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ABSTRACT The continuing growth of large-scale and complex software systems has led to growing interest
in examining the possibilities of using the log files that were created during the runtime of the software.
These files can be used for various purposes like error prediction, performance evaluation, learning of
usage patterns, improving reliability, and so on. With software systems continuously becoming more and
more complicated, the distinction of log files that were generated by different components of the software
becomes a new task. The classification of log files is important for several reasons like resource optimization,
compliance and auditing, automation and analysis, or understanding the general system health. By classifying
log files, organizations can better understand the health and performance of their systems. They can identify
patterns, potential security threats, anomalies, errors, and malicious behaviors and storage can also be
optimized. In the log files, each line represents a specific event that has occurred. Such events can be
identified with the use of template miners that assign a unique ID for each event. In our paper, instead of
using the full-sized log files, we change each line to its corresponding event ID and use the resulting smaller
file for classification purposes. We use numerous classifying algorithms like Random Forest, K-NN, Ada
Boost Classifier, and Decision Tree to assign the files to groups corresponding to their origin types. 75% of
the data is used for learning purposes while the remaining 25% is used for testing. We conduct numerous
different experiments to verify the effectiveness of our method like evaluating the precision, recall, f-score,
and accuracy values and measuring the time it takes to classify the files. Our results yielded that while there
is a small fallback in the case of the performance of some of the investigated methods used with the proposed
algorithm, it takes significantly less time to classify the log files, which can be profitable, especially in the
case of large collections of log files.

INDEX TERMS Document classification, log file, template miner.

I. INTRODUCTION
All software is expected to create log files during its run,
which can be used to monitor the states it went through, the
operations performed, and other fundamental information.
Log files are created via print statements that were inserted
into the source code via the developers to save necessary
information. They have many areas of use such as data
mining and analysis [1], [2], understanding user behavior [3],
[4], [5], security checking [6], performance monitoring [7],
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[8], reliability engineering [9], and anomaly detection
[10], [11], [12].

One of the most common types of logs is weblogs. They
record which pages were visited by which users, what were
their requests, what were the response times and so on. In [1]
it is shown how one’s supposed to configure a web server
to gain useful log files that can be used for analytic purposes.
Themain advantage of the analyzation is that it can be used by
an e-commerce site operator to acquire the global overview
of the feedback immediately and an extensive understanding
of events occurring on the e-commerce site as well as on
social media. The only drawback of this approach is that it
does not take information from the physical shopping floor
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into account. The authors of [2] investigate how clustering
algorithms such as K-means and DBSCAN can be used to
cluster the dataset and retrieve practical information from
web server log files. They found that DBSCAN has a better
performance in clustering such files than K-means.

Based on information gathered from log files, we can
get a more comprehensive picture of user behavior patterns.
In [3] the procedure of data cleaning, user recognition,
and finally session identification is proposed. With the use
of the different sessions of a unique user, they analyze
the behavior pattern of that user. While this information
is advantageous for business intelligence, keeping it up to
date could be time and resource-consuming. This paper also
does not consider if the behavior patterns are malicious. The
authors of [4] utilize log files about the user’s daily activities
and e-mailing habitats to be used as input of anomaly
detection algorithms so that malevolent insider activities
can be detected. This is typically a hard task for network
operators since insiders possess extensive knowledge about
the system of the organization. The proposed solution
remarkably lessens their workload. The limitation of the
method is that the models were trained by different datasets
which could result in conflicting detections. If the detection
results were integrated it may be possible to achieve better
detections. The log data available on smartphones (app
usage, music consumption, etc.) is used in combination with
machine learning algorithms to anticipate the personality
type of the owner of the smartphone [5]. Although most
of the personality traits could be predicted by the proposed
algorithm, some could not be predicted at all. Enhancing
performance may require the employment of additional
sensors and the integration of their data. The paper also points
out the advantages and dangers of collecting and modeling
behavioral data.

The authors of [6] provide an extensive summary of recent
directions, developments, and possible future orientations in
the case of log security analysis with the examination and
summarization of 34 different approaches from recent papers.
It is stated that although machine learning techniques are
most commonly used for log taxonomy, new methods are
being proposed that are based on different principles like
process mining, event correlation, statistical analysis, and so
on. The current problem is also stated: while analyses can
alert administrators, they can not quickly address the attack.

With the swift expansion of information technology, the
appearance of large-scale systems has increased greatly.
These systems are also becoming faster and faster. To mon-
itor such systems by hand has become impossible so
software-aided performance monitoring has become a deci-
sive task. In [7], the performance of a new method that is
capable of utilizing log files that arrive with a very high
frequency is evaluated. They came to the conclusion that with
the utilization of log files, higher precision values can be
achieved than without them. The greatest improvement is that
log files enable the review of effects that were previously
unobservable. However, the single use of the proposed

method may not be enough and an auxiliary system might
be required. Cloud services are also becoming increasingly
popular. Due to the troubleshooting complexity, of such
services, a new approach called megatables is proposed
in [8] that outputs millibottleneck predictions and supporting
visualizations based on the automatic analysis of log data.
Unlike previous research in this field, their algorithm not only
extracts the performance-related data from the log files but
also interprets and analyses the performance patterns.

Automated log analysis can be used for reliability engi-
neering purposes. In [9] a survey is provided regarding this
subject. They introduce and detail the four main steps in
automated log analysis. First, they describe how and when
logging should be done and what kind of information is
necessary to be included in the log file. The format of the
log messages is also investigated. The second step is the
compression of the log files, which addresses the significant
challenge of storing logs from large-scale systems that run
continuously. The main compression approaches considered
include bucket-based, statistics-based, and dictionary-based
methods. The next step is the parsing of the logs. Log
mining tools take structured data as their input however,
log lines are typically unstructured or semi-structured.
To transform the log lines, previously used methods relied on
regular expressions or ad-hoc scripts. This paper introduces
15 modern automated log parsers: 10 run offline, processing
historical data, and 5 perform online, operating on logs
sequentially for real-time services. The last step is log mining
which employs machine learning, statistics, and data mining
to analyze large amounts of data and to find meaningful
patterns. The general workflow of log mining is proposed.
Additionally, the paper incorporates a classification and brief
introduction of log anomaly detection algorithms.

The prediction of upcoming anomalies and errors became
a vital task with the appearance of large-scale networks and
log files produced by them. The authors of [10] provide a
complete review of the current state of anomaly detection
algorithms. They highlight the limitation that the datasets
used in the investigated papers are usually outdated, and not
properly labeled. It is also stated that, while it is claimed
that deep learning methods outperform traditional machine
learning and data mining techniques, the necessity for more
extensive research on the optimization of hyperparameters
is emphasized. Many researchers are taking advantage of
deep learning techniques, to make the detections. A complete
survey of such methods is supplied in [11]. First, the
methodology of log anomaly detection is explained in the
same way as in [9]. This is followed by a brief overview
of five advanced deep learning methods: Long Short-Term
Memory (LSTM), Transformer, Autoencoder, attentional
Bidirectional Long Short-Term Memory (BiLSTM), and
Convolutional Neural Network (CNN). These new solutions
along with six state-of-the-art methods are evaluated in
terms of efficiency, robustness, and accuracy. A significant
contribution of this paper is that they prove that including
the log’s semantics improves a model’s robustness against
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noises, which results in the improvement of their overall
reliability in practical utilizations. A new method that uses
autoencoders is proposed in [12]. The main advantage is that
this approach is not limited by the underlying log structure.
Furthermore, the presence of anomalies is not required
during the training phase. One of the primary limitations
of this study is the requirement for normative logs. The
assembly of these logs is a difficult task that is greatly
dependent on the characteristics of the particular system
generating them. In real-life industrial scenarios, log data
can come from various domains. Most deep learning models
are typically trained on data from a single domain which
can lead to poor generalization performance on multi-domain
data. To overcome this problem, the authors of [13] propose
a new framework that is based on two main steps. First, the
model is pre-trained on logs from a particular source domain
to capture domain-specific patterns and features. Then, the
obtained knowledge is transported to the target domain with
the use of shared parameters. This allows the model to adjust
to the new domain while retaining the learned information
from the source domain.

Log files are usually unstructured since developers can
write free text messages into print statements. In the past
few years, various algorithms have been proposed to recover
message types from unstructured logs. Each log line can be
grouped under an event template. The templates are made
from two parts, the constant part, which is the same at
any occurrence, and the parameter part, which might differ.
A new algorithm called Longest Common Subsequent is
proposed in [14]. The log lines are turned into a sequence of
tokens that are identified by unique IDs. After the conversion,
backtracking is used to recover the event templates. The
templates are retrieved based on the assumption that log lines
with equivalent length words on the same positions belong to
the same template in [15]. The authors of [16] propose a new
tree-based template mining technique. Apart from the rate of
matching tokens in two distinct log entries, this algorithm also
contemplates the tokens at which two log entries disagree.

A. LOG CLASSIFICATION
Document classification is fundamental for managing and
ordering large collections of documents, such as contracts,
emails, images or log files. Classification is a prevalent
supervised task of machine learning. The algorithms are
designed to classify the given data points into n number of
different classes based on patterns observed within the data.
The classification of texts is a part of document classification
that deals especially with text. It can be a sentence,
a paragraph, or even the whole document. In addition, the
classification of text data in general is more complex than
document classification because usually it has less context to
work with.With document classification, the entire document
can be viewed as context, while with text classification, only
the text itself can be considered as context.

There are many approaches for automatic document
classification, the most common ones being supervised,

unsupervised, and semi-supervised. For supervised methods,
a training data set with labeled documents is needed to
accurately predict the category of new documents. Con-
ceptually, supervised methods attempt to find a connection
between the document and its corresponding category by
looking at labeled historical data. In contrast to supervised
document classification, in the case of unsupervisedmethods,
a learning dataset is not needed. Instead, they attempt to
classify documents by looking just at the variance between
documents. This results in different clusters that contain
related documents, however, it is unclear for that method
what those clusters (i.e. categories) are. Semi-supervised
involves a mix of supervised and unsupervised methods. The
semi-supervised method takes advantage of both a labeled
training set and unlabeled data and is capable of improving
the performance of supervised and unsupervised document
classification methods.

Our motivation was that a collection of classified log
files could be used for various tasks. They contain valuable
information about the behavior of applications, systems,
components, and networks. By classifying log files, organi-
zations can better understand the performance and general
health of their systems. They can identify patterns, anomalies,
errors, and potential security threats. Log files can take up
serious amounts of storage space, especially in the case of
large-scale systems. With the classification of logs based on
their significance and relevance, organizations can arrange
storage resources and retention policies, ensuring that crucial
logs are kept while less important ones are appropriately
archived or discarded. Many industries and institutions are
subject to regulatory requirements according to data privacy,
security, or compliance. Properly classified log files can
assure that these regulatory requirements are met by the
organizations by providing auditors with clear and cataloged
records of system activities. To implement advanced analytics
techniques such as artificial intelligence or machine learning
log file classification is often an essential task. By structuring
log data in a logical and categorized manner, organizations
can build more precise predictive models, error prediction
systems, and other automated tools to enhance system
management and monitoring.

While log analysis is a well-researched topic [17], [18],
[19] and there are various works on the classification of
the actual log lines for different purposes like anomaly
detection, there is limited literature on the classification of
log files themselves. The authors of [20] identify different
types of firewall log messages with the use of support vector
machines. For the same purposes, the authors of [21] propose
an approach that uses shallow neural networks. The log
files generated by MRI systems usually lack information on
which body region was examined. In [22] pattern recognition
methods are used to classify which body region the log file
corresponds to. The type and the origin of a file are not always
clear or available and sometimes only fragments of a file
are available. In [23] the authors propose a new machine-
learning approach, Semi-Supervised Generative Adversarial
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Networks (SGAN) to combat this problem. Tree methods that
use NLP, statistical features, and one-shot learning to define
a file’s type have been proposed in [24].

In this paper, we study the performance of a new approach
that converts log files into lines that only contain an ID
that corresponds to that line’s event template. This way,
instead of the procession of the full plain text files, we only
have to take the ID-s into action while calculating the Term
Frequency-Inverse Document Frequency (TFIDF) vectors.
The organization of the paper is the following. In Section II
concept of log template mining, the preliminary concepts
and the definition of the classification algorithms, and our
proposed algorithm are presented. The details of the data
we used, the experiments that were performed, and their
explanations are presented in Section III. Lastly, Section IV
contains the conclusions and discusses the different future
possibilities to investigate the matter at hand.

II. CONCEPTS AND PROBLEMS
A. LOG PARSING AND THE PROPOSED ALGORITHM
The entries of a log file are usually unstructured and raw due
to the fact that programmers can insert free-text messages
into their print statements. Each log entry contains runtime
information about events that have happened like restarts,
messages being sent or received, error occurrences, and so
on. A log message usually starts with a list of information like
timestamps, the module name that produced the message, and
others. In this paper, we only focus on the message part. Each
word in a message can be either a constant or a parameter.
A constant token is always the same at each occurrence of
a log line corresponding to an event type. Parameter tokens
can be different on each occasion. A fragment of our working
data can be seen in Figure 1.

The corresponding event template of this log message
is ‘‘Receiving block <*> src: <*> dest: <*>’’. The ‘‘<*>’’
symbols indicate the presence of a parameter token, and the
parameters of this specific entry can be seen in the parameter
list. The template that was just discussed is identified by the
unique ID ‘‘ABC123’’.

In our experiments, instead of using the whole log files
as the input of the classification algorithms, in every file,
we replace each line with its corresponding event template
ID. By reducing the file size significantly, we enhance the
efficiency of calculating Term Frequency-Inverse Document
Frequency (TFIDF) [25] vectors and performing classifica-
tions. This leads to notable reductions in both computational
time and resource usage. Subsequently, the TFIDF vectors
are computed. The core principle here is that various types
of log files contain different event types. Consequently,
we anticipate that TF-IDF vectors derived from the same type
of log file will be similar, whereas vectors from different
types of log files will be distinct. These vectors, generated
from unique identifiers rather than entire lines of text, serve
as inputs for the classification algorithms. Class imbalance
occurs when one class significantly outnumbers the others

in a dataset. This phenomenon can be observed in the case
of our data, which is detailed in Section III. Imbalance can
lead to a model that is biased towards the majority class,
making it perform poorly on the minority class. To deal
with this problem, and achieve better results, we use the
Synthetic Minority Over-sampling Technique (SMOTE) that
was presented in [26]. SMOTE selects examples that are close
to each other in the feature space, draws a line in the feature
space between such examples, and then draws a new sample
at some point along that line. The data obtained this way will
serve as input to the classifier algorithms.

B. DECISION TREE AND RANDOM FOREST
Decision tree learning is a supervised learning method
commonly used in data mining, machine learning, and
statistics [27]. Let’s assume that all of the input attributes
have finite discrete domains, and there is a single target
attribute called the ‘‘classification’’. Classes are the elements
that can be found in the classification attribute’s domain. All
the internal nodes of the decision tree are labeled with an
input attribute. The edges coming from a node labeled with
an input attribute must be labeled with each of the possible
values of the target attribute or the edge has to lead to a
‘‘lower’’ internal node on a different input attribute. Each leaf
of a tree represents a class.

The tree is built by splitting a source set (at first, the root
of the tree) into subsets. The splitting is based on rules on the
different attributes. This process is repeated recursively. The
recursion ends when a subset at a node has all the same values
on the target attribute. This method of top-down induction
of decision trees is a greedy algorithm and one of the most
popular plans of action.

Decision trees tend to overfit their training sets. To correct
this behavior Random Forest was proposed in [28]. It is
a supervised classification method that generates multiple
decision trees during training. Several decision tree classifiers
are being fit on various sub-samples of the dataset. Then,
averaging is used to control the over-fitting and improve the
accuracy of the prediction. An extension of the algorithm was
proposed in [29] that uses bagging. Let X = x1, x2, . . . , xn
be a training set with Y = y1, y2, . . . , yn being the classes.
With bagging, B times a random sample Xb,Yb is selected to
replace the training set and then that sample is being fitted to
the trees by fb. After training, predictions for unseen samples
x ′ is made by averaging the predictions from all the individual
decision trees on x ′:

f =
1
B

B∑
b=1

fb(x ′) (1)

C. K-NEAREST NEIGHBORS (K-NN)
The k-nearest neighbors algorithm is a supervised non-
parametric learning algorithm that can be used for clas-
sification and was proposed in [30] and later broadened
in [31]. Training examples are represented as vectors in
a multidimensional attribute space with each having their
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FIGURE 1. The process of log parsing.

corresponding class label. The attribute vectors and the
labels are stored in the training phase. Let k be a user-
defined constant, generally a small positive integer. In the
classification stage, the test point that is an unlabeled vector
is being classified by a plurality vote of its neighbors. In other
words, the class that is the most frequent among the k
neighbors of the test point is being assigned to it. If k =

1, the assigned class is simply the class of the vector that
is closest to the test point. Various distance metrics like
Minkowski distance [32], Manhattan distance [32], Jaccard
distance [33], Cosine distance, Chebysev distance [34] and
Hamming distance [35] can be used with the algorithm.

The most commonly used distance is the Euclidean
distance:

d(p, q) =

√
(p1 − q1)2 + (p2 − q2)2 + · · · + (pn − qn)2

= ∥p− q∥ (2)

where p and q are points in the space with coordinates
(p1, p2, . . . , pn) and (q1, q2, . . . , qn) respectively.

D. ADABOOST CLASSIFIER
Ada-boost or Adaptive Boosting is an ensemble boosting
classifier that was proposed in 1996 by Yoav Freund
and Robert Schapire [36]. To increase the accuracy of
classification, the base idea is to combine multiple classifiers.
AdaBoost is an iterative ensemble method. By combining
multiple weakly performing classifiers, AdaBoost Classifier
builds a strong classifier with high accuracy. The basic
concept behind Adaboost is to set the weights of classifiers
and train the data sample in each iteration such that it
ensures accurate predictions of unusual observations. As the
base classifier, any machine learning that accepts weights
on the training set can be used. The algorithm works in the
following steps. First, a random subset of the training data
is selected. Then, the model is iteratively trained by electing
the training set based on the accurate prediction of the last

training. A higher weight is assigned to wrongly classified
observations which results in a high probability in the next
iteration for these observations. The trained classifier also
gets assigned a weight based on its accuracy. The better the
accuracy the higher the weight it gets. The iteration process
stops after a specified number of estimators or when the
training data fits without error. To classify a vote is performed
between all of the classifiers that have been built.

The steps of an AdaBoost Classifier with 3 as the number
of estimators can be seen in Figure 2.

FIGURE 2. 3 steps of an AdaBoost Classifier with 3 estimators.

III. EXPERIMENTS AND RESULTS
A. DATA AND EXPERIMENTAL ANALYSIS
Six real-life life log file collections were employed to
evaluate the effectiveness of our proposed algorithm. The
HDFS_v1, BGL, HealthApp, HPC, Proxifier, and OpenSSH
datasets and their corresponding event types were provided
in [37]. For our testing purposes, we assume that we already
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have the event types. Log lines are usually made up of several
parts, like a timestamp, ID, log level, source, and message.
We only use the unstructured message part of the log lines
to classify the files since the other parts are not relevant for
the task. For our testing purposes, we cut them into parts
of the same size. During the partition, the collections were
partitioned into different numbers of log files with different
numbers of log lines per file to better represent the variety of
real-life log files. Overall, 74 files were created. The details
of the data can be seen in Table 1.

TABLE 1. Details of the testing data.

To evaluate the effectiveness of our algorithm, multiclass
classification was used which is the problem of classifying
instances into one of three or more classes. For each instance
in the dataset, the classifier predicts a class label. The number
of instances where the predicted class label matches the true
class label based on the set of test data is the number of true
positives. We performed various experiments, like comparing
the elapsed time, precision, recall, f-score, and accuracy
values achieved by our algorithm and other classifiers.
The result was obtained as an average of 100 different
classification runs. For a set of test data, where the true values
are known, the confusion matrix can be used to indicate the
performance of a classification model. Figure 3 showcases
the structure of such a matrix.

FIGURE 3. Confusion matrix.

where the number of ci (class i) samples that have been
correctly classified as ci by the model is indicated by Tp (True
Positives), Tn (True Negatives) marks the number of samples

that are not ci and have been predicted to be not ci The number
of samples that have been predicted to be ci even though
they are not being represented by Fp (False Positives) and
the number of samples that are ci but have been classified
otherwise is Fn (False Negatives).
The precision of a model quantifies the number of positive

predictions made by that model.

P =
Tp

Tp + Fp
(3)

Recall implies the fraction of relevant samples that were
found.

R =
Tp

Tp + Fn
(4)

To capture both properties, precision, and recall can be
combined into a single measure called F-measure:

F =
2 × P× R
P+ R

(5)

Accuracy indicates the ratio of the data that has been
correctly predicted and is denoted as:

A =
Tp + Tn

Tp + Tn + Fp + Fn
(6)

The abbreviations used in the experiments are shown in
Table 2. The parameters of the Classifiers are shown in
Appendix.

TABLE 2. Abbreviations.

B. EXPERIMENT 1: COMPARING THE PRECISION VALUES
ACHIEVED BY THE DIFFERENT ALGORITHMS
First, the precision values attained by the different classifica-
tion algorithms on the 74 log files were inspected, to measure
the number of the correctly classified log files. The results are
shown in Figure 4, while the numerical results are shown in
Table 3.

It can be seen that the proposed algorithm achieves 20.2%
and 12.5% less score than the original KNN and AdaBoost
Classifier respectively, however, outperforms the original
Random Forest algorithm with 37.1% and the original
Decision Tree Classifier with 10.4%.

C. EXPERIMENT 2: COMPARING THE RECALL VALUES
ACHIEVED BY THE DIFFERENT ALGORITHMS
To estimate the algorithm’s ability to find all relevant
instances of a class in a dataset we investigated the recall

VOLUME 12, 2024 96383



P. Marjai, A. Kiss: Usage of Template Mining in Log File Classification

FIGURE 4. Precision achieved by the different algorithms.

values that were achieved by the classification algorithms.
The results can be seen in Figure 5 and Table 3.

FIGURE 5. Recall achieved by the different algorithms.

The proposed algorithm falls behind with 17.3% and 9.2%
in the case of KNN and AdaBoost Classifier while achieving
better scores than the Random Forest and Decision Tree
Classifiers with 27.8% and 10%.

D. EXPERIMENT 3: COMPARING THE F-SCORE VALUES
ACHIEVED BY THE DIFFERENT ALGORITHMS
In this experiment, the F-score, which combines the prop-
erties of both the precision and recall achieved by the
different measures were compared. The results are presented
in Figure 6 and Table 3

FIGURE 6. F-score achieved by the different algorithms.

As in the previous experiments, the proposed algorithm
is outperformed by the KNN and AdaBoost Classifiers with
23.1% and 11.9%. On the other hand, the proposed algorithm
once again has better scores than the Random Forest and
Decision Tree Classifiers with 33.7% and 10.6%.

E. EXPERIMENT 4: COMPARING THE ACCURACY VALUES
ACHIEVED BY THE DIFFERENT ALGORITHMS
The closeness or farness of a given set of measurements
(reading, observations, etc.) from their true value is indicated
by the accuracy, which we investigated in this experiment.
The results can be seen in Figure 7 and Table 3.

FIGURE 7. Accuracy achieved by the different algorithms.

Once again, the original KNN and AdaBoost Classifiers
have greater values like 21% and 6% respectively. Just
as before, the original Random Forest and Decision Tree
classifiers have achieved worse values with 14.7% and 6.5%.

TABLE 3. Details of the results.

F. EXPERIMENT 5: COMPARING THE SPEED OF THE
DIFFERENT ALGORITHMS
The precision, recall, f-score, and accuracy values achieved
by an algorithm are essential, however, the time it takes for
an algorithm to classify the log files is also an important
measure, especially when numerous log files have to be
classified. In this experiment, the run time of the different
methods was investigated. The results are shown in Figure 8
and in Table 3.

It can be seen that the classification algorithms that are
applied to our simplified data (log files only consisting of
event IDs instead of the original log messages) need at least
52 to 59 times less time to classify the log files. Out of the
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FIGURE 8. The speed of different algorithms.

TABLE 4. ML parameters.

original algorithms, AdaBoost Classifier proved to be the
slowest.

G. OUR RESULT
Apart from the Decision Tree Classifier, the high accuracy
values indicate that both the original models and the ones
that are used with our proposed algorithm correctly predict
the class labels. The high precision and recall values signal
that there are large numbers of true positive classifications
that were correctly identified. This is confirmed by the
F-scores. The above-mentioned results demonstrate that the
classification is meaningful. If the average of the first four
experiments (precision, recall, f-score, accuracy) is taken,
it can be seen that our proposed algorithm used with any
of the classification methods achieves better results than the
original RandomForest and Decision Tree classifiers. The
proposed algorithm usedwith KNN andAdaBoost Classifiers
falls behind the original algorithms in the case of performance
with around 20% and 10% respectively. The main advantage
of the use of the proposed algorithm is that the time that is
needed to classify the log files is 52, and 59 times less which
can pay off, especially in the case of large and less crucial
types of log files.

In [20] the authors propose four multiclass support vector
machine (SVM) classifiers to classify information based
on log files. Based on their experiments, they came to a
conclusion that SVM used with RBF activation is the best

suited for the task. This approach achieved a 76.4% of F-
score, 63% of precision, and 97.1% of recall. The speed
of their algorithm is not investigated in their paper. It can
be said that classifiers used in pairs with our proposed
method achieve better results than the one proposed in the
aforementioned paper. To determine the type of a file, the
authors of [23] use byte values, distribution, and frequency
as input features to classifiers. Apart from measuring the
performance of traditional methods like Decision Tree
classifiers or KNN, they propose a new approach using neural
networks, specifically Semi-Supervised Generative Adver-
sarial Networks (SGAN). Their study, however, does not
investigate precision, recall, or F-scoremetrics, only accuracy
is reported. On their data, the Decision Tree classifier, KNN,
and SGAN have accuracy values of 90.7%, 89%, and 97.6%
respectively. The SGAN method outperforms the individual
classifiers paired with our proposed method. However, the
time required for classification with SGAN has not been
investigated. It is conceivable that SGAN demands more time
for classification compared to our proposed method, which
achieves results in a significantly short duration.

IV. CONCLUSION
The classification of log files with different origins has
become an important assignment in recent years. They are
made up from log lines that are usually free-text messages
with parameters. Each line belongs to an event type. An event
type is a template, where the constant part of the template is
the same at any occurrence, while the parameter parts might
change.

Classifying log files with full-length log messages is a
resource and time-consuming task. To combat this, in this
paper, we propose a new algorithm designed to modify log
files, which are subsequently used as input for classification
algorithms. Our algorithm alters the log files to only contain
the IDs of the event types instead of the full text.

To evaluate the performance of the classification methods
that had the modified files as their input, we conducted
various experiments like investigating the precision, recall, f-
score, and accuracy values achieved during the classification.
The results yielded that in the case of KNN and AdaBoost
Classifier, the original algorithms outperformed the ones
using the proposed algorithm with an average of 20% and
10% respectively. In the case of Random Forest, and Decision
Tree Classifiers, the ones with the input generated by the
proposed algorithm have surpassed their original counterpart
with an average of 28% and 9%.In terms of speed, the
classification takes 52 to 90 times less time, if the altered log
files created by our proposed algorithm are used as input for
the classifiers.

Our main contribution is that while the proposed algorithm
might lead to slightly reduced classification accuracy when
used alongside certain classifiers, it significantly decreases
the time required for file classification by several magnitudes.

We only evaluated the performance of a set of classification
algorithms, in the future, it could be beneficial to investigate
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the performance of other methods. It would be also beneficial
to use the altered log files as input for machine learning
algorithms like CNN or LSTM.

APPENDIX
ML PARAMETERS
See Table 4.
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