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ABSTRACT This article introduces a novel methodology employing deep-learning neural networks to
estimate Lyapunov functions in dynamic systems accurately. Unlike traditional parametric approaches,
our method is model-free, enabling adaptability to various system dynamics without prior assumptions.
We also present a new strategy for generating Lyapunov functions using neural networks, enhancing stability
assessments’ precision and robustness. The effectiveness of this approach is validated through comparative
analysis within a self-excited acoustical system (SAS) applied across diverse materials. This research
demonstrates a new approach to differentiate between material stress states and the presence of defects,
as evidenced by variations in the potential funnel’s dimensions of the Lyapunov function and specific
asymmetries indicative of defective states. Key contributions include the development of a flexible, neural
network-based framework for stability assessment and a new application for structural health monitoring.
By leveraging this model-free neural approach, we provide a powerful tool for determining the stability
of nonlinear dynamical systems and enhancing defect detection processes, significantly advancing control
theory and material science.

INDEX TERMS Auto-oscillators, deep learning, nonlinear stability, self-excited systems.

I. INTRODUCTION
Structural Health Monitoring (SHM) is increasingly rec-
ognized as a cornerstone of modern engineering practices,
vital for the assessment and management of the integrity of
structures under operational conditions. SHM systems aim
to detect, localize, and quantify damages and stresses within
materials in real-time, thus ensuring safety, durability, and
efficient infrastructure maintenance. It is particularly crucial
in sectors such as aerospace, civil engineering, and renewable
energy, where the failure of key components can lead to
significant economic loss and, more importantly, endanger
human lives.

Advancements in sensor technologies, data analytics, and
computational methods have significantly propelled the field
of SHM. Reference [9] underscored the evolution of SHM
systems capable of autonomously monitoring the structural
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integrity of wind turbines, demonstrating how early detection
of defects can prevent costly downtime and catastrophic fail-
ures. This highlights the shift towards predictive maintenance
strategies, optimizing repair operations and extending the
lifespan of critical infrastructure.

Furthermore, integrating machine learning and deep
learning techniques has revolutionized the analysis and inter-
pretation of data obtained from SHM systems. Reference [3]
showed the application of deep neural networks in identifying
and quantifying damage in composite materials, illustrating
the potential for significant improvements in accuracy and
reliability over traditional methods. Such advancements
underscore the growing ability of SHM systems to handle
complex data sets and provide actionable insights into the
health of structures.

The role of SHM in enhancing the resilience of urban
infrastructure against natural disasters has also gained promi-
nence. Reference [27] discussed the implementation of SHM
in earthquake-prone areas, where real-time data collection
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and analysis can inform emergency response strategies and
post-disaster assessments. This application of SHM not only
aids in immediate response efforts but also contributes to the
design of more resilient future structures.

Moreover, the development of wireless sensor networks
has expanded the applicability and efficiency of SHM
systems. As noted by [13], wireless sensors offer a cost-
effective and scalable solution for monitoring large-scale
structures, enabling widespread adoption across various
sectors. This evolution towards more accessible and robust
SHM technologies promises to democratize the benefits of
advanced monitoring capabilities.

The predictive power of SHM systems, enhanced by arti-
ficial intelligence, offers a promising avenue for identifying
and predicting the onset of structural issues. Reference [2]
emphasized the potential of integrating SHM data with
predictive models to forecast material degradation and
fatigue, facilitating proactive maintenance and resource
allocation.

A. BACKGROUND
Recent research demonstrates that integrating artificial intel-
ligence (AI) and modern sensory systems in defectoscopy
offers promising perspectives for enhancing inspection sys-
tems’ precision, speed, and adaptive capabilities.

In the context of detecting rail surface defects, [6]
showcases the potential of deep convolutional neural
networks (CNNs) in industrial applications, emphasizing
that despite their high effectiveness, these methods may
encounter difficulties in defect localization and real-time data
processing. Meanwhile, [38] proposes using deep learning
for detecting defects in composites using highly nonlinear
solitary waves (HNSWs), pointing to new possibilities for
improving detection accuracy while maintaining inference
speed. It opens the path to real-time, non-invasive assess-
ment of composite materials, which has previously been a
challenge.

Simultaneously, [8] explores the application of AI algo-
rithms in detecting defects in cold forging processes, indicat-
ing the effectiveness of CNNs in identifying delamination.
Similarly, the study by [7] focuses on defectoscopy in
metallurgy, using machine learning to detect defects in
additive manufacturing, further highlighting the versatility
and potential of AI in various industrial applications.

As introduced in [37], the application of deep neu-
ral networks for the automated detection of defects in
sewer systems, utilizing CCTV visualization data and
the YOLOv3 algorithm, achieves impressive detection
accuracy. They underlined the importance of AI in mod-
ernizing monitoring methods of critical urban infrastructure
elements.

In work by [15], attention is focused on tyre defect
inspection, combining image processing with unsupervised
learning and VGG-16 neural networks to meet the challenges
associated with automatic damage classification. This work
shows the potential for integrating various AI methods to

improve the accuracy and efficiency of inspection processes
in the automotive industry.

The authors in [32] proposed an innovative method for
detecting defects on smooth surfaces, such as laptop panels,
using phase maps and the Vovecwnet network, resulting
in exceptional detection accuracy. This study opens new
perspectives for using AI in quality control in producing
electronic devices.

The research by [28] demonstrated the capabilities of
integrating data from multiple sensors using deep learning to
characterize defects in steel elements, marking a milestone in
monitoring the condition of industrial components.

In [14], the use of machine learning for detecting wheel
defects was presented, offering a perspective on enhancing
the safety and reliability of railway transport through the
automated analysis of wheel vertical forces.

The authors [35] proposed the ‘‘StressNet’’ model, utiliz-
ing deep learning to predict maximum internal stress based
on crack propagation and initial stress data. Their approach,
combining the Temporal Independent Convolutional Neu-
ral Network (TI-CNN) and Bidirectional Long Short-term
Memory (Bi-LSTM) Network, allows for accurate prediction
of the evolution of maximum internal stress, overcoming
the limitations of high computational costs of traditional
methods.

Authors of [31] presented the use of machine learning
methods for predicting material properties, such as strength,
hardness, or elasticity, based on data from small-scale
strength tests. Their study emphasizes the potential of
ML in generating material property information, offering
an alternative to time-consuming and expensive material
tests.

In [30], a deep learning methodology framework was
introduced for predicting post-damage stress distribution and
failure patterns in composite material microstructures. Their
work demonstrates how advanced deep learning models can
accurately predict some of the most complex phenomena in
solid mechanics.

Deep neural network (DNN) for rapid prediction of the
structure-property relationship in additively manufactured
steels was discussed in [34]. Their DNN model, using data
from crystal plasticity finite element (CPFE) modelling,
proves how deep learning can serve as a quality control tool,
predicting mechanical properties based on microstructure
with significantly lower computational costs.

These studies collectively showcase the growing interest
in using AI and deep learning in defectoscopy and material
characterization. However, the presented approaches only
detect defects or stresses in the examined material. A system
combining such measurements was presented in [16]. It is a
self-excited system based on the elasto-acoustic effect. The
influence of this effect has been described more broadly
in [17]. The effectiveness of such a measurement system
for various environments, such as mining [22], [24], the
cement industry [12], [19], in bridges [4], or in heavy
machinery [23], as well as in different materials [18], [21],
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has been confirmed. However, the system also had two
principal drawbacks. The first was related to the so-called
frequency shift or the uncontrolled transition of the system
to the next limit cycle. This problem was solved using
an advanced filtration system [5] and implementing neural
filters in the feedback loop [20]. The second problem was
the interpretability of the results. Unfortunately, quite often,
the change in frequency of the self-excited system had
various causes, which were not entirely interpretable. It was
mainly the case when there were defects and inclusions
apart from stresses in the examined object. It could turn out
that the read frequency did not result from a specific stress
level but from defects. This article presents an innovative
method to eliminate the inconvenience related to the lack of
interpretability of the results, which uses deep learning neural
networks.

B. CONTRIBUTIONS
This article describes an innovative approach to analyzing
the stability of self-excited systems using neural networks
and deep learning techniques. The novelty of this study lies
in integrating algorithms and deep networks for modelling
dynamic systems and estimating Lyapunov functions. This
paper presents a new approach to a nonparametric neural
method of assessing system stability over a wider area of state
space, surpassing the capabilities of traditional deterministic
methods.

Previously, self-excited systems were primarily analyzed
using parametric approaches, relyingmainly onmathematical
models derived from physical laws. However, such methods
are ineffective in complex, nonlinear dynamics, where precise
mathematical relationships are not fully understood or are too
complicated to model accurately. This article demonstrates
using neural networks to learn these dynamics from data
without explicit parametric models directly. As a data-based
approach, it constitutes a novelty in the dynamic analysis of
self-excited systems.

The most significant novelty of the solution is the develop-
ment of a method for assessing the stability of a self-excited
system using Lyapunov functions. The classical approach
requires precise knowledge of the system’s parameters and
intuition to indicate a Candidate Lyapunov Function (CLF).
In the context of stability analysis of dynamic systems,
a candidate for a Lyapunov function is a proposed function
that can demonstrate the system’s stability according to
Lyapunov’s criteria. Unfortunately, in the case of nonlinear
systems, which by definition are self-excited systems, there
are significant difficulties in determining the CLF, and
often, the knowledge of the system’s parameters is unavail-
able. Moreover, if the dynamic model of the self-excited
system is defined using an additional neural network, its
parametric description is unavailable. Therefore, traditional
stability analysis methods require knowledge of the system’s
dynamics and often involve simplifying assumptions that
may not apply in complex or highly nonlinear systems. The
proposed approach, in contrast, allows for determining the

system’s stability in the sense of Lyapunov in a specified
state space in a nonparametric manner, which is a significant
innovation.

II. METHODOLOGY
The key element of the presented approach is the application
of deep learning networks for modelling and optimizing
the operation of the self-excited system. This chapter
describes the measurement system and the self-excitation
phenomenon to demonstrate how experimental data were
provided for training the neural network, which estimates
the dynamic model of the system. An algorithm is presented
that allows for the creation of the model, followed by a
method for determining the dynamic gain of the feedback
path using the deep network. Subsequently, a method is
presented for using another neural network to determine the
Lyapunov function, indicating the entire system’s stability.
We describe how this function was designed, trained,
and verified to ensure a reliable stability assessment. The
summary presents an overall framework that combines
traditional stability analysis techniques with modern machine
and deep learning methods, offering an innovative tool
for researching and designing stable self-excited dynamic
systems.

A. SELF-EXCITED ACOUSTICAL SYSTEM
The Self-Excited Acoustic System (SAS) enables the
generation and measurement of self-excited vibrations in
structures and materials. Utilizing a specific configuration
in which the vibration emitter and receiver work in a
feedback loop with an appropriate power amplifier, the SAS
system allows for precise tracking of changes in resonance
and the speed of acoustic wave propagation depending on
the load. Such a structure of the SAS system makes it
an excellent data source for analyzing the dynamics of
self-excited dynamical systems. The schematic of the SAS
system is shown in Fig. 1. The system can fundamentally
be divided into two parts. The first part consists of the
object under investigation. The second part of the system
is the executive part, which has two essential elements: the
exciter (E) - a piezoelectric actuator, and the receiver (R) -
in this role, a piezoelectric accelerometer sensor is used -
they are the essential components of the self-excited
system. Additionally, a conditioner and amplifier match and
appropriately amplify the signal. The amplifier, exciter (E),
conditioner, and accelerometer sensor (R) realize positive
feedback. Following the conditioner is a measurement card
and an FPGA system with a Real-Time Operating Sys-
tem (RTOS), which measures the signal from the conditioner
and its appropriate amplification and then sends it to the
amplifier. Their task is to read the current frequency of the
self-excited system and introduce controllable amplification
to the signal. The main factor affecting the frequency of the
self-excited system is the change in the wave propagation
speed and, thereby, the change in the wave transit time
through the object under investigation. Changes in the speed
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FIGURE 1. SAS system scheme.

of acoustic wave propagation caused by stress change are
minor. This necessitates the measurement of wave pulse
transit times with nanosecond accuracy. However, changes
in this delay significantly affect the frequency of the SAS
system’s limit cycle, which is easily measurable.

B. DYNAMIC SYSTEM ESTIMATION
The data obtained through the SAS system are used as
batch input for neural network modelling. The algorithm
for identifying the dynamic model has been described
in [33] and [36] and is the LTSM. The LSTM (Long Short-
Term Memory) algorithm is a particular type of neural
network capable of learning long-term dependencies in
sequential data. The basic idea behind LSTM is its ability
to selectively remember and forget information, allowing the
model to store and utilize long-term dependencies in the
data efficiently. This makes LSTM highly effective in many
tasks related to data sequences, outperforming traditional
RNN models. The outputs are produced in accordance with
functions 1-6, defined in [36]:

i[n] = σ (Wiix[n]+ bii +Whih[n− 1]+ bhi) (1)

f [n] = σ (Wif x[n]+ bif +Whf h[n− 1]+ bhf ) (2)

c̃[n] = tanh(Wicx[n]+ bic +Whch[n− 1]+ bhc) (3)

o[n] = σ (Wiox[n]+ bio +Whoh[n− 1]+ bho) (4)

c[n] = f [n]c[n− 1]+ i[n]c̃[n] (5)

h[n] = o[n] tanh(c[n]) (6)

where:
• i[n], f [n], c̃[n], o[n] are respectively the input gate, forget
gate, cell state candidate, and output gate at the time step,

• σ denotes the sigmoid function,
• W , b are weights and biases respectively for different
parts of the LSTM: ii, if , ic, io (for input weights) and
hi,hf ,hc,ho (for hidden state weights).

• x[n] is the input, c[n] is the cell state, and h[n] is the
hidden state at time step n.

A loss function was used to reconstruct the nonlinear
dynamic system model based on the input and output
signal from the SAS system. It minimizes the difference
between the system’s predicted and actual output values.
In the case of nonlinear dynamic systems that can exhibit
complex behaviours such as hysteresis, dynamics at different

time scales, instabilities, and strong state dependencies,
the standard MSE (Mean Squared Error) function is
insufficient. Therefore, a loss function L, including the
gradient, was used, which, in addition to minimizing
the direct difference between outputs, pays attention to
matching the time gradients of the outputs, defined by
equation 7.

L =
1
N

N∑
i=1

(ŷi − yi)2 + λ

N−1∑
i=1

(
dŷi
dt
−
dyi
dt

)2

(7)

where: ŷi and yi are the predicted and actual output values of
the system at the i-th time step, dŷidt and dyi

dt are the predicted
and actual time gradients of the output, respectively, λ is a
regularization parameter that balances the importance of the
output value fitting term against the gradient matching term
and N is the total number of time steps or data points in the
dataset

The training process for the recurrent LSTM networks was
based on data from 50 experiments conducted using the SAS
system. Each experiment lasted 10 minutes and was carried
out at a sampling frequency of 50 kHz, which allowed for
collecting a large amount of data. For each experiment, the
data were divided into vectors corresponding to 1 second,
which enabled the creation of 30,000 data vectors intended
for network training.

In preparation for the training process, the collected data
were divided into threemain sets: training, validation, and test
sets. The training set, constituting about 70-80% of the total
data, was used directly for training the model. The validation
set (15% of the data) was used to adjust hyperparameters
and monitor model performance during training to avoid
overfitting. The test set was used for the final evaluation of
the model, checking its ability to generalize on new data.
A computer equippedwith an Intel Core i9-10900K processor
and 32 GB of RAM was used. The algorithm was computed
using aGPUon anNVIDIARTX3090 card, which has 24GB
of GDDR6Xmemory, 10496 CUDA cores, and provides high
memory throughput.

In this way, a model of the dynamic system was obtained,
which could then be used for training subsequent components
of the proposed system. In Fig. 2, an example phase portrait
obtained for the neural network model of the dynamic system
is presented.

C. LYAPUNOV FUNCTION DESIGN
The Lyapunov function is a key tool in the stability theory
of dynamical systems. In classical approaches for linear
systems, to utilize the Lyapunov function to determine the
system’s stability within a certain area of state space, it must
meet certain conditions:

1) There must exist a function V : Rn
→ R, where Rn is

the state space of the system, such that V is continuous,
differentiable concerning its arguments, and V (x) is
scalar.
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FIGURE 2. Phase portrait for a neural model of the dynamical system.

2) The Lyapunov functionV (x) must be positively defined
in the area of state space of interest, meaning that
V (x) > 0 for all x ̸= 0 and V (0) = 0.

3) The derivative of the Lyapunov function V (x) over
time, V̇ (x), must be non-positive for all x in the area
of interest, i.e., V̇ (x) ≤ 0. This means that the value
of the Lyapunov function must either remain constant
or decrease over time for every state x outside the
equilibrium point.

If we have a system described by the differential
equation (8):

ẋ = f (x) (8)

where f : Rn
→ Rn is the function describing the dynamics

of the system, and x ∈ Rn is the state vector, then the
derivative of V over time is given by equation (9).

V̇ (x) = ∇V (x) · f (x) (9)

where ∇V (x) is the gradient of the function V with respect
to x, and the · represents the dot product.

For linear systems, complete parametric knowledge of the
system’s dynamics is necessary [29]. On the other hand,
for nonlinear systems, the approach proposed in [1], [11],
and [26], based on the K∞ method, is used. For a nonlinear
system, defined by equation (10), it can be proven that there
exists a trajectory that behaves asymptotically stable if it only
meets the assumptions (11) and (12).

ẋ = f (t, x), x(t0) = x0 (10)

IfD ⊂ Rn is the domain that includes the stable region Bµ,
and the function V (x) is continuously differentiable function,
which satisfies:

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥) (11)
∂V
∂x

f (t, x) ≤ −W3(x), ∀x ∈ D with ∥x∥ ≥ µ,∀t ≥ 0,

(12)

where α1, α2 are K -class functions, and W3(x) is a
continuous, positively defined function. In this case, there
exists such c > 0 that �c = V (x) ≤ c is a compact set
contained in D. Consequently, �c is positively invariant for
the system (10), and there exists a function β of class K L
such that for every initial state x(t0) ∈ �c, the solution (10)
is asymptotically stable.

As proven in [11], there exist constants c1, c2, c3, such that
conditions (11) and (12) can be written in the form of (13)
and (14). Therefore, the system is asymptotically stable for
arbitrarily large µ.

c1∥x∥2 ≤ V (x) ≤ c2∥x∥2 (13)
∂V
∂x

f (t, x) ≤ −c3∥x∥2, ∀x ∈ D with ∥x∥ ≥ µ, ∀t ≥ 0

(14)

The conditions defined for a candidate Lyapunov function,
which can be considered as a solution to partial differential
inequalities, will serve to determine the reward function for
the neural network, which is to estimate in a nonparametric
way an appropriate Lyapunov function that meets the
conditions of asymptotic stability.

Conditions (11) and (12) demonstrate asymptotic stability
for the Lyapunov function. The next step is to confirm the
convergence of the function estimated by the neural network,
which can be proven with the Universal Approximation
Theorem [10], [25]. Assuming that there exists any contin-
uous Lyapunov function V : Rn

→ R, , then there exists a
neural network W (x) for every ϵ > 0, that the inequality 15
is satisfied.

sup
x∈K
∥V (x)−W (x)∥ < ϵ (15)

where:

• K ⊂ Rn is a closed and bounded subset,
• W (x) is the function realized by the network, consisting
of a linear combination of activation functions g, i.e.,

W (x) =
N∑
i=1

wig(vTi x + bi),

• N is the number of neurons in the hidden layer,
• wi, vi, and bi are the weights and bias, respectively,
which need to be adjusted so that F(x) can approximate
f (x) with an error less than ϵ,

• g is the nonlinear activation function applied in the
neurons.

Directly from this theorem, it can be concluded that a
neural network can obtain an arbitrarily accurate estimate
of the Lyapunov function for a given system. However,
to ensure that the neural network seeks this specific function,
it is necessary to apply a reward function that fulfils the
assumptions specified in conditions (13) and (14).

To estimate the function W (x), a network with 2 hidden
layers, each with 256 neurons and using the Softmax
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activation function, was used. The cost function used to train
this network consists of three components:

L = h1L21 + h2L
2
2 + h3L

2
3 (16)

where h1, h2 and h3 are the prelimenary user-defined
hyperparameters and L1, L2 and L3 are the terms inducted
from stability conditions (11) and (12).

A discussion on the physical interpretation of each factor
is necessary to understand the roles of hyperparameters.
Hyperparameter h1 is responsible for the reward for the
network’s performance near the equilibrium point. One
frequently observed effect is that the Lyapunov function
estimate achieves many local minima that are very close to
the equilibrium point. Such an estimate obviously does not
meet the CLF (Candidate Lyapunov Function) criteria, even
though it is correct in most of the RoA (Region of Attraction).
Increasing the ratio of hyperparameter h1 relative to the other
parameters forces the neural network to pay more attention
to estimating the Lyapunov function near the equilibrium.
The physical interpretation involves stabilizing the system
around the equilibrium point, which is crucial for ensuring the
global stability of the system. Hyperparameter h2 represents
the weight of the lower bounding function of the CLF.
By increasing its value, the reward for the network for
not exceeding the lower bound increases. The physical
interpretation is that this expands the RoA for the estimated
function. If the CLF does not exceed the lower bound,
it means that the function V (x) does not have inflexions,
and thus, there is no change in the gradient’s sign, which
indirectly results from the requirements for the Lyapunov
function. Increasing the value of h2 allows for more global
estimation of the Lyapunov function, which is crucial for the
stability of the entire system over a broader range of state
variables. Hyperparameter h3 is responsible for the reward
for the speed at which the dynamic system is brought to
the equilibrium point, i.e., for the gradient value, which,
the greater it is throughout the RoA, the faster the system
is brought to equilibrium. A high value of h3 causes the
neural network to emphasise quickly achieving stability,
which is essential in applications requiring a rapid system
response.

Each of these parameters is important because they affect
the system’s dynamics and the size of the RoA, which,
the larger it is, the better, as they indicate that the system
is stable over a broader range of state variables. In our
case, it was decided that the ratio of the parameter values
h1 : h2 : h3 would be 5:2:1. For the network designer,
the most critical aspect was maintaining the estimated
function around the operating point, followed by the broadest
possible RoA. The speed of reaching the equilibrium point
was a less critical feature (though not negligible) of the
function.

The condition for L1 is specified based on the relation-
ship (17). The physical interpretation of this condition can
be understood as a penalty for the system if its trajectory
does not head towards the decreasing of the Lyapunov

function V (x(t)). It can be proven that such a function, if it
only meets this condition, then the function’s trajectory will
reach the area �c (positively invariant) in finite time and
remain therein after that.

L1 =
∂W
∂x

f (t, x)+ c3∥x∥2 (17)

The condition for L2 is defined based on relationship (18).
In this case, it is interpreted so that the network receives a
penalty only and exclusively when it does not meet the left
boundary condition from equation 13. The greater the penalty,
the more the condition is exceeded.

L2 = min

{
W−c1∥x∥2,

0
(18)

The condition for L3 is defined based on relationship (19).
In this case, it is interpreted so that the network receives a
penalty only and exclusively when it does not meet the right
boundary condition from equation 13. The greater the penalty,
the more the condition is exceeded.

L3 = max

{
W−c2∥x∥2,

0
(19)

Such a defined reward function should lead to the estimated
function W (x) to follow the Lyapunov function V (x) in
accordance with theorem 15 and fulfilling the conditions of
asymptotic stability (11) and (12).

D. FRAMEWORK
The concept of the presented method is contained in three
consecutive stages. They are presented in Fig. 3. In the first
stage, an experiment using the SAS system is conducted on
a real system. The data obtained from this system, x, v, that
is, displacement and vibration velocity, are then the training
data for the first neural network. This network aims to learn
how a dynamic system processes state variables. Hence, the
result of training this network is a specific nonparametric
filter, which is supposed to reflect the operation of the real
system. The nonparametric nature of this system is based
on the fact that standard equations for state spaces do not
define it, but the network structure is supposed to reflect the
hyperplane of the real system. It is evident that the network
will have its parameters, such as weights and biases. Still,
it is treated as a ‘‘black box’’ model, without analyzing
these parameters, but with analyzing its mapping. The exact
parameters of this stage are presented in Section II-B.
This includes the network architecture, description of mea-
surement data, training procedure, and computational unit
parameters.

The performance of the first neural network in terms
of classification metrics is summarized in Table 1. These
metrics include accuracy, precision, recall, and F1 score,
which comprehensively evaluate the network’s effectiveness
in capturing the dynamics of the real system.

The trained network, as a nonparametric model, is then
used in the second stage of the method. It serves another net-
work for the estimation of the Lyapunov function. The second
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TABLE 1. Performance metrics of the first neural network.

FIGURE 3. Conception scheme of the proposed method.

neural network starts with a random Lyapunov function V
in a specified domain D. The designer must predefine the
variability range for the state variables x1 and x2. In each
iteration i, the network processes the function Vi−1 for each
state by simulating the operation of the dynamic system
and taking into account the optimization conditions and loss
function into the function Vi. According to equation (15),
achieving any level of accuracy for networks with two hidden
layers is possible. Therefore, in each iteration, the network
approaches obtaining a correct estimate of the Lyapunov
function. A conceptual diagram of this part of the method
has been presented in Fig.4. During the network training,
it was assumed that the network could stop learning only
when the total value of the loss function for all points in
the state space is less than 10−7. The trained network, as a
nonparametric model, is then used in the second stage of the
method. It serves another network for the estimation of the
Lyapunov function. The second neural network starts with
a random Lyapunov function V in a specified domain D.

FIGURE 4. Iteration of the Lyapunov function estimation.

The designer must predefine the variability range for the
state variables x1, x2. In each iteration i, the network
processes the function Vi−1 for each state by simulating the
operation of the dynamic system and taking into account
the optimization conditions and loss function, transforming
it into the function Vi. According to equation (15), achieving
any level of accuracy for networks with two hidden layers is
possible. Therefore, in each iteration, the network approaches
obtaining a correct estimate of the Lyapunov function.
A conceptual diagram of this part of the method has been
presented in Fig. 4. During the network training, it was
assumed that the network could stop learning only when the
total value of the loss function for all points in the state space
is less than 10−7.

The exact parameters of this stage are presented in
Section II-C. The second neural network is a deep, two-layer
network. The architecture consists of two hidden layers, each
comprising 128 neurons. The activation functions used are
ReLU (Rectified Linear Unit) for the hidden layers, which
is defined as f (x) = max(0, x), providing non-linearity to
the model and allowing it to learn complex patterns. The
output layer uses a linear activation function to produce the
continuous output required for the Lyapunov function.

The training process involves theAdamoptimizer, an adap-
tive learning rate optimization algorithm designed to train
deep neural networks efficiently. The learning rate was
set to 0.001. The loss function used is the Mean Squared
Error (MSE), which measures the average squared difference
between the estimated and actual values. The network was
trained using a batch size of 32, and the training continued
until the total value of the loss function for all points in the
state space was less than 10−7.
The second-stage networks were trained on the same

computer as the first, ensuring consistency in computational
resources and environment.
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The detailed architecture and parameters are as follows:

• Input Layer: 2 neurons (representing state variables
x1 and x2)

• Hidden Layer 1: 128 neurons, ReLU activation
• Hidden Layer 2: 128 neurons, ReLU activation
• Output Layer: 1 neuron, linear activation
• Optimizer: Adam, learning rate 0.001
• Loss Function: Mean Squared Error (MSE)
• Batch Size: 32
• Stopping Criterion: Loss function value < 10−7

These parameters were chosen to balance the complexity of
the network with the need for accurate and efficient training,
ensuring that the Lyapunov function is correctly estimated
across the defined state space.

The third stage of themethod occurs only after reaching the
condition for the loss function. It means that a satisfactory
error in the estimate of the Lyapunov function has been
achieved. In this case, the method can be applied to further
measurements. The first two stages are treated somewhat
like constructing two serial filters, which aim to process the
state variables from the experiment into an estimate of the
Lyapunov function.

The detailed steps of the proposedmethod are encapsulated
in a pseudocode format, as shown in Algorithm 1. This
pseudocode provides a clear and structured outline of the
three-stage neural network method for Lyapunov function
estimation.

The primary motivation for proposing this method is the
inconvenience of using the SAS system. Generally, this
system makes it easy to differentiate between unstressed
and inclusion-free material from material with defects. For
these two cases, different frequencies of the limit cycle
are obtained. Nevertheless, this limit cycle’s frequency
change can occur for two different reasons. Changes in
stress in the examined material change this frequency, but
defects can affect it simultaneously. Standard frequency
measurement is unable to distinguish between these two
causes. In turn, the Lyapunov function is a mathematical
tool for analyzing the stability of equilibrium states in
dynamical systems. From this perspective, it helps determine
whether and how, after a disturbance occurs, the system
will return to its initial state. The fundamental assumption
of the method is that the system will have different phase
trajectories for each type of disturbance in the examined
material. Hence, three different types of materials were
studied: A system without inclusions and stresses, a system
without defects but with stresses, and an unstressed system
with inclusions. The results are presented in the next
section.

III. RESULTS
After conducting the learning process by the framework
presented in Fig.3, a series of Lyapunov function estimates
were obtained for three states: standard, meaning without
load on the examined material and with confirmed absence

Algorithm 1 Three-Stage Neural Network Method for
Lyapunov Function Estimation
1: function TRAINFIRSTNETWORK(x, v)
2: Collect data from the SAS system: displacement x

and vibration velocity v
3: Preprocess the collected data
4: Initialize the first neural network (NN1)
5: repeat
6: Train NN1 using data (x, v)
7: Compute MSE L(NN1)
8: Update weights θNN1 ← θNN1 − α∇θL(NN1)

using SGD
9: until convergence
10: Evaluate performance of NN1
11: return trained NN1 model
12: end function
13: function TRAINLYAPUNOVNETWORK(V ,D, x1, x2)
14: Initialize NN2 with random Lyapunov function V in

domain D
15: Predefine variability range for state variables x1, x2
16: repeat
17: Vi← NN2(Vi−1)
18: Simulate operation of the dynamic system
19: Compute loss L(NN2)
20: Update weights θNN2 ← θNN2 − α∇θL(NN2)

using SGD
21: until total loss < 10−7

22: return trained NN2 model
23: end function
24: function MAIN
25: Collect data x, v using SAS system
26: NN1← TRAINFIRSTNETWORK(x, v)
27: Initialize Lyapunov function V and domain D
28: Predefine variability range for x1, x2
29: NN2 ← TRAINLYAPUNOVNETWORK(V , D,

x1, x2)
30: Apply NN1 and NN2 to further measurements
31: Use NN1 and NN2 to process state variables and

estimate the Lyapunov function
32: end function

of defects; loaded (but with confirmed absence of inclusions);
and for unloaded material but with confirmed defects such as
inclusions and cracks. Typical forms of graphs for a given
state have been presented in Figs.5-7.

In the case of an unloaded and defect-free material
(Fig. 5), a characteristic potential funnel is visible, indicating
the presence of the Region of Attraction. The function
reaches a minimum at the system’s equilibrium point and
assumes non-negative values. Additionally, an area in the
state space x1−x2 can be distinguished, in which equilibrium
states are preserved. This confirms the effectiveness of
estimating the Lyapunov function using Deep Learning
networks.
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FIGURE 5. Lyapunov function estimation for non-stressed and no-defect
material.

FIGURE 6. Lyapunov function estimation for stressed material.

Some differences are observable in the case of the study
using the SAS system with a loaded material (Fig. 6).
Although on both graphs, the Lyapunov function creates
a shape resembling a funnel, which reaches a minimum
at the point (0, 0) on the x1 − x2 plane, for the loaded
material, the funnel is shallower compared to the graph for
the unloaded material. This means that the energy needed
for the system to exit from dynamic equilibrium is lower for
the loaded material. The funnel on the graph for the loaded
material is slightly wider at the base. This may indicate that
the attraction area is more extensive, but the funnel’s less
‘‘steep’’ walls suggest that the system may need more time
to return to equilibrium after a disturbance. This confirms
empirical experiences with working with the SAS system.
This setup switched more frequently to other limit cycles
when the material was loaded than when it was unloaded.
A shallower potential well means that a lower level of
disturbance can lead the dynamic system to another local
minimum.

The Lyapunov function on the graph for the material with
defects (Fig. 7) reveals certain distortions and asymmetries

FIGURE 7. Lyapunov function estimation for material with defect.

FIGURE 8. Phase portrait for each state.

compared to the symmetric funnel visible for the unloaded
material. These asymmetries are evident for state parameters
distant from the equilibrium point. This confirms the hypoth-
esis that a defect in the material affects the SAS system’s
dynamic properties, changing the system’s local stability.
As a result, the system reacts differently to perturbations
depending on their direction. This demonstrates the validity
of the proposed methodology. Indeed, the defect causes
the energy used for control, represented by the Lyapunov
function, to depend on the presence of the defect in the
examined material. Further research may assess the impact
of the defect’s location in the material on the shape of
the Lyapunov function. This could create a neural defect
locator in the examined material based on the estimated
function V .

The discussion is confirmed by the phase portrait shown
in Fig. 8. In the case of the standard material scenario,
trajectories around the central equilibrium point are closed
and regular. This indicates that for this material, the system
behaves predictably. Closed trajectories suggest stable limit
cycles, meaning the system regularly oscillates around the

96134 VOLUME 12, 2024



K. Lalik: Neural Nonparametric Stability Indicator for Self-Excited Dynamical Systems

FIGURE 9. Lyapunov function subtraction for standard and defected
material.

FIGURE 10. Lyapunov function subtraction for standard and stressed
material.

equilibrium point. For studies on the loaded sample, the
trajectories are also closed but occupy a larger area in the
phase space than in the standard case. This indicates a greater
amplitude of oscillations around the equilibrium point, which
is typical for a system under the influence of greater loads and
confirmed during empirical research. Although the system
still achieves stable limit cycles, the larger space it occupies
may indicate a lower resilience of the system. Trajectories for
the state with a defect seem more irregular and scattered than
in the two previous states.

Fig.9 and Fig.10 present the results for the simple
subtraction of Lyapunov functions for the standard case
of two consecutive ones being the subject of this article.
By analyzing these graphs, it can be demonstrated that the two
non-standard cases are distinguishable, even when they show
similar limit frequencies. Initially, one should examine the
state variable area within the potential funnel of the Lyapunov
function. Here, fundamental differences between the loaded
and defective states are visible. Compared to the standard
state, the presence of a defect reveals itself in substantial

FIGURE 11. Region of attraction for each state’s Lyapunov function
visualisation.

point differences in the funnel area. It is caused by the
presence of inclusions or obstacles to the dynamic system.
The broadly understood control of the system encounters
an unconventional obstacle at specific state points, which it
must actively manage. Therefore, in the case of a defect,
the limit cycle of the SAS system is noticeably different.
Conducting a similar analysis for a system without defects
but with an introduced load (Fig. 10), it can be seen that
such an effect does not occur. This is one of the fundamental
goals of the presented method. Thanks to such an approach,
it is possible to distinguish the state of the examined material
already within the potential funnel of the estimated Lyapunov
functions.

Another method to distinguish between a loaded state and
the presence of a defect can be the method of intersecting
Lyapunov functionals using a plane parallel to the x1, x2 axes.
As such a plane is moved, Regions of Attraction become
visible (Fig. 11). These regions are closed and have regular
shapes for both cases without defects. In the case of a
defect occurring in the examined material, an asymmetry of
the Lyapunov function is revealed, causing the Region of
Attraction to open up and have amore irregular shape. All this
confirms the method’s utility in recognizing the state of the
examined material using the SAS system.

IV. CONCLUSION
The research presented in this article demonstrates the capa-
bility of deep learning neural networks to estimate Lyapunov
functions for dynamical systems accurately. By comparing
the estimations of this function for the self-excited SAS
system used for different materials, it is confirmed that the
proposed method allows for the recognition of the material
state in terms of both stress and the presence of defects.
Differences in the depth and width of the potential funnel of
the Lyapunov function estimates, as well as the presence of
asymmetries in the case of defects, reveal how the responses
of the dynamical system can be used to identify the condition
of the material under study.

VOLUME 12, 2024 96135



K. Lalik: Neural Nonparametric Stability Indicator for Self-Excited Dynamical Systems

The methodology presented in this study offers a new
approach to differentiating between the effects of material
loads and the presence of defects. This distinction is crucial
for materials science and engineering applications, where the
integrity and performance of materials under load are critical.
By analyzing the shape and behaviour of the estimated
Lyapunov functions for the SAS system, it is possible to
effectively determine not only stress or the presence of
defects in the material under study but also potentially their
location.

In addition to its significance in structural health monitor-
ing, this article also contributes to the theory of controlling
self-excited systems. The methodology presented here pro-
vides a new tool for determining the stability of such systems.
The neural approach, which is fundamentally model-free,
allows for the determination of stability for nonlinear
dynamical systems. Previous methods of such assessment
required knowledge of the exact physical model of the
dynamical system. The presented methodology, however,
allows for overcoming this inconvenience. It will be of key
importance in many areas of engineering where determining
the region of attraction to an equilibrium point plays a
fundamental role.

The results suggest several paths for future research,
especially in refining the estimation of Lyapunov functions
for varying complex dynamical systems. Further research into
the impact of defect location and nature on the shape of the
Lyapunov function will lead to advanced diagnostic tools for
materials science. Moreover, extending the application of this
method to other types of dynamical systems will broaden
our understanding of stability and equilibrium in complex
nonlinear systems.
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