset.

values that maximize both precision and recall while mini-
mizing the difference between them.

The weighted dataset is constructed for two reasons:
a. The input dataset suffers from imbalance, leading

to poor prediction of the minority drought class.
By assigning weights to the features and constructing
a weighted dataset, the prediction accuracy can be
improved.

96884 VOLUME 12, 2024



K. Sundararajan et al.: Improving Meteorological Drought Prediction in Tamil Nadu

b. Incorporating relevant, weighted drought indices
and climatic indicators specific to the geographical
region as input features enhances the prediction of
meteorological drought occurrences.

The reason behind the fitness function design is:
A balance between precision and recall has to be attained,

and for that, we can use multi-objective optimization to tune
the boundary value that determines whether the binary clas-
sification is positive or negative. Because, when the false
positive rate rises, so does the precision, and when the false
negative rate rises, so does the recall.

The workflow of the overall meteorological drought occur-
rence prediction process using the SOS-based MPSO is
illustrated in Figure 4.

FIGURE 4. Meteorological drought occurrence prediction model using
SOS-based MPSO.

C. SINGLE OBJECTIVE SCORER (SOS) BASED
MULTIOBJECTIVE PSO ALGORITHM
The proposed SOS-based MPSO algorithm is based on
the concept that particles with good performance in a
multi-objective solution will be situated between the particles
that score well in individual (single) objectives. By learning
from these particles, we can approach the best multi-objective
solution. The term ‘‘individual objective’’ typically refers
to a specific objective within a set of multiple objectives.
In most multiswarm techniques, population formation is
based on the swarm’s fitness value achieved for the multiple
objectives, rather than the individual objective. The popula-
tions are usually categorized as elite/best/extraordinary and

shoddy/ordinary/inferior, and learning is primarily focused
on the elite group. However, in our proposed SOS-based
MPSO algorithm, population formation is based on swarms
that perform well in achieving individual objectives from
the set of multiple objectives. Neighborhood learning is
conducted using the best population in terms of the indi-
vidual objective achievement and the best population in
terms of the multi-objective achievement. The effectiveness
of neighborhood learning methods has been demonstrated
by Jinquan et al. [57] and Kennedy et al. [58]. In our
(Sundararajan and Kathiravan) previous work on feature
weighting with the Two-stage PSO Algorithm [59], modifi-
cations were made to PSO population initialization. In this
proposed system, however, changes weremade to PSO neigh-
borhood learning. The proposed method depends on the
single objective best scorers for multi-population generation
and learning.

The proposed SOS-based MPSO algorithm initially iden-
tifies the populations that excelling in single objectives
alone and multi-objectives alone until the iteration reaches
MAX_ITER/2. The target population group for improvement
after MAX_ITER/2 is the multi-objective group population.
In the standard PSO, the position update formula is based on
two parameters: the particle’s own best and the global best.
To prevent particles from converging too early by falling into
the same global best, the global best is replaced with the
reference particle from other populations. Therefore, in each
iteration, the calculation of new particle velocity is performed
using two parameters: the particle’s own best, and the best
particles given each objective within the set of objectives
(Objective 1, Objective 2, Objective n).

In this work, we have three single objectives: Objective 1 is
to maximize precision; Objective 2 is to maximize recall; and
Objective 3 is to minimize the difference between precision
and recall. Our multi-objective is to maximize precision and
recall.

D. PROPOSED SYSTEM IMPLEMENTATION
The implementation consists of two distinct steps. The first
step involves creating the Multiswarm, while the second step
focuses on conducting multi-objective optimization using
Single Objective scorers.

1) STEP 1 - MULTISWARM CREATION
The input parameters (features) include drought indices such
as SPI3, SPI6, SPI12, SPEI3, SPEI6, and SPEI12, as well as
prominent climate indicators like sea level, temperature, and
CO2. Additionally, essential climate variables related to pre-
cipitation, cloud cover, wind speed, and shortwave radiation
are considered. The classification process utilizes weighted
feature values. Let ‘wi’ represent the weight for the feature ‘i’
obtained using the standard PSO. Let ‘Fij’ denotes the actual
feature value, while ‘F’ij ‘represents the newly calculated
weighted feature value. To determine F’ij, the weight value
is multiplied by the feature value, if Fij > 0 (F’ij = Fij ∗ wi),
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and if Fij< 0, the feature value is divided by the weight value
(F’ij = Fij / wi).

Initially, a random particle population is created, and fit-
ness values, namely precision and recall, are calculated.
At the end of each iteration, based on the precision value,
recall value, and their difference, the particles are assigned to
their respective swarm group, as illustrated in Figure 5.

FIGURE 5. Multiswarm creation.

The three swarm groups created are:
1. High Precision and Max Deviation (HPMD) swarm
2. High Recall and Max Deviation (HRMD) swarm
3. Min Deviation group
Particles with high precision and maximum deviation

between precision and recall values are grouped into one pop-
ulation group called the ‘‘High Precision and Max Deviation
swarm.’’ Similarly, particles with high recall and maximum
deviation with precision belong to the second population
group known as the ‘‘High Recall and Max Deviation
Swarm.’’ The third population group, called the ‘‘Min Dif-
ference group,’’ consists of particles with minimal difference
between precision and recall. The process is halted when the
number of iterations reaches half of the Max_Iter value.

2) STAGE 2 - MULTI-OBJECTIVE OPTIMIZATION WITH
SINGLE OBJECTIVE SCORERS
Once the number of iterations reaches Max_Iter/2, the focus
of the fitness function shifts towards multi-objective opti-
mization. The objective is to maximize precision and recall
while minimizing the difference between them. At this stage,
the learning process is conducted from the multiswarm,
as depicted in Figure 6. Consequently, the modified velocity
update formula specified in Equation 6 is utilized.

In accordance with Equation 2, the velocity updating pro-
cess relies on the particle’s personal best (Xpbest) and the
global best particle (Xgbest). However, in the SOS-based
MPSO approach, reference is made to the best performers in
terms of a single objective, rather than the particle’s global
best. Consequently, the equation is modified, and the new
velocity is determined based on the Iteration best particle

from the other swarm group, as indicated in Equation 6.

V(t + 1) = V(t) + c1 ∗ rand() ∗ (Xpbest − X(t))

+ c2 ∗ rand() ∗ (IbestHPMD − X(t))

+c3 ∗ rand() ∗ (IbestHRMD − X(t)) (6)

IbestHPMD - Iteration best particle from High Precision
and Max Deviation swarm

IbestHRMD - Iteration best particle from High Recall
and Max Deviation swarm

FIGURE 6. Learning from multiswarm.

The calculation of the new position value is determined by
Equation 1. If the new position value falls below theminimum
value or exceeds the maximum value, the particle’s position
is updated using Equation 7, as presented below. The new
position value is assigned as the average of the particle posi-
tion values of IbestHPMD and IbestHRMD. The pseudocode
outlining the proposed work is depicted in Figure 7.

X (t) = (IbestHPMD + IbestHRMD)/2

If X(t) < min or X(t) > max (7)

E. EXPERIMENTAL SETUP
The implementation is carried out in Python using the sklearn
library, and default hyperparameter values are used for all
classifiers. The feature weights obtained from these algo-
rithms for the 21 features highlight the importance of the
features (drought indices and climatic indicators) in predict-
ing meteorological drought.

Our objective is to assess the performance of the
SOS-based MPSO feature weighting approach in predicting
meteorological drought. The input dataset consists of 21 fea-
tures, including drought indices and climatic indicators. The
target variable is binary, with 0 indicating ‘‘Non Drought’’
and 1 indicating ‘‘Drought.’’ The government has declared
the years 2002, 2009, and 2019 as meteorological drought
years. To train the model, we utilized the input features
from 1995 to 2010. For testing, the years from 2010 to
2020 are used.
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FIGURE 7. Pseudocode for the proposed SOS - based MPSO algorithm.

In this study, we evaluate the performance of the
SOS-based MPSO weighting algorithm using various clas-
sifiers such as Random Forest, Gradient Boosting, and
Decision Tree.We also compare its performancewith our pre-
vious work on the Two-Stage PSO algorithm. The evaluation
is based on precision, recall, and Mathew Correlation Coeffi-
cient (MCC) metrics. To showcase the differences between
accuracy, precision, and recall, we calculate the accuracy
metric.

The MCC is calculated using all four categories of the
confusion matrix. It yields a high value only when the model
performs well across all categories. The formula for MCC is

provided in Equation. 8.

MCC =
TN X TP − FN x FP

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(8)

TN - True Negative
TP - True Positive
FN - False Negative
FP - False Positive
Precision and recall measures are calculated using Eq. 4

and Eq. 5, respectively. These measures assess the model’s
performance for each class (Drought and Non Drought). The
accuracy of the model indicates the proportion of correct
predictions for the entire dataset. However, it does not pro-
vide information about how well the model learned the class
boundaries. In imbalanced datasets, the prediction for the
minority class tends to be poor, even if the overall accuracy
is high. Therefore, we evaluate the class-wise prediction
performance using precision and recall.

IV. RESULTS AND DISCUSSION
We compare the performance of Drought and NonDrought
class prediction using the Random Forest, Decision Tree,
and Gradient Boosting classifiers without feature weighting
and with SOS-based MPSO feature weighting using metrics
precision, recall, accuracy and MCC values. The metrics are
presented in Table 3 and Table 4.

TABLE 3. Drought class prediction performance using various classifiers
without feature weighting.

From Tables 3 and 4, it is evident that all the methods have
an accuracy measure above 0.9. However, the precision and
recall measures provide a clearer picture of each method’s
performance in predicting the Drought class.

Table 3 reveals that the prediction results for the Drought
class are significantly poorer compared to the Non Drought
class. For the Non Drought class, all classifiers achieve pre-
cision and recall scores above 0.9. However, these scores
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TABLE 4. Prediction performance of SOS - based MPSO feature weighting
with various classifiers.

are lower for the Drought class. On the other hand, Table 3
demonstrates that without feature weighting, there is a sig-
nificant difference between precision and recall, particularly
noticeable in the Random Forest classifier with a difference
of 0.6 (precision: 0.9, recall: 0.3).

In Table 4, the proposed model’s performance in predict-
ing the Drought class is presented. Since the Non Drought
class does not require any improvement, it is not considered
in this analysis. The proposed model successfully enhances
the recall scores, particularly for classifiers with low recall
without feature weighting. The Gradient Boosting classifier
shows the most significant improvement, increasing its recall
score from 0.6 to 0.81. The Decision Tree classifier also
experiences improvement, with a recall score of 0.69 (up
from 0.48), followed by the Random Forest classifier with
a recall score of 0.64 (up from 0.3). The high recall values
signify the model’s excellence in predicting the minority
class. Additionally, there is an improvement in precision
scores, with Random Forest and Gradient Boosting achieving
a high precision value of 0.9. All classifiers successfully
achieve the objective of maximizing both precision and recall
through the feature weighting approach. After applying fea-
ture weighting, the difference between precision and recall
values re-mains below 0.1 for all three classifiers. For a
visual representation, please refer to Figure 8 which illus-
trates the impact of feature weighting on drought occurrence
prediction.

The second comparison study involves our previous work
on Two-Stage PSO feature weighting. Table 5 presents the
performance metrics, including precision, recall, MCC, and
accuracy, achieved by the Two-Stage PSO algorithm as a
featureweighting technique in combinationwith various clas-
sifier algorithms. To visualize the performance comparison
between the proposed method and our previous work using
the Two-Stage PSO algorithm for feature weighting, please
refer to Figure 9, which provides a graph representation.

Based on the performance results, it is evident that the
Gradient Boosting classifier outperforms the other classi-
fiers when used in conjunction with the SOS-based MPSO
and Two-Stage PSO algorithms. The proposed algorithm
demonstrates an improvement in recall values, averaging at
0.1 higher compared to the Two-Stage PSO Algorithm. Con-
sequently, the Gradient Boosting classifier is the preferred

FIGURE 8. Performance comparison of drought prediction without
feature weighting and with the proposed feature weighting algorithm.

TABLE 5. Prediction performance of two-stage PSO feature weighting
with various classifiers.

FIGURE 9. Performance comparison of drought prediction with proposed
algorithm and two-stage PSO algorithm.

choice over other classifiers. The algorithm is executed with
50 iterations and utilizes 10 particles. Figure 8 showcases
the Precision-Recall curve achieved, with an AUC score of
0.85. Figure 10 illustrates the progression of precision and
recall values across iterations from 0 to 50. The graph reveals
a significant deviation between precision and recall in the
initial stages of iteration, which gradually reduces in later
stages, resulting in a difference of only 0.09.

The next objective of our analysis is to examine the influ-
ence of drought indices and climatic indicators on drought
occurrence prediction. This can be observed through the
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FIGURE 10. Precision-recall curve for SOS-based MPSO with
gradientboosting classifier.

FIGURE 11. Plot of precision and Recall changes over iterations for
SOS-based MPSO with gradient boosting classifier.

feature weight values obtained from the SOS-based MPSO
feature weighting. The importance of these features is rep-
resented by weight values ranging from 0 to 50. The feature
weights obtained from SOS-based PSO weighting with dif-
ferent classifiers, namely Random Forest, Decision Tree, and
GradientBoosting, are presented in Figure 12, Figure 13, and
Figure 14, respectively.
The top 5 weighted features by each classifier are given in

Table 6.
Classification results of the Gradient Boosting and Deci-

sion Trees suggest that the mean sea level of the Arabian
Sea and CO2 are significant indicators for detecting meteoro-
logical drought occurrences in Tamil Nadu. Other important
factors in predicting drought include Cloud Amount, Vapor
Pressure, PM2.5, Maximum Temperature, and precipitation.
Among the drought indices, SPI3, SPI6, and SPEI6 are con-
sidered the most reliable indicators for identifying drought
events.

To assess the importance of input features in drought clas-
sification, the Explainable AI technique known as SHAP

FIGURE 12. Feature Weights given by SOS-based MPSO with random
forest.

FIGURE 13. Feature Weights given by SOS-based MPSO with decision tree.

TABLE 6. List of Top 5 weighted Features returned by various classifiers.

(SHapley Additive exPlanations) is utilized. Figure 15 illus-
trates the SHAP summary plot, revealing the significance of
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FIGURE 14. Feature Weights given by SOS-based MPSO with gradient
boosting.

FIGURE 15. SHAP summary plot.

various features. According to the plot, SPI12, PM2.5, and
CO2 are the most influential factors, with their contributions
to predicting Drought or NonDrought outcomes depicted by
pink and blue bars, respectively.

The attribute importance results given by SOS MPSO and
SHAP show that to understand the impacts of climate change
on hydrological processes, the study of CO2 and sea level
changes is crucial.

FIGURE 16. LIME plot.

SPI, coupled with enviro-met (air pollutants and meteoro-
logical) parameters, used tomeasure the drought severity over
the Vidarbha region using Random Forest by Kumar et al.
[60]. Climatic signals like NINO 3.4, NINO 4, NINO W
and SOI are used in addition to lagged SPEI and rainfall
as inputs to predict drought [61]. Results have shown that
climatic signals alone are giving the best results in drought
prediction. In our review paper [62], it can be seen that most
of the works use historic SPI and SPEI as input variables,
only very few works have used other input factors like air
temperature, net radiation, relative humidity, and volumetric
soil moisture content. This work uses the combination of two
drought indices and climatic indicators to find the drought
severity of Tamil Nadu. The relationship existing between
PM2.5 and meteorological variables, mainly surface wind
and humidity are clearly pointed out by Zhang et al. [24] for
their study area China.

The machine learning blackbox was assessed using the
LIME (Local Interpretable Model-Agnostic Explanations)
technique, enabling us to identify the crucial attributes and
their corresponding values that contribute to the decision
of classifying a year as either Drought or Non Drought.
In Figure 16, the feature and its value are explained, pro-
viding insights into the prediction of drought for a specific
instance in the year 2017. As 2017 is a drought year, the
model accurately classifies it as such, represented by the
Drought class marked as ’1’ (orange), while the Non Drought
class is marked as ’0’ (blue). The features that favor drought
classification include CO2, SPEI_12, the mean sea level of
the Bay of Bengal and the Arabian Sea, and the Average
Maximum Temperature. The value of the attributes for this
specific instance is given in the table present inside figure 15.
For example, the CO2 value of that instance is 38367.24 and
SPEI_12 value is 0.98. The attribute value conditions that
favour predicting the drought class CO2 should be greater
than 31825.70 and SPEI_12 > 0.79. The orange color bar
below it with value 0.30 indicates the feature importance
score.

V. CONCLUSION
This paper proposes a novel technique for improving the
precision and recall of an imbalanced dataset by combining
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attribute weighting with multi-objective optimisation. It is
the first time that climatic indicators specified by GCOS,
in addition to SPI and SPEI, have been used to predict
meteorological drought in our research area. The research
also indicates that wrapper-based feature weighting meth-
ods yield superior results, leading to improved classification
accuracy. Another aspect of the study is the incorporation
of climatic indicators recommended by GCOS, in addition
to SPI and SPEI, to predict meteorological drought. Con-
sidering the significant role of pollution elements in climate
change, CO2 and PM2.5 are also included in this investi-
gation of drought occurrences. Among various classifiers,
Gradient Boosting demonstrates the best performance, with
a maximum precision value of 0.9 and a recall of 0.81.
By employing the SOS-based MPSO with Gradient Boosting
classifier to weight the features, the prediction of meteo-
rological drought occurrences is enhanced. The SOS-based
MPSO algorithm utilizes particles that excel in achieving the
single objective, in multi-swarm generation, and in learning.
The proposed algorithm effectively improves neighborhood
learning, resulting in a minor 0.09 difference between preci-
sion and recall. The influence of pollution factors on drought
occurrences can be elucidated through the assigned weights.
An Explainable AI technique is employed to analyze the
highly contributing features for drought prediction and to
decode how instances predict drought classes. In the future,
instance weighting can be performed, and the monthly influ-
ence of climatic indicator values on drought prediction can be
calculated.
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