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ABSTRACT The advancement in quantum computing has led to a significant progress in the development
of public-key cryptosystems, referred as Post Quantum Cryptography (PQC) which has robust security to
withstand both classical and quantum attacks. Lattice-based cryptography, one of the most promising PQC
candidate offers low complexity and has strong security proof relying on the hardness of Learning-with-
errors (LWE) problem. A variant of LWE, Ring-learning-with-error (RLWE) performs arithmetic operations
over a polynomial ring and has more efficient implementations compared to LWE. Recent works propose
Binary-ring-learning-with-error (BRLWE), a new variant of RLWE which has less key size and more
efficient implementations compared to both LWE and RLWE-based schemes. In this paper, an algorithm is
developed for BRLWE-based scheme based on decomposing the arithmetic operationH .L mod(xn+1)+M
into desired number of segments. The arithmetic operation includes polynomial multiplication and addition
over the ring xn + 1 where H andM are two integer polynomials and L is a binary polynomial. We illustrate
two efficient hardware architectures Dual-LFSR (DL) and Quad-LFSR (QL) to enable parallel execution
of individual segments employing LFSR structures to have a significant reduction in latency compared to
the existing works. Despite of having larger area, the reduction in latency leads to an improvement in other
performance metrics such as delay, Area-Delay Product (ADP), Power-Delay Product (PDP), throughput
and efficiency making the proposed structures well suitable for PQC schemes. Experimental results show
that the proposed architectures when compared with the recently reported work has 23% and 25% ADP
improvement with DL and QL structures respectively when n = 256.

INDEX TERMS Post quantum cryptography (PQC), lattice-based cryptography (LBC), polynomial
multiplication, learning-with-error (LWE), ring-learning-with-error (RLWE), binary-ring-learning-with-
error (BRLWE).

I. INTRODUCTION
The advent in quantum computing placed a significant
demand for the development of public-key cryptosystems that
can withstand security against quantum attacks. The accom-
plishment of quantum algorithms such as Shor’s algorithm
can factorize large numbers and break the widely used
public-key cryptosystems namely Rivest Shamir Adleman
(RSA) and Elliptic Curve Cryptography (ECC) [1], [2]. This
leads to the field of Post Quantum Cryptography (PQC)
to develop robust algorithms that could resist all possible
classical and quantum attacks. In this view, the National
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Institute of Standards and Technology (NIST) has initiated
the Post Quantum Cryptography (PQC) standardization
process to resist both classical and quantum attacks. There
are many PQC schemes such as lattice-based, code-based,
hash-based, isogeny-based, and multivariate-quadratic cryp-
tographic schemes [3]. Amongst all the PQC standardization
processes, lattice-based cryptography (LBC) is considered as
the most promising one due to its efficient implementations
and strong security proof relying on the hardness of Learning
with Error (LWE) [4], [5].

LWE, first introduced by Regev in 2005, is a compu-
tationally hard problem involving complex matrix-vector
multiplication. Ring-learning-with-error (RLWE), a variant
of LWE comprises less key size compared to original
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LWE and performs arithmetic operations over a polynomial
ring. A new variant of RLWE, Binary-ring-learning-with-
error (BRLWE) comprises less key size and involves much
more efficient implementations compared to both LWE
and RLWE-based schemes. This scheme is similar in
comparison to RLWE-based scheme, but it uses binary
errors instead of Gaussian distributed errors in RLWE-based
scheme [6]. Recently, some works have been proposed on the
low-complexity implementation of BRLWE-based schemes
[3], [6], [7], [8], [9], [10], [11], [12], [13], [14].

Some of the recent works comprising BRLWE-based
schemes are as follows: BRLWE was first proposed in [7]
with software implementation by replacing Gaussian noise
distribution in RLWE-based schemes with a binary distribu-
tion. In 2018, a significant development is made by designing
an efficient hardware implementation for BRLWE-based
scheme in [8]. It ensures resistance to side-channel attacks by
addressing certain aspects of DPA (Differential Power Analy-
sis) and SPA (Simple Power Analysis) attacks. It has less area
and high performance compared to the previous LWE-based
architectures [15], [16] and RLWE-based architectures [17],
[18], [19], [20]. In 2019, Ebrahimi et al. proposed a pair
of hardware architectures: high speed and ultra-lightweight
for IoT devices with limited resources and edge computing
capabilities in [9]. They less area-time product compared to
the best of previous RLWE implementations [17], [19], ECC
implementations [21] and the other BRLWE implementation
[8]. However, the work in [8] and [9] do not report their algo-
rithms. In 2020, high-level synthesis (HLS)-based design-
space exploration of PQC implementations was proposed
in [10]. It comprises a serial processing structure with circular
shift register but do not have proper sign control unit for
performing polynomial multiplication. It has less Area-Delay
Product (ADP) compared to [9]. In 2020, the work proposed
in [22] demonstrates Differential Power Analysis (DPA)
masking countermeasures for BRLWE-based schemes with
a substantial improvement in speed and efficiency by
eliminating PRNG module. Though, it consumes more
resources due to the redundancy of operating modules which
is required to offer more resistance to SPA and DPA attacks,
it has a greater speed compared to the other works [17],
[19] and an increased efficiency compared to [8]. In 2021,
an implementation based on look-up-table structure was
proposed by Xie and He in [11]. By precomputing and
storing the results in tables, this technique simplifies finite
field arithmetic operations and reduces the computational
complexity involved in modular arithmetic computations.
It has less ADP compared to [9]. The implementation
proposed in [13] performs column-based multiplication with
anti-circular rotation. Employing this method, multiplication
is done column-wise, with one rotation executed per cycle.
It is suitable for resource ultra-constrained applications and
has less area-time product compared to [8]. The work
proposed by He and Guin in [6] assumes the input is
directly fed to the multiplexer. It is particularly suitable for
resource ultra-constrained applications and has less ADP

compared to [9]. The implementation proposed in [12]
uses grouping of input coefficients to load the inputs in
parallel to the processing blocks. Though this structure has
an additional sign control unit, it has less ADP compared
to the other BRLWE-based schemes [8], [9] and RLWE-
based scheme [23]. In 2022, another pair of low-complexity
and high-speed architectures are proposed in [14] suitable
for lightweight applications and has less ADP compared
to [6], [9], and [11]. The work proposed by Imana et al.
in [3] comprises two efficient hardware architectures using
Linear Feedback Shift Register (LFSR) structures. The
first architecture increases processing speed whereas the
second architecture effectively reduces area-complexity.
These structures have less ADP compared to [8], [9], and
[12]. A pair of hardware architectures, high-performance and
lightweight are proposed in [24] for IoT terminal devices
based on re-defined decryption function by analyzing the
overflow and noise polynomial effect on the discriminant
interval. The decryption accuracy is significantly increased
compared to the other works [6], [8], [9], [13], [17],
[22]. In 2023, a hardware implementation is proposed by
Karim et al. in [25] comprising column-based multiplication
technique where two consecutive coefficients are processed
in each cycle to improve the computational efficiency.
It has less ATP compared to the other works [6], [8], [13],
[14]. The implementation proposed in [26] is suitable for
resource-constrained applications where a two-level com-
putation technique is employed for performing polynomial
multiplication and it has less ADP compared to the other
works [6], [13], [24].

Though significant progress has been made in
BRLWE-based schemes, the ADP of these works can further
be improved. In this paper, we aim to propose efficient
architectures comprising multiple LFSR structures for
performing arithmetic operation HL + M over a polynomial
ring xn+1 whereH andM are two integer polynomials, L is a
binary polynomial and n is the highest degree of polynomial.
The major contributions of this work are stated as follows:

• A desired algorithm is obtained by breaking down the
required mathematical operations for performing the
arithmetic operation HL +M into smaller segments.

• Two efficient hardware architectures Dual-LFSR (DL)
and Quad-LFSR (QL) are proposed for BRLWE-based
scheme employing parallel processing technique to
reduce the computational time 1.6× and 2.7× compared
to [9].

• The reduction in latency of the proposed structures
yields to a significant improvement in the other per-
formance metrics such as delay, Area-Delay Product
(ADP), Power-Delay Product (PDP), throughput and
efficiency compared to the existing works [3], [9], [12].

Following the previous reports [3], [6], [7], [8], [9], [11],
[13], we choose the set of parameters comprising (n, q) as
(256, 256) and (512, 256) respectively.

The rest of the paper is organized as follows: Section II
introduces preliminaries, Section III gives algorithm
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formulation, Section IV includes the proposed architecture,
and Section V comprises results and discussions. Finally,
we conclude the paper with conclusions given in Section VI.

II. PRELIMINARIES
In 2009, Regev et al. introduced a new lattice-based cryp-
tosystem relying on the mathematical hardness of Learning
with errors (LWE) problem [27]. The search version of the
LWE problem is to determine the secret s from a linear
combination a.s+e, where a is a known value and e is an error
introduced according to certain distribution such as Gaussian
or binary.

As it is computationally infeasible to determine s from
the linear equation, a new variant of LWE scheme, named
as Ring-LWE (RLWE) was introduced in 2010 [28]. It uses
ideal lattices and the arithmetic operations such as addition
and multiplication are performed over the polynomial ring Rq
where Rq = Zq/f (x) and f (x) is an irreducible polynomial.
Considering f (x) = xn + 1 causes the elements within
the ring to shift in anti-circular rotation. It requires less
key size and is considered to be more efficient for both
software and hardware implementations compared to LWE-
based schemes. In RLWE-based schemes, the addition is a
simple operation carried out element-by-element followed
by modular reduction whereas multiplication is a complex
operation. Though, there are different techniques to perform
polynomial multiplication such as Toom Cook, Karatsuba,
Schoolbook and Number Theoretic Transform (NTT), NTT-
based polynomial multiplication is considered to be an
efficient technique in RLWE-based schemes. Apart from the
addition and multiplication modules, this scheme generates
errors using discrete Gaussian distribution. As the imple-
mentation of this module is expensive, it is not suitable for
resource constrained devices.

In 2016, a new variant of RLWE-based scheme named
Binary-RLWE (BRLWE) has been proposed to overcome the
drawback of RLWE-based schemes by replacing Gaussian
errors with binary errors. Hence, this BRLWE-based scheme
does not require Gaussian distribution and NTT-based
polynomial multiplication resulting in a reduced key size and
low complexity implementation compared to both LWE and
RLWE-based schemes [6], [29]. It takes the advantage of
representing the coefficients of integer polynomial in inverted
range (⌊−q

2 ⌋, ⌊
q
2⌋ − 1), where the modular addition and

subtraction operations could be performed efficiently without
any extra reduction unit [12].
Security of BRLWE-Based Schemes: It relies on the basis

of average case hardness and achieves 73 bits and 140 bits
of quantum security for the set of parameters (n, q) =

(256, 256) and (512, 256) respectively.
In this section, we have a brief discussion on the

operational phases involved in BRLWE-based scheme as
follows:

A. KEY GENERATION
This step comprises the calculation of the public key, p =

r1 − a.r2, where r1 and r2 are random binary polynomials, r2
is the secret key, a is a global parameter that is shared by the
two parties [14].

B. ENCRYPTION
The input message comprising 0′s and 1′s is encoded
into a polynomial m̃ by multiplying each coefficient with
q/2. In this phase ciphertexts c1 and c2 are generated by
performing the operations: c1 = ae1 + e2 and c2 = pe1 +

e3 + m̃, where e1, e2 and e3 are random binary polynomials
and m̃ is the encoded message.

C. DECRYPTION
The original message is decrypted back in this phase by
computing c = c1r2 + c2 and applying the result to
the threshold decoder function, which returns ′1′ if the
coefficients lie within the range of (q/4, 3q/4), else ′0′.

From all these operational phases (key generation, encryp-
tion and decryption) we identify the key arithmetic operation
in each phase of BRLWE-based scheme involves polynomial
polynomial multiplication and polynomial addition. In the
next sections, we derive an algorithm and design efficient
architectures for performing the key arithmetic operation
(polynomialmultiplication and addition) in cryptoprocessors.

III. ALGORITHM FORMULATION
In this section, we derive an algorithm to perform the
arithmetic operation H .L mod(xn + 1) + M involved in
BRLWE-based scheme. The conventional algorithm [3] is
modified considerably by splitting the computations into
smaller segments required for parallel executions. Let us
consider the equation

W = HL mod(xn + 1) +M (1)

where H and M are integer polynomials and L is a binary
polynomial given by H =

∑n−1
i=0 hi.x

i, L =
∑n−1

i=0 li.x
i,M =∑n−1

i=0 mi.x
i, W =

∑n−1
i=0 wi.x

i

From the integer polynomial H , we express the following
terms Hx, Hx2, . . . ., Hxn−1 considering xn ≡ −1.

HxY = −hn−1 + h0.x + h1.x2 + . . . .. + hn−2.xn−1,

Hx2 = −hn−2 − hn−1.x + h0.x2 + . . . .. + hn−3.xn−1,

. . . ..

Hxn−1
= −h1 − h2.x − h3.x2 − . . . .. + h0.xn−1 (2)

We consider [Hx i]j as jth coefficient of integer polynomial
Hx i (For example, [Hx0]0 = h0, [Hx1]0 = −hn−1).
On multiplying the two polynomials, H and L we obtain

the resultant as shown below:

HL = h0(l0 + l1.x + l2.x2 + . . . .. + ln−1.xn−1)

+ h1.x(l0 + l1.x + l2.x2 + . . . .. + ln−1.xn−1)

+ h2.x2(l0 + l1.x + l2.x2 + . . . .. + ln−1.xn−1)
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+ . . . . . . hn−1.xn−1(l0 + l1.x + l2.x2

+ . . . .. + ln−1.xn−1) (3)

The Eqn. 3 is the resultant of multiplication between two
polynomials H and L with highest degree 2n − 2. Further,
as we have (xn ≡ −1), Eqn. 3 is simplified as follows:

HL mod(xn + 1)

= h0(l0 + l1.x + l2.x2 + . . . .. + ln−1.xn−1)

+ h1(l0.x + l1.x2 + l2.x3 + . . . .. − ln−1)

+ h2(l0.x2 + l1.x3 + l2.x4 + . . . .. − ln−2 − ln−1.x)

+ . . . . . . hn−1.(l0.xn−1
− l1 − l2.x + . . . .. − ln−1.xn−2)

(4)

It can be further simplified as follows:

HL mod(xn + 1)

= (h0.l0 − h1.ln−1 − h2.ln−2 − . . . . − hn−1.l1)

x(h0.l1 + h1.l0 − h2.ln−1 − . . . . − hn−1.l2)

+ x2(h0.l2 + h1.l1 + h2.l0 − h3.ln−1 − . . . . − hn−1.l3)

+ . . . . . . xn−1(h0.ln−1 + h1.ln−2 + h2.ln−3

+ . . . .. + hn−1.l0) (5)

The obtained Eqn. 5 is the conventional equation derived
as a result of multiplying the polynomials H and L over the
polynomial ring xn+1. The termsHx,Hx2, . . . ..,Hxn−1 from
Eqn. 2 are replaced in Eqn. 5 as follows:

HL mod(xn + 1)

=

n−1∑
i=0

[Hxn−1]iln−1−i + x(
n−1∑
i=0

[Hxn−2]iln−1−i)

+ x2(
n−1∑
i=0

[Hxn−3]iln−1−i) + . . . .. + xn−1(
n−1∑
i=0

[H ]iln−1−i)

(6)

In our work, we decompose the coefficients of Eqn. 6 into
parallel segments such that each and every individual segment
can be executed simultaneously.
For example, we decompose the coefficients of Eqn. 6 into

two segments as follows:

HL mod(xn + 1)

=

n/2−1∑
i=0

[Hxn−1]iln−1−i +

n−1∑
i=n/2

[Hxn−1]iln−1−i

+ x(
n/2−1∑
i=0

[Hxn−2]iln−1−i +

n−1∑
i=n/2

[Hxn−2]iln−1−i)

+ x2(
n/2−1∑
i=0

[Hxn−3]iln−1−i +

n−1∑
i=n/2

[Hxn−3]iln−1−i)

+ . . . .. + xn−1(
n/2−1∑
i=0

[H ]iln−1−i +

n−1∑
i=n/2

[H ]iln−1−i) (7)

As shown in the Eqn. 7 the coefficients of polynomial
multiplication are split into two groups to perform parallel
executions. The obtained resultant is added to the coefficients
of integer polynomial M to get the desired functionality as
shown below:

HL mod(xn + 1) +M

=

n/2−1∑
i=0

[Hxn−1]iln−1−i +

n−1∑
i=n/2

[Hxn−1]iln−1−i + m0

+ x(
n/2−1∑
i=0

[Hxn−2]iln−1−i +

n−1∑
i=n/2

[Hxn−2]iln−1−i + m1)

+ x2(
n/2−1∑
i=0

[Hxn−3]iln−1−i +

n−1∑
i=n/2

[Hxn−3]iln−1−i + m2)

+ . . . . . . + xn−1(
n/2−1∑
i=0

[H ]iln−1−i

+

n−1∑
i=n/2

[H ]iln−1−i + mn−1) (8)

Algorithm 1Algorithmic Operation for Parallel Execution of
HL +M in Polynomial Ring Zq/(xn + 1)
Input: H , M and W are integer polynomials.
(coefficients ∈ Zq); L is a binary polynomial.
d determines the number of parallel processing segments (d
is an even number)
Output: W = HL mod(xn + 1) +M
Initialization step:
W =

∑n−1
i=0 wix

i;
Main step:
1: for j = 0 to n− 1 do
2: for i = 0 to n/d − 1 do
3: wj = wj +

∑d−1
s=0 [Hx

i+s.n/d ]j.li+s.n/d ;
4: end for
5: end for
W = W +M;

Final step:
Deliver all the coefficients of W serially.

The same concept can be extended by decomposing the
coefficients of Eqn. 6 into four segments as follows:

HL mod(xn + 1) +M

=

n/4−1∑
i=0

[Hxn−1]iln−1−i +

n/2−1∑
i=n/4

[Hxn−1]iln−1−i

+

3n/4−1∑
i=n/2

[Hxn−1]iln−1−i +

n−1∑
i=3n/4

[Hxn−1]iln−1−i + m0

+ x(
n/4−1∑
i=0

[Hxn−2]iln−1−i +

n/2−1∑
i=n/4

[Hxn−2]iln−1−i
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+

3n/4−1∑
i=n/2

[Hxn−2]iln−1−i +

n−1∑
i=3n/4

[Hxn−2]iln−1−i + m1)

+ . . . .. + xn−1(
n/4−1∑
i=0

[H ]iln−1−i +

n/2−1∑
i=n/4

[H ]iln−1−i

+

3n/4−1∑
i=n/2

[H ]iln−1−i +

n−1∑
i=3n/4

[H ]iln−1−i + mn−1) (9)

The proposed Eqns. 8 and 9 are obtained by splitting
the coefficients of conventional Eqn. 6 into two and four
segments respectively. However, the coefficients of Eqn. 6
can be decomposed to any number of even segments as shown
in Algorithm 1. The number of parallel processing segments
are determined by variable d where d is an even number as
shown in line 3 of Algorithm 1. In our work, we consider
d = 2 and d = 4 for splitting the coefficients of polynomial
multiplication into two and four segments as illustrated by
Eqns. 8 and 9 respectively.

To illustrate the functionality for performing the arithmetic
operationW = HL mod(xn + 1)+M , we consider a sample
value of n = 8. Based on the conventional Eqn. 5, we obtain
Eqn.10 by replacing n with 8 as follows:

HL mod(x8 + 1) = (h0.l0 − h1.l7 − h2.l6 − . . . . − h7.l1)

+ x(h0.l1 + h1.l0 − h2.l7 − . . . . − h7.l2)

+ x2(h0.l2 + h1.l1 + h2.l0 − h3.l7 − . . . . − h7.l3)

+ . . . . . . x7(h0.l7 + h1.l6 + h2.l5 + . . . .. + h7.l0) (10)

The coefficients of polynomial M are added to the corre-
sponding coefficients of Eqn. 10 to get the desired polynomial
W . The coefficients of polynomialW (w0,w1,w2,w3,w4,w5,
w6,w7) are represented in Table 1.

The coefficients in Eqn. 10 are splitted into two segments
considering d = 2 in line 3 ofAlgorithm 1. The coefficientw0
is splitted into two segments following Eqn. 8 for performing
polynomial multiplication and later the coefficient m0 is
added as shown below:

w0 =

3∑
i=0

[Hx7]il7−i +
7∑
i=4

[Hx7]il7−i + m0 (11)

As per Eqn. 11 the first segment is (h0.l0 − h7.l1 −

h6.l2 − h5.l3) and the second segment is (−h4.l4 − h3.l5 −

h2.l6 − h1.l7). These two segments are executed in four
parallel computations given as follows: h0.l0, −h4.l4 in the
first computation, −h7.l1, −h3.l5 in the second computation,
−h6.l2, −h2.l6 in the third computation and −h5.l3, −h1.l7
in the fourth computation. The result of all the four
computations is added to the coefficient m0. Similarly, the
remaining coefficients of W are obtained as shown in Fig. 1.

The same concept can be extended to split the coefficient
w0 into four segments following Eqn. 9 as shown below:

w0 =

1∑
i=0

[Hx7]il7−i +
3∑
i=2

[Hx7]il7−i

FIGURE 1. Representation of polynomial multiplication equation into two
segments while considering a sample value of n = 8.

FIGURE 2. Representation of polynomial multiplication equation into
four segments while considering a sample value of n = 8.

+

5∑
i=4

[Hx7]il7−i +
7∑
i=6

[Hx7]il7−i + m0 (12)

As per Eqn. 12 the four segments are (h0.l0 − h7.l1),
(−h6.l2 −h5.l3), (−h4.l4 −h3.l5) and (−h2.l6 −h1.l7). These
four segments are executed in two parallel computations
given as follows: h0.l0, −h6.l2, −h4.l4, −h2.l6 in the first
computation and−h7.l1,−h5.l3,−h3.l5,−h1.l7 in the second
computation. The result of these computations is added to the
coefficientm0. Similarly, the remaining coefficients ofW are
obtained as shown in Fig. 2. In Eqns. 11 and 12, we have
considered decomposing polynomial multiplication into two
and four segments considering a sample value of n = 8 to
understand the computations clearly. The same concept can
be extended to any value of n and any level of parallelism.
Based on the splitting of polynomial equation into two

and four segments, we propose two efficient hardware
architectures namely Dual-LFSR (DL) and Quad-LFSR (QL)
structures respectively. We follow the set of parameters
(n, q) = (256, 256) and (512, 256) in our work following
the existing works. These architectures will be discussed in
Section - IV.

IV. PROPOSED ARCHITECTURES
The algorithmic formulation for performing arithmetic
operation HL + M over a polynomial ring xn + 1 is
described in Section III. In this section, we use these
computational details to propose efficient architectures
employingDual-LFSR (DL) andQuad-LFSR (QL) structures
used in BRLWE-based scheme. The proposed architectures
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TABLE 1. Computation of HL mod (x8 + 1) + M.

undergo parallel execution of LFSR structures to reduce
the computational time. Architecture I of [3] is modified
considerably by providing coefficients of integer polynomial
as parallel inputs and coefficients of binary polynomial as
serial inputs to Dual and Quad LFSR structures. However,
due to doubling and quadrupling the LFSR structures, the
input and output processing setup differs in our work.
In addition, we eliminate multiplexers in our architecture
and the coefficients of integer polynomial are added at
the later stage with carry save adder. We do not require
any precomputation for performing 2’s complement of
input coefficients or additional clock cycles required for
loading these precomputed 2’s complement input coefficients
for addition operation as compared to [3]. Though, this
work yields to an increase in the hardware resources due
to doubling and quadrupling the structures, it has less
computational time compared to the other works. The
reduction in computational time improves other performance
metrics such as delay, Area-Delay Product (ADP), Power-
Delay Product (PDP), throughput and efficiency compared
to the existing works.

The modular addition in the proposed structure does
not require any extra modular reduction unit. This can be
illustrated as follows: We consider the parameter for finite
ring modulo q = 256 and bit width k = log2q = 8. While
performing modular addition operation, the maximum value
of result is 2k − 1 = 28 − 1 = 255, and any value beyond
255 would be automatically truncated as it exceeds the bit
size which is 8. Hence, though there is no reduction unit, the
result is obtained within the finite ring modulo q = 256.
A finite state machine (FSM) controller is used for the

proposed structures to generate control signals required
for performing the input loading, processing and output
delivery of the coefficients as shown in Fig. 3. It has three
states s0, s1 and s2 with internally generated controlled
signals load , start and done. The state s0 is an initial state
with no input coefficients. When the control signal load
is enabled, it moves to state s1 where the coefficients of
polynomials H are loaded. As long as it is in state s1, the
control signal done = 0. After the input coefficients of
polynomial H are loaded, the start signal is enabled, and it
moves to the next state s2. During this state, the coefficients
of polynomial L are loaded and the entire computations
for polynomial multiplication are performed. Once, the
results of polynomial multiplication are obtained, done signal

is enabled and moves to the next state s0. By this process,
the results are carefully retrieved by eliminating unwanted
operations. Further, the results obtained from polynomial
multiplication are added to the coefficients of polynomial M
and decryption operation is performed.

FIGURE 3. FSM controller.

The functionality of the DL and QL structures would be
discussed in this section.

A. DUAL LFSR (DL) STRUCTURE
In this structure we perform the functionality ofHL mod(xn+
1) + M using two LFSR structures. The computations can
be decomposed into two segments as shown in Fig. 1 while
considering a sample value of n = 8. These two segments
can be executed simultaneously by using two LFSR structures
and added with the coefficients of integer polynomial M .
A sample value of n = 8 has been considered to understand
the computations clearly and the same procedure can be
extended for any value of n.

Following these computations, we propose an efficient
hardware architecture employing a dual linear feedback
structure (DL structure) which performs parallel executions
in the two LFSR structures to reduce the computational time.
The top-level design and the detailed architecture are as
shown in Figs. 4 and 5 respectively [4]. The architecture
comprises:
(i) a serial-in-parallel-out shift register where the coeffi-

cients of integer polynomial H are loaded serially into the
shift register and delivered parallelly to LFSR structure-1 and
LFSR structure-2 respectively.
(ii) two serial-in-serial-out shift registers to load the

binary polynomial L. The coefficients of binary polyno-
mial L are split into two halves where the first half of
the coefficients l0, l1, l2, . . . ., ln/2−1 are loaded through a
shift register and the remaining half of the coefficients
ln/2, ln/2+1, ln/2+2, . . . .ln−1 are loaded through another shift
register.
(iii) two LFSR structures where each LFSR structure

comprise a series of AND cells, registers, and adders.
The functionality for performing the arithmetic operation
H .L + M is obtained by decomposing the polynomial
multiplication operation into two segments. These segments
are executed parallelly by LFSR structure-1 and LFSR
structure-2 respectively.
(iv) a sign control unit consisting of a multiplexer,

incrementer and inverter in the feedback section of LFSR
structures. As we consider the polynomial ring xn + 1, poly-
nomial multiplication equations are obtained by considering
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FIGURE 4. Top level description for the proposed Dual-LFSR (DL)
structure performing the functionality H.L mod (xn + 1) + M.

xn ≡ −1. This results in a negative sign as observed from the
Eqn. 8 and is obtained by performing 2′s complement of that
particular number and selected by multiplexers Mux 1 and
Mux 2 respectively.
(v) a shift register to load the coefficients of integer

polynomial M required for addition and
(vi) a carry save adder (CSA) to add the resultant of LFSR

structures to the coefficients of integer polynomial M .
The working procedure is discussed in the following steps:

1) LOADING COEFFICIENTS OF INTEGER POLYNOMIAL H
The coefficients of integer polynomial H are loaded to the
two LFSR structures for enabling parallel computations.
As per line 3 of Algorithm 1, we obtain the coefficients of
H in two segments considering d = 2. The first segment
containsH in the order h0, h1, . . . ., hn−1, whereas the second
segment contains the order −hn/2, −h1+n/2, . . . , hn/2−1.
Based on this grouping, we provide parallel inputs of H as
shown in Fig. 5. The input coefficients h0, h1, . . . ., hn−1 are
fed to LFSR structure-1 and −hn/2, −h1+n/2, . . . , hn/2−1 are
fed to LFSR structure-2 respectively. The negative values
of the coefficients hi (i.e., −hn/2, −h1+n/2, . . . ,−hn−1) are
obtained by inverting the values and adding 1 to it. During
this process of loading parallel coefficients, we intend to load
only the coefficients of polynomial H by making the other
input of AND gate 0 for preventing unwanted operations.

2) PERFORMING COMPUTATION HL+M
During this process, the coefficients of binary polynomial L
are loaded into the two LFSR structures.We obtain the coeffi-
cients of L in two segments such as l0, l1, l2, . . . .., ln/2−1 and
ln/2, ln/2+1, ln/2+2, . . . .., ln−1 as per line 3 of Algorithm 1.
The coefficients l0, l1, l2, . . . .., ln/2−1 are loaded into LFSR
structure-1 and ln/2, ln/2+1, ln/2+2, . . . .., ln−1 are loaded into
LFSR structure-2 serially. As the two LFSR structures are
identical, we have the same functionality in these structures.
However, though the structures are identical, they are loaded

with different set of inputs. Hence, we find the computational
details for each LFSR structure separately.

The computational details for LFSR structure-1 and LFSR
structure-2 are as shown in Table 2 and Table 3 respectively
considering a sample value of n = 8. Since n = 8, we con-
sider only eight registers r0, r1, r2, r3, r4, r5, r6 and r7 in
LFSR structure-1, and registers rr0, rr1, rr2, rr3, rr4, rr5, rr6
and rr7 in LFSR structure-2. Following line 3 of Algorithm 1,
we give the inputs h0, h1, h2, h3, h4, h5, h6 and h7 having
the same sign to LFSR structure-1. These coefficients
are multiplied with the coefficients of binary polyno-
mials l3, l2, l1, l0 at each clock cycle. At clock cycle
t1, we have multiplication of the coefficients given by
h0.l3, h1.l3, h2.l3, h3.l3, h4.l3, h5.l3, h6.l3, h7.l3 held at reg-
isters r0, r1, r2, r3, r4, r5, r6, r7 respectively as shown in
Table 2. From the next clock cycle i.e., t2 the output of
last register is fed back to the left most register in 2′s
complement form (for sign reversal) following Eqn. 11. This
is indicated by ĥ7.l3 at the clock cycle t2, ĥ6.l3 + ĥ7.l2 at
clock cycle t3, and ĥ5.l3 + ĥ6.l2 + ĥ7.l1 at clock cycle t4.
Considering n = 8, we require n/2 = 4 clock cycles for
performing our computation by loading l3, l2, l1, l0 at each
clock cycle. Since the two LFSR structures are identical the
same functionality is observed in LFSR structure-2. Here,
we give the inputs −h4, −h5, −h6, −h7, h0, h1, h2 and h3
consisting of both positive and negative signs. We represent
negative sign coefficients with 2′s complement form of that
particular coefficients as shown in Table 3. So, we give the
inputs ĥ4, ĥ5, ĥ6, ĥ7, h0, h1, h2 and h3 to LFSR structure-2.
Now, we have the multiplication of these coefficients with
the coefficients of binary polynomials l7, l6, l5, l4. Similar to
the operation in LFSR structure-1, we havemultiplication and
addition of the coefficients as shown in Table 3. At the end of
four clock cycles, the required computations are performed in
both LFSR structures. After four clock cycles, the values in
the registers of both LFSR structures are added along with
the coefficients of integer polynomial M to get the result
HL mod(x8 + 1) +M .
Though the above explanation is carried for n = 8 to

understand the computational process, the same process
holds for any value of n. The parallel executions in the two
LFSR structures reduce the computational time to n/2 clock
cycles. After performing the executions in the two LFSR
structures simultaneously, the result can be added with
the coefficients of integer polynomial M . The proposed
architecture comprises both 2-input and 3-input adders as
shown in Fig. 5. We use conventional ripple carry adders
and carry save adders for 2 input adders and 3 input adders
respectively for implementing our design.

3) RETRIEVAL OF OUTPUT POLYNOMIAL
In this step, the output of polynomial multiplication is
carefully retrieved by preventing unwanted operations. It is
performed by passing 0′s through output of AND gates
and selecting ′0′ input in mux-1 and mux-2 for both
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FIGURE 5. Hardware architecture for arithmetic operation W = H.L mod (xn + 1) + M based on BRLWE scheme using parallel executions in Dual LFSR
structure to deliver the output coefficients (wn−1, wn−2, . . . , w0) serially.

LFSR structures. Thereby only 0′s would be passed through
registers and unwanted operations can be prevented. The
previously obtained values are retrieved serially for obtaining
the functionality HL mod(xn+1) + M . We perform the
decryption operation by tying the two MSB bits to an XOR
gate following the works [8], [9], [12], and [14].
Example: The proposed Dual LFSR structure can be

explained with a suitable example by considering n = 8. The
value of n = 8 is considered to ease the understanding of
architecture. Consider an integer polynomial

H = 2 + x + 3.x2 + x3 + 7.x4 + x5 + 6.x6 + 2.x7

The coefficients of polynomial H are represented as follows

H = {h0, h1, h2, h3, h4, h5, h6, h7} = {2, 1, 3, 1, 7, 1, 6, 2}

Let us consider a binary polynomial

L = 1 + x2 + x3 + x5 + x6 + x7

The coefficients of polynomial L are represented as follows

L = {l0, l1, l2, l3, l4, l5, l6, l7} = {1, 0, 1, 1, 0, 1, 1, 1}

Let us consider an integer polynomial

M = 1 + 6.x + 7.x2 + 2.x3 + 3.x4 + 4.x5 + 5.x6 + 6.x7

The coefficients of polynomial M are represented as follows

M = {m0,m1,m2,m3,m4,m5,m6,m7}

= {1, 6, 7, 2, 3, 4, 5, 6}

Initially the coefficients of binary polynomial L are
split into two groups {1,0,1,1} and {0,1,1,1}. These coef-
ficients are provided as serial inputs to the two LFSR
structures LFSR structure-1 and LFSR structure-2 respec-
tively. The coefficients of integer polynomial H are
given in parallel to the two LFSR structures following
Fig. 5. So, LFSR structure-1 is loaded with coefficients
{2,1,3,1,7,1,6,2} and LFSR structure-2 is loaded with
coefficients {−7,−1,−6,−2,2,1,3,1} i.e., {1,7,2,6,2,1,3,1}
parallelly. All the register values are initially set to 0.

At clock cycle-1, the parallel coefficients of LFSR
structure-1 {2,1,3,1,7,1,6,2} are multiplied with serial input
l3 = 1 through AND gates to produce the register values
r0, r1, r2, r3, r4, r5, r6 and r7 as shown in Table 4. At clock
cycle-2, the value of the last register r7 is fedback in 2′s
complement form to the first register and added to the result
of the AND gate (which is the multiplication of parallel
coefficients with serial input l2 = 1). The same process
continues in clock cycles-3 and 4 with serial input l1 = 0 at
l0 = 1 respectively. At the end of clock cycle-4, the expected
result from LFSR structure-1 is obtained and we prevent
further operations by passing 0 through mux-1.

The same sequence of steps is carried in LFSR structure-2
also as both the LFSR structures are identical. At clock
cycle-1, the parallel coefficients of LFSR structure-2
{1,7,2,6,2,1,3,1} are multiplied with serial input l7 = 1 and
produce the register values rr0, rr1, rr2, rr3, rr4, rr5, rr6 and
rr7. At the clock cycle-2 the register value rr7 is fed back
in 2′s complement form to the first register and added to the
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TABLE 2. Computational details for LFSR structure - 1.

TABLE 3. Computational details for LFSR structure - 2.

result of AND gate (which is the result of the multiplication
of parallel coefficients to serial input l6 = 1). The same
operation continues in clock cycles-3 and 4 where we have
the serial input l5 = 1 and l4 = 0 respectively. At the end
of clock cycle-4, the expected result from LFSR structure-2
is obtained and we prevent further operations by passing
0 through mux-2. The register values at each clock cycle for
LFSR structure-1 and LFSR structure-2 are computed and
listed in Table 4.

At clock cycle-4 we add the results obtained in
LFSR structure-1 {3,1,3,4,3,4,5,2} and LFSR structure-2
{3,5,7,2,7,2,1,6} to obtain the coefficients of polynomial
multiplication {6,6,2,6,2,7,7,0}. This is further extended by
adding coefficients of integer polynomialM {1,6,7,2,3,4,5,6}
to get the desired result {7,4,1,0,5,3,4,6} for the arithmetic
operation H .L mod(x8 + 1) +M .

B. QUAD LFSR (QL) STRUCTURE
The same concept of DL structure is extended to QL structure
by performing the parallel executions using four LFSR
structures. The computations can be decomposed into four
segments as shown in Fig. 2 while considering a sample
value of n = 8. These four segments can be executed
simultaneously by using four LFSR structures and addedwith
the coefficients of integer polynomial M . A sample value of
n = 8 has been considered to understand the computations
clearly and the same procedure can be extended for any value
of n. Due to these parallel executions, the computational time
required to obtain the desired functionality is greatly reduced.

The top level architecture for the proposed QL structure
is shown in Fig. 6. It uses four identical LFSR structures
employing parallel executions to reduce latency. The archi-
tecture comprises (i) a serial-in-parallel-out shift register

to load the coefficients of integer polynomial H parallelly,
(ii) four serial-in-serial-out shift registers to load the binary
polynomial L, (iii) four LFSR structures performing parallel
executions, (iv) a sign control unit, (v) a shift register to load
the coefficients of integer polynomial M and (vi) adders to
add the resultant of LFSR structures and the coefficients of
integer polynomial M . Similar to the DL structure, we do
not have a separate modular reduction unit. We consider
q = 256 and bit size k = 8 in our design. Any value
exceeding q − 1 would exceed bit size and automatically
be truncated. The detailed architecture for the proposed QL
structure is as shown in Fig. 7.

The working procedure is similar to that of DL
structure. The coefficients of integer polynomial H are
given in parallel to the LFSR structures. As per line 3
of Algorithm 1, we obtain the coefficients of H in four
segments considering d = 4. Based on this grouping,
we provide the coefficients of H as parallel inputs to the
four LFSR structures. The first LFSR structure constitutes
the parallel coefficients h0, h1, h2, . . . ., hn−1, the second
comprises −h3n/4, −h3n/4+1, −h3n/4+2, . . . ., h3n/4−1, the
third has −hn/2, −hn/2+1, −hn/2+2, . . . ., hn/2−1 whereas the
fourth structure has −hn/4, −hn/4+1, −hn/4+2, . . . ., hn/4−1
respectively. The coefficients of binary polynomial L
are splitted into four segments as follows: l0, . . . ., ln/4−1
is the first group, ln/4, ln/4+1, . . . ., ln/2−1 is the second
group, ln/2, ln/2+1, . . . ., l3n/4−1 is the third group and
l3n/4, l3n/4+1, . . . ., ln−1 is the fourth group. These coeffi-
cients are fed to the four LFSR structures serially. As all these
LFSR structures are identical, the computation is performed
similar to the DL structure. Due to the parallel executions in
the four LFSR structures, the computational time is greatly
reduced to n/4 clock cycles.
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TABLE 4. Register values for polynomial multiplication in a Dual LFSR structure considering a sample value of n = 8.

FIGURE 6. Top level description for the proposed Quad-LFSR (QL) structure performing the functionality H.L mod (xn + 1) + M.

1) COMPLEXITY OF THE STRUCTURES
The proposed DL and QL structures requires parallel loading
of n inputs with bitsize k . Following the existing works,
we choose the parameters n = 256 and 512 respectively
where k = 8 bits. So, the number of parallel inputs required
when n = 256 and n = 512 are 256 × 8 = 1024 bits
and 512 × 8 = 2048 bits respectively. Due to the practical
limitation of I/O ports, we use a serial-in-parallel-out shift
register to load 64 bits each cycle as shown in Fig. 4. This
refers to the practical setup of input processing based on the
64-bit word length of the processors. Hence, we require an
additional 32 and 64 clock cycles to load the parallel inputs
when n = 256 and n = 512 respectively.

2) COMPUTATION OF LATENCY
The number of LFSR structures can be further increased
to decrease the computational time (latency) by performing
parallel executions. A mathematical equation is obtained to

compute latency based on the number of LFSR structures.
It is shown in Eqn. 13 as follows:

Latency = N + (n/u) − 1 (13)

where N = number of clock cycles required for loading
the coefficients of integer polynomial H , n = degree of
polynomial, u = number of LFSR’s used. We subtract with
1 as one clock cycle would be in common for both loading
and computational process.

In our design, we require 32 and 64 clock cycles for loading
the coefficients of polynomial H when n = 256 and n =

512 respectively. Let us consider a case when n = 256, if we
use DL structure, the latency would be 32 + (256/2) − 1 =

159 clock cycles. Similarly, with QL structure, the latency
would be 32 + (256/4) − 1 = 95 clock cycles. This shows
the decrease in latency with increase in number of LFSR’s.
Based on these calculations, a graph is drawn as shown in
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FIGURE 7. Hardware architecture for arithmetic operation W = H.L mod (xn + 1) + M based on BRLWE scheme using parallel executions in Quad LFSR
structure to deliver the output coefficients (wn−1, wn−2, . . . , w0) serially.

Fig. 8 indicating the decrease in latency with an increase in
the number of LFSR structures when n = 256 and n = 512.

3) COMPUTATION OF HARDWARE COMPLEXITY
There would be certainly an increase in hardware resources
with an increase in the number of LFSR structures. The
hardware complexity is evaluated theoretically based on
CMOS logic [30], [31], [32]. Based on the conventional
CMOS logic, the number of transistors for the proposed DL
and QL structures are calculated considering 6 transistors for
2-input AND, XOR gates and 1-bit 2:1 MUX, 2 transistors
for an inverter, 18 transistors for a 1-bit flipflop, 26 transistors

for 2-input ripple carry adder. The components required for
the proposed structures are listed in Table 5. Assuming a
case when n = 256 and k = 8, the number of transistors
required for the proposed DL-structure is calculated as
follows: 2 × 256 × 8 × 6 = 24, 576 transistors for
AND gate, 2 × 8 × 2 = 32 transistors for inverter,
2 × 256 × 8 × 26 = 106, 496 transistors for 2-input
adder, 510 × 26 × 8 + 12 × 8 = 106, 176 transistors for
carry-save adder (we require 510 full adders each comprising
26 transistors and 1 half adder comprising 12 transistors),
2 × 8 × 6 = 96 transistors for multiplexer and 2 × 256 ×

8 × 18 = 73, 728 transistors for flipflops. We obtain the
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FIGURE 8. Graphical representation showing decrease in latency with
increase in number of LFSR’s when n = 256 and n = 512.

FIGURE 9. Graphical representation showing increase in the number of
transistors with increase in number of LFSR’s when n = 256 and n = 512.

transistors for the proposedDL-structure by the summation of
transistors obtained through individual components leading
to 311, 104 transistors (24, 576+32+106, 496+106, 176+

96+73, 728 = 311, 104). Similarly, the number of transistors
for the proposed QL-structure can also be calculated as
follows: 4 × 256 × 8 × 6 = 49, 152 transistors for
AND gate, 4 × 8 × 2 = 64 transistors for inverter, (4 ×

256 + 2) × 8 × 26 = 213, 408 transistors for 2-input
adder, 510 × 26 × 8 + 12 × 8 = 106, 176 transistors for
carry-save adder(we require 510 full adders each comprising
26 transistors and 1 half adder comprising 12 transistors),
4 × 8 × 6 = 192 transistors for multiplexer and 4 × 256 ×

8 × 18 = 147, 456 transistors for flipflops. By summing
all the transistors from individual components, we obtain
516, 448 transistors (49, 152 + 64 + 213, 408 + 106, 176 +

192 + 147, 456 = 516, 448). This shows an increase in
the number of transistors from 311, 104 to 516, 448 when
we increase the number of LFSR’s from 2 to 4. On similar
lines, we estimate the hardware complexity with an increase
in the number of LFSR structures and represent graphically
as shown in Fig. 9. Based on these estimates, a suitable
number of LFSR structures can be chosen based on the design
requirements.

V. RESULTS AND DISCUSSIONS
In this section, the results of the proposed structures
are compared with the existing BRLWE/InvBRLWE-based
schemes. We compare our work with similar works [3], [9],

[12]. As we compare our work with [3] which has proven
an improved ADP compared to the other works [8], [9],
[11], [12], [14], we do not compare our work with [8], [11],
and [14]. However, we compare our results with [9] and
[12] as they have similar processing styles compared to our
design. We do not compare our work with [6], [13], [25],
and [26] as they are compact designs which are suitable for
resource-constrained implementations and it would not be a
fair comparison. The work in [10] does not have a proper sign
control unit, and we have not included it in our comparison.
Our work does not discuss anti-SPA countermeasures. Hence,
we do not include the work in [24] in our comparisons
as it requires additional hardware resources for anti-SPA
countermeasures.

The theoretical area-time complexities for the proposed
architectures are compared with existing works [3], [9],
[12] as shown in Table 5. It includes major components of
the architecture such as the number of 2-input AND gates
(#AND), inverters (#INV ), 2(k bit)-input adders operands,
3(k bit)-input adders operands, 2 × 1 (k-bit) multiplexers,
1 bit registers or flipflops (#FF), clock cycles required
for computation (#Clk). The following illustration shows
the number of components required for the proposed DL
structure: There are two LFSR structures for the proposed
DL structure as shown in Fig.5. There are nk AND gates
in each LFSR structure contributing 2nk AND gates in the
DL structure where n is the degree of polynomial and k
is the bitsize. Similarly, there are n ripple carry adders
(RCA) in each LFSR structure contributing a total of 2n
ripple carry adders. A carry save adder (CSA) is required
to add the resultant of LFSR structures with the coefficients
of polynomial M . As there are k inverters in each LFSR
structure, it contributes to 2k inverters and there are two k-
bit multiplexers (Mux 1 and Mux 2) in the DL structure.
This structure also requires double the number of flipflops
compared to the works [3], [9], [12] as there is a parallel
execution of two LFSR structures. Similarly, the number of
components for the proposed QL structure is illustrated as
follows: There are four LFSR structures for the proposed QL
structure as shown in Fig. 7. There are nk AND gates in each
LFSR structure contributing a total of 4nk AND gates. It has
n ripple carry adders (RCA) in each LFSR structure and an
additional two adders are required to perform the addition for
the resultant of LFSR structures-1,2 and LFSR structures-3,4
respectively contributing a total of 4n+2 adders. The resultant
of LFSR structures-1,2 and LFSR structures-3,4 is added to
the coefficients of polynomial M with a carry save adder
(CSA). As there are k inverters and a k-bit multiplexer in each
LFSR structure, it contributes a total of 4k inverters and four
k-bit multiplexers respectively to the proposed QL structure.
Further, as this structure comprises parallel execution of four
LFSR structures, it requires four times the number of flipflops
compared to the works [3], [9], [12]. Table 5 also includes
the critical path or combinational path delay of the design.
These calculations do not include shift register resources for
loading the polynomial coefficients. Based on the theoretical
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FIGURE 10. Performance comparison of FPGA implementation results for the proposed DL structure with similar structures when n = 256, q = 256.

FIGURE 11. Performance comparison of FPGA implementation results for the proposed DL structure with similar structures when n = 512, q = 256.

FIGURE 12. Performance comparison of FPGA implementation results for the proposed QL structure with similar structures when n = 256, q = 256.

TABLE 5. Theoretical area time complexities for different BRLWE-based architectures.

calculations, we find the computational time to be much less
compared to the previous works i.e., n/2 clock cycles for
DL structure and n/4 clock cycles for QL structure. Though
theoretically our design comprises n/2 and n/4 clock cycles
for DL and QL structures, there is a practical limitation in
loading the inputs parallelly. Hence, we require an additional
32 and 64 clock cycles to load the input coefficients for n =

256 and n = 512 respectively as discussed in Section - IV.
As per the theoretical calculations listed in Table 5, our design
requires more hardware resources compared to the existing

works. Though it has more hardware resources, due to the
improvement in latency we have less delay and improved
Area-Delay Product (ADP) in our implementations.

We have implemented our designs using Verilog HDL
for the set of parameters (n, q) = (256, 256) and
(512, 256) following the existing works [3], [6], [8], [9],
[10], [11], [12], [13], [14]. The implementation is carried
out on Xilinx FPGA Virtex - 7 (xc7v2000tfhg1761-2L),
and Kintex - 7 (xc7k325tfbg676-2L) respectively on Vivado
2014.2 simulation tool. The practical values of the proposed
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TABLE 6. Comparison of various performance metrics for n = 256 and n = 512 on FPGA for decryption phase.

design are listed in Table 6. It includes the number of
LUTs, Registers, Slices, maximum frequency, latency, delay,
Area-Delay Product (ADP), power, Power-Delay Product
(PDP), Energy per computation (EPC), Throughput, and
Efficiency. The formulae for calculating various performance
metrics are as shown in Table 6. As observed from the
Table 6, the proposed DL and QL structures take the
advantage of having the least latency of about 159 and
95 clock cycles respectively whereas the existing designs
have a latency of 512, 257 and 512 clock cycles considering
n = 256 [3], [9], [12]. Due to this reduction in latency,
the proposed designs also have less delay based on the
mathematical formula: Delay = Critical−path × Latency
where Critical − path = 1/Maximum frequency. The
proposed designs have an improvement in delay comprising
448ns and 248ns for DL and QL structures respectively
whereas the existing designs have 1467ns,985ns and 1234ns
respectively for n = 256. Though the hardware resources
have increased, the decrease in latency and delay made a
significant impact in the improvement of ADP. The DL
structure has a considerable improvement in ADP of about
23%, 39% and 27% compared to the existing designs [3], [9],
[12]. It also has a significant improvement in PDP of about
49%, 88%, and 63% compared to the existing designs [3],
[9], [12]. Its Energy per computation (EPC) is 5.3× less
compared to [9] indicating good performance of the design.
It takes an advantage of having high throughput of about
3.3×, 2.2× and 2.7× compared with existing designs [3],
[9], [12] to indicate its high performance of computation
when n = 256. The efficiency is improved about 4.2×,
3.6× and 3.8× compared with the existing works. On similar
lines, we have improvement in performance metrics for QL
structure also as listed in Table 6. The QL structure has a
considerable improvement in ADP of about 25%, 40% and
29% compared with existing works [3], [9], [12]. It has an

improvement in PDP of about 49%, 88% and 63% among the
existingworks. It has a high throughput of about 5.9×,4× and
5× compared with existing designs. It takes the advantage of
having high efficiency of about 7.8×, 6.6× and 7× compared
with the existing works. The comparison of latency, delay,
ADP, PDP, throughput and efficiency of our proposed DL
structure with similar structures are given in the form of bar
graphs as shown in Fig. 10 and Fig. 11 when n = 256, q =

256 and n = 512, q = 256 respectively and implemented
in Virtex - 7 (xc7v2000tfhg1761-2L) target device. Similarly,
the comparison of these performance metrics of our proposed
QL structure with similar structures are given in the form of
bar graph as shown in Fig. 12 for n = 256, q = 256 when
implemented on the same target device. From these bar
graphs we observe that the proposed designs has less latency,
delay, ADP, PDP, high throughput and efficiency among
the existing works. This work can be extended with any
number of LFSR structures for obtaining low latency which
subsequently results in less delay. As the increase in number
of LFSR structures further require more hardware resources,
a compromise can be made between the number of LFSR
structures and latency based on the design requirement.

VI. CONCLUSION
In this paper, two efficient hardware architectures: Dual-
LFSR (DL) and Quad-LFSR (QL) structures are proposed to
perform the arithmetic operation used in BRLWE-based PQC
schemes. These structures perform the arithmetic operation
H .L + M employing parallel LFSR structures to reduce the
computational time compared to the existing works. Despite
of consuming more hardware resources due to doubling and
quadrupling the LFSR structures, it has a significant improve-
ment in other performance metrics such as delay, Area-Delay
Product (ADP), Power-Delay Product (PDP), throughput and
efficiency. In particular the proposed DL structure has 23%
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and QL structure has 25% improvement in ADP compared
to recently reported work. The future directions of our work
include to develop an efficient hardware architecture for
implementing BRLWE-based cryptoprocessors using multi-
LFSR structures employing parallel processing technique
considering a balance between area and delay.
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