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ABSTRACT Federated learning (FL) is a deep learning paradigm that allows clients to train deep learning
models distributively, keeping raw data local rather than sending it to the cloud, thereby reducing security
and privacy concerns. Although FL is designed to be inherently secure, it still has many vulnerabilities.
In this paper, we consider an FL scenario where clients are subjected to an adversarial attack that
exploits vulnerabilities in the decision-making process of deep learning models to induce misclassification.
We observed that adversarial training has a trade-off relationship in which, as classification performance
for adversarial examples increases, classification performance for normal samples decreases. To effectively
utilize this trade-off relationship in adversarial training, we propose an adaptive selection scheme of the loss
function depending on whether the FL client is attacked. The proposed scheme was experimentally proven to
achieve the best robust accuracywhile minimizing the decrease in natural accuracy. Further, we combined the
proposed schemewith Byzantine-robust aggregation.We expectedmodel training to converge stably because
Byzantine-robust aggregation prevents highly distorted models from being aggregated, but we obtained
experimental results that were contrary to our expectations.

INDEX TERMS Adaptive selection of loss function, adversarial attacks, adversarial training, Byzantine-
robust aggregation, federated learning.

I. INTRODUCTION
Since the breakthrough in feasible learning has been made
by Hinton et al. [1] in 2006, deep learning research has
progressed rapidly over the past two decades. This technology
has had a profound impact on human life in a variety of
applications, including large-scale language models (LLM),
healthcare, edge computing, smart cities, security & privacy,
etc. For artificial intelligence (AI) realized through deep
learning to truly think at a human level, it must be trained
on a massive amount of real-world data [2]. However,
deep learning inevitably has limitations in gaining users’
trust, collecting personal data, and achieving large-scale
practical applications due to cloud computing performance,
data security & privacy, and other risks. Therefore, practical
and effective technologies are urgently needed to alleviate
the above problems and achieve technological leaps. Against
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this backdrop, the concept of federated learning (FL) has
emerged.

The FL concept was first proposed by Google in 2017 and
implemented in the keyboard application [3], allowing
Android mobile phone users to update deep learning models
locally without disclosing private personal data. This system,
which focused on running the FedAVG algorithm on mobile
phones, can be applied to monitor statistics and perform
federated analysis on large-scale cluster machines without
logging clients’ raw data to the cloud server. FL is one
of the most promising technologies in the field of privacy
computing, and has become a mainstream solution in many
privacy computing application scenarios due to its low
technical complexity and advantages in deployment systems.
This has also led to many research achievements in the field
of FL.

FL is a secure deep learning paradigm that allows clients
(users) to train deep learning models distributively while
keeping raw data local [4]. Instead, models trained by clients
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are sent to cloud servers and integrated into a global model
through a model aggregation process. The global model
is then distributed to each client to serve as the basis for
the next phase of local training. Such FL method realizes
the protection of the privacy of local client data as well
as the save of computing and storage resources of the server.
This approach is in contrast to the traditional centralized
learning where all individual client data is collected and
trained on cloud servers for model training [5]. FL provides a
secure and efficient data federation model for implementing
applications that leverage multi-source data scattered across
multiple federated agencies. Additionally, it can realize
data sharing among federated agencies through systematic
expansion of sample size and increase of data dimension
for big data fusion, thereby providing high-quality big data
services and creating more value for social development.
Due to these advantages, it has been applied to various
practical applications such as intelligent healthcare [6], 6G
communications [7], edge computing [8], smart cities [9],
recommender systems [10], security & privacy [11],
etc.

The explosive growth in demand for privacy computing
platforms has led to an increasing number of real-world
FL products, which has also raised several challenges:
Current research on FL mainly faces three challenges:
privacy and security threats, heterogeneity problem, and huge
communication overhead. Early published literature focused
on optimizing the learning process of FL. Even if only model
parameters are transmitted, the overhead is not negligible,
and the longer it takes for the global model to converge,
the more severe the overhead becomes. To address this, the
research community introduced FedAVG [3], a pioneering
communication-efficient FL aggregation algorithm that takes
into account data heterogeneity across clients. It is currently
one of the most commonly used model aggregation algo-
rithms, and since its proposal, research has been conducted
to improve it in response to data heterogeneity, including
FedPROX [12] and Scaffold [13].
In addition, FL has many unresolved vulnerabilities

that can lead to privacy leaks and malicious attacks [4],
[14]. Compared to existing privacy-preserving computing
technologies, it was initially assumed that FL would be
able to prevent exposure of sensitive information by only
transmitting parameters and not storing raw data on the
server. However, recent research has shown mathematically
that this assumption is not necessarily objective [15].
Poisoning is one of the threats that can easily be inflicted on
FL by exploiting vulnerabilities in the deep learning process.
It can be divided into data poisoning [16], [17] that distorts
learning data and model poisoning [18] that distorts learned
models. Although the target of the attack has changed from
cloud servers to clients, poisoning remains a powerful threat
in FL. The clients under attack are considered Byzantine
nodes and various defense strategies can be developed.
For example, methods that differentially reflect or isolate

distorted models can be applied in the process of integrating
them into a global model [19], [20], [21].

Another type of malicious activity that can be committed
on FL is an adversarial attack based on a Generative Adver-
sarial Network (GAN) [22]. In this attack, the target of the
attack is the same as in poisoning, but a completely different
approach is used in defense. This defense mechanism, called
adversarial training, preemptively trains a global model on
the features of training data exposed to adversarial attacks,
i.e. adversarial examples. To the best of our knowledge,
Federated Adversarial Training (FAT) [23] is the first attempt
to apply adversarial training to the FL environment, and
subsequent related studies have been conducted [24], [25],
[26], [27], [28], [29]. Unlike traditional deep learning, the
ability to learn outlier features of adversarial examples in
adversarial training stems from using a relatively flexible
min-max based loss function [30]. However, learning outlier
features from adversarial examples in FL exacerbates data
heterogeneity. Most of the existing literature reported that
performance degradation was observed due to data hetero-
geneity when applying adversarial training to FL. To address
this issue, the research community has introduced various
approaches to counter adversarial attacks in FL [24], [25],
[26], [27], [28], [29]. In particular, [24], [27] alleviates
problems caused by data heterogeneity through skewing
according to class probability. Reference [25] presented an
FL mechanism that propagates adversarial robustness from
users with abundant learning resources to users with scarce
learning resources. It was shown that aggregation of weights
calibrated or reweighed based on adversarial robustness can
also be applied [28], [29].

In this paper, we conduct an experimental study on
adversarial training in the FL environment. First, we derive
the challenges that arise when simply combining adversarial
training and FL (Section IV). We observe significant
performance degradation in our experiments, and one of
the root causes is that there is a trade-off in which models
trained to be robust to adversarial examples do not perform
well on normal samples. Second, we remove the assumption
in the existing literature [23], [24], [25], [26], [27], [28],
[29] that ‘‘all clients are under attack’’. It starts from the
natural proposition that it is difficult for an attacker to
identify all clients, which becomes a much more challenging
task since the heterogeneity of the training data distributed
across clients is exacerbated. To effectively exploit the
aforementioned trade-off, we propose a scheme in which
FL clients adaptively select a loss function to perform
training depending on whether they are under attack. The
proposed scheme was experimentally proven to achieve
the best robust accuracy while minimizing the decrease in
natural accuracy (Section V). Finally, we extend our proposed
scheme by incorporating Byzantine-robust aggregation [19],
[20], [21]. With this, we expected that the convergence
speed and/or stability of the model would increase, but the
experimental results fell short of expectations. Rather, the
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proposed scheme and Byzantine-robust aggregation are not
complementary. This can be explained as follows: adversarial
training is ultimately intended to learn adversarial features,
and Byzantine-robust aggregation prevents models learned
with adversarial features from being aggregated into the
global model. (Section VI).

In summary, this paper makes the following contributions.

• We experimentally derive the challenges that arise when
simply combining adversarial training and FL. The
major challenge is that adversarial training degrades
classification performance on normal data, which we
call a trade-off.

• We propose a local training scheme that performs
adaptive selection of loss function depending onwhether
the FL client is under attack. The proposed scheme effec-
tively balances the trade-off in a realistic scenario where
some clients are under attack, thereby maximizing
the classification performance on adversarial examples
while maintaining the classification performance on
normal samples.

• We extend our proposed scheme by combining it
with Byzantine-robust aggregation rules and explore its
dynamics.

This paper is structured as follows. Section II reviews
related work. Section III defines the problem considered
in this paper. Section IV describes the experiment that
motivated the proposed scheme. In Section V, we propose
and evaluate an adaptive loss function selection method. And
Section VI extends our scheme to combine Byzantine-robust
aggregation. Finally, Section VII concludes this paper.

II. RELATED WORK
FL has been continuously studied since FedAVG, the
basis of the model aggregation method, was introduced by
McMahan et al. [3] in 2017. In FL, if the data distributed
to clients does not follow IID (independent and identically
distributed), model learning performance suffers severe
degradation. To solve this, there have been attempts to
optimize FedAVG, such as FedPROX [12] and Scaffold [13].
FedPROX introduced a proximal term to limit delays in the
global model convergence process due to data heterogeneity.
Scaffold proposed a method to accelerate the convergence of
the global model by reducing the gradient change of local
updates using control variables.

Various studies have been conducted on security and
privacy in FL. Attacks on FL that undermine robustness are
broadly classified into training phase attacks and inference
phase attacks. Poisoning is a typical training phase attack,
including data poisoning [16], [17] andmodel poisoning [18].
The goal of data pollution is to intentionally perturb local
data, leading to biased global model training. Data poisoning
is performed by repeatedly injecting and accumulating small
perturbations to the global model over multiple rounds to
avoid detection, often significantly degrading the perfor-
mance of the final global model [16], [17]. Model poisoning

is performed in a more direct way by manipulating local
model parameters rather than compromising data integrity to
induce biased global model [18].

Adversarial attacks [30], [31], [32] intentionally manip-
ulate deep learning models by injecting carefully crafted
input data, that is, adversarial examples, into the training
data. These attacks aim to cause incorrect classifications by
exploiting vulnerabilities in the decision-making process of
deep learning models. Goodfellow et al. [32] proposed the
Fast Gradient Sign Method (FGSM), a method for generating
adversarial examples by performing gradient ascent using
a single-step first-order approximation. Projected Gradient
Descent (PGD) is a form of repeatedly performing FGSM,
and the more repetitions are accumulated, the more powerful
the adversarial attack becomes. In particular, it is math-
ematically shown in the study by Madry et al. [30] that
PGD is a first order adversary, which implies that a deep
learning model trained to be robust to PGD is also robust
to other adversarial attacks. Defense against such adversarial
adversaries involves adversarial training, a special training
strategy that leverages a min-max based loss function. Since
its proposal, there have been attempts to improve themin-max
based loss function. For example, Zhang et al. [33] proposed
the TRADES loss function, which separates the prediction
error for adversarial examples into natural error and bounded
error and maintains a mutual balance between them. In [34],
the MART loss function was proposed to improve prediction
error.

FAT, which simply combines adversarial training and FL,
was proposed in Zizzo et al. [23]. This study demonstrated
the feasibility of FAT in IID and non-IID data, stimulating
active follow-up research. Most of the literature consistently
shows that simply combining adversarial training with FL
significantly degrades performance, especially on non-IID
data [24], [25], [26], [27], [28], [29]. Chen et al. [27] showed
that skewed labels lead to non-identical class probabilities
and heterogeneous local models, and proposed CalFAT that
tackles this issue by calibrating the logits adaptively to
balance the classes. Similarly, Zhang et al. [24] calibrates
the logits before softmax cross-entropy according to the
probability of occurrence of each class. Meanwhile, some
studies [25], [28], [29] have proposed differential aggregation
methods that take into account the significance of local
models. In particular, [25] presented an aggregation method
that propagates adversarial robustness from users with
abundant learning resources to users with scarce learning
resources. It was shown that aggregation of calibrated or
reweighed weights based on adversarial robustness can also
be applied [28], [29]. On the other hands, Shah et al. [26]
focused on the communication overhead, and proposed a
dynamic schedule for the number of local training epochs at
each round. Unlike previous studies that applied adversarial
training to FL [24], [25], [26], [27], [28], [29], this paper
removes the assumption that all FL clients are under attack.
In the situation where some of the clients are under attack,
we propose an effective yet simple scheme that performs
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TABLE 1. Comparison of related studies and the proposed scheme that applied adversarial training to FL.

adaptive selection of loss function depending on whether the
client is under attack or not. Moreover, we experimentally
demonstrate the dynamics of the proposed scheme when
combined with Byzantine-robust aggregation [19], [20], [21],
inspired by an idea that the attacked client can be considered
as a Byzantine-fault node. We summarize relevant existing
studies applying adversarial training to FL along with our
proposed method in Table 1.

III. PROBLEM DEFINITION
In this section, we define the FL system and threat model
considered in this paper.

A. SYSTEM MODEL
We assume a cross-silo FL model [4] for the purpose
of detecting malicious Android apps in cellular networks,
as shown in Figure 1. In the proposed FL model, the
cloud data server becomes the central entity. Since most
terminals are smartphones and the number of users is very
large, it may seem reasonable to apply a cross-device FL
model. However, users’ personal data is often not enough to
effectively train local models, and more importantly, cross-
device models require excessive communication bandwidth
between the central server and clients for model updates. This
is unnecessary and unwelcome for individual smartphone
users. Therefore, in the proposed FL model, it is assumed
that a base station with relatively better computing and
communication performance than the client becomes the
edge entity (silo 2), or that the clients form a coalition and
somemembers of it represent the coalition and act as the edge
entity (silo 1 and 3).

B. MATHEMATICAL FORMULATION
We assume that the training data is distributed across a total
of K edge entities. In general, FL performs the following

optimizations:

min
w
f (w) =

K∑
k=1

nk
n
Fk (w). (1)

Here, we denote that the global approximate optimal
is a sum of local models weighted by the local data
size nk , and n is the total data size of all edge enti-
ties that participate in a communication round. Each
edge entity measures the empirical risk over possibly
different data distributions Dk , which can be expressed
as:

Fk (w) := Exk∼Dk [ fk (w; xk )]. (2)

Threat Model: The main content of existing adversarial
attack-related research is ‘Can a prediction error in a
deep learning model be caused by injecting a very small
perturbation into the data?’. In other words, ‘Is it possible
to craft powerful adversarial examples by injecting very
small perturbations into the data?’. To answer the above
question, a method to create adversarial examples through
FGSM [32] was proposed. Let x be the original sample, xadv
be the corresponding adversarial example, and their labels y.
We also assume that we are given a suitable loss function
L(θ, x, y). Then, the injection of small perturbations δ by
FGSM is written as follows:

xadv = x + ϵsgn(∇xL(θ, x, y))︸ ︷︷ ︸
δ

(3)

where the second term, whose size is constrained by small
ϵ values, represents these small perturbations. As shown in
Equation (3), in FGSM, small perturbations are injected only
once. PGD generalizes FGSM so that perturbation injection
can be performed repeatedly (e.g., t steps), enabling much
more powerful adversarial attacks. It has beenmathematically
proven in [30] that models trained to be robust against PGD
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FIGURE 1. The cross-silo FL model assumed in this paper consists of one central entity and a plurality of edge entities. The edge entity is a form of
coalition between the client(s) and the base station, and a representative part of the component terminals communicates directly with the central entity
to participate in global model training.

attacks are robust against other adversarial attacks. This
property is defined as a first order adversary, and therefore
PGD has been adopted as a threat model in several existing
studies dealing with adversarial training. Here, effective
training of adversarial features is realized by maximizing the
loss function L(w, x tadv, y) in the local training of each edge
entity. Substituting the loss function applied with PGD into
equation (2), local training for edge entities now becomes
equivalent to solving the following min-max optimization
problem:

Fk (w) := minExk∼Dk

[
max

∥xtadv−x∥∞≤δ
L(w, x tadv, y)

]
. (4)

We can see the basic principle of adversarial training
in equation (4), i.e., the min-max based loss function,
where the inner maximization problem aims to find effective
adversarial examples that achieve high loss, while the
outer minimization optimizes the training loss for edge
entities.

IV. MOTIVATIONAL EXPERIMENTS
In this section, we describe the experiments and observations
that motivated the proposed scheme. Before going into
the details of the results, we describe the experimental
setup.

A. EXPERIMENTAL SETUP
1) DATASETS
We used the CICMalDroid 2020 dataset [35] in the exper-
iments. The CICMaldroid dataset is publicly available data
collected in the form of Android Package Kit (APK) files,
an Android app installation file, from third parties such
as VirusTotal and Contagio blog from December 2017 to
December 2018. It consists of a total of 17,341 samples,
all of which belong to benign or one of four types of
malware (adware, banking malware, mobile riskware, and
SMS malware). The APK file was converted to an image
file using stream order [36]. This transforms our problem
into an image classification problem. Among a total of
17,341 Android app samples converted to images, 14,000
samples are randomly selected and used as training data,
and the remaining 3341 samples are used as evaluation data.
14,000 training samples are randomly distributed to a total
of 100 edge entities, which means that the distribution of
training data across edge entities follows IID.

2) IMPLEMENTATION PLATFORM
PyTorch [38] has been adopted by many literature and
researchers due to its flexible graph modeling, strong com-
munity support, and Python-based efficiency and scalability.
Based on these advantages, we implemented all our code used
in the experiments in PyTorch.
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FIGURE 2. NIN using multiple MLP convolutional layers on the front and
a global mean pooling layer.

3) NEURAL NETWORK ARCHITECTURE
Adversarial training is implemented to learn data perturbation
patterns through internal optimization of the min-max loss
function [30]. To take full advantage of the dual optimization
of adversarial training, the neural network being trained
must have a structure complex enough to accommodate the
aspect of perturbation. Therefore, we adopted Network in
Network (NIN), a fairly complex and well-known neural
network [37]. As shown in Figure 2, NIN’s dual structure,
implemented using layers modularized through 1× 1 convo-
lution along with existing convolution layers, is designed to
train rich features, improving the model’s expressiveness and
classification performance. Although NIN’s dual structure is
designed to be quite complex, global average pooling has
been used to make it lightweight for training in practice.
In [26] and [28], NIN was used in adversarial training using
the CIFAR datasets that have a certain level of classification
difficulty among publicly available datasets. On this basis,
we believe that the dual structure is suitable for training the
perturbation of adversarial examples.

4) FL PARAMETERS
In each round, 10% of the 100 edge entities are selected
to participate in local training. Local training takes place
in 10 rounds, and the local batch size is 10. The learning
rate, which affects the model’s convergence speed, was set
to 0.01. Although these parameters have a significant impact
on the performance of FL, their impact has been sufficiently
discussed in previous studies [3], [26], [36], so we do not
discuss them in this paper and use their default values.

5) PERFORMANCE METRICS
Robust accuracy refers to the performance of a deep learning
model on adversarial examples. It measures how well
the model performs when tested against inputs that are
intentionally manipulated to causemisclassification or errors.
Natural accuracy refers to the performance of the model on
the original, unaltered test examples, without any intentional
adversarial perturbations. It measures how well the model
performs under normal conditions, where the inputs are not
deliberately crafted to deceive the model. In this paper, robust
accuracy and natural accuracy are expressed as ‘robust acc’
and ‘natural acc’, respectively.

6) COMPARED SCHEMES
Standard training (ST) refers to general federated learning in
a situation that is not affected by adversarial attacks. This is

typical federated learning, forming a baseline for situations
that are not under attack. Therefore, we refer to it as Baseline-
ST. In the other schemes, all edge entities are subject to
adversarial attacks. In particular, there is a case of adversarial
training using a min-max based loss function in equation (4),
which is typical federated adversarial training, becoming
a baseline for situations that are under attack. Therefore,
we refer to it as Baseline-AT. Unlike Baseline-AT, TRADES
and MART use loss functions developed in [33] and [34],
respectively.

B. EXPERIMENTAL OBSERVATION
We describe some observations that motivated us to conduct
this study. Figure 3 shows the classification performance
of the deep learning model obtained through four training
methods.

1) TRADE-OFF
Robust acc and natural acc are in a trade-off relationship.
In order to increase robust acc, the unique features of
adversarial examples must be trained, and the more the model
trains these features, the more it has a negative impact on
natural acc. This can be explained as follows. An adversarial
attack injects a perturbation into the data to move and/or
obscure the location of the ‘inter-class boundary’ to be trained
in a deep learningmodel. In particular, ambiguous boundaries
must be trained using a relatively flexible min-max based
loss function, and this flexibility in boundaries causes
misclassification of unattacked data. In other words, a model
well trained on the features of adversarial examples often
causes misclassification of normal samples.

When not subjected to PGD-20 attack, i.e., Baseline-ST
natural acc is about 85% and robust acc is 23.3%. Consid-
ering that the dataset consists of five classes, it can be seen
that the model trained without any exposure to the features
of adversarial attacks has almost no classification function
for PGD-20 based adversarial examples. All three adversarial
training schemes (Baseline-AT, TRADES, MART) achieved
similar performance after sufficient training rounds, with
the robust acc being around 50%. Baseline-AT shows a
performance curve similar to the other two adversarial
training schemes, but as the training round exceeds 160,
natural acc deteriorates significantly and a drift-shaped curve
is observed. This means that simply combining adversarial
training and FL is difficult to apply in practice, because
the purpose of using adversarial training is to improve
the classification performance of adversarial samples while
maintaining an appropriate level of classification accuracy
for normal samples. Meanwhile, TRADES, which uses
the loss function proposed in [33], is the only training
method whose natural acc is higher than robust acc under
PGD-20 attack. Natural acc is about 55% and robust acc is
about 50%. These results show that TRADES’ loss function
performs a form of training that most effectively utilizes
the trade-off relationship mentioned above. MART’s robust
acc performs similarly to other adversarial training methods.
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FIGURE 3. The classification performance of adversarial training is compared according to the adoption of the loss function, and the
performance curve of federated learning when there is no attack is also plotted.

However, in terms of natural acc, it was clearly observed that
performance was lower than that of TRADES.

2) SUMMARY
We made the following observations: 1) Simply combining
adversarial training with FL leads to performance degra-
dation. 2) One of the root causes of this performance
degradation is that models trained to be robust to adversarial
examples have a trade-off relationship where they perform
poorly on normal samples. 3) A training strategy is needed to
effectively balance this relationship.

V. ADAPTIVE SELECTION OF LOSS FUNCTION
From the experimental observations in the previous section,
we need an adversarial training strategy that can effectively
exploit the apparent trade-off between robust acc and natural
acc. Specifically, under adversarial attacks, even considering
the decrease in natural acc, adversarial training must be used
to learn the features of adversarial examples. On the other
hand, in the absence of adversarial attacks, standard training
must be used, as unnecessary adversarial training can lead to
a loss of natural acc.
Some Edge Entities Are Under Attack: Prior studies

regarding adversarial training on FL assume a situation
where all clients are attacked, which is not natural in
practice. This is because the attacker cannot know all the
clients in the FL environment, as well as which clients
participate in each training round. Therefore, we remove the
above unnatural but common assumption. Below, we briefly
describe the experimental setup involving the adversarial
adversary considered in this paper. We define a new term,
attack rate (AR), as the fraction of edge entities exposed to
adversarial attacks. For example, if AR is 1, all edge entities
are under adversarial attacks, which is the same scenario

as prior studies [24], [25], [26], [27], [28], [29]. In our
experiments, AR values are set from 0.1 to 0.9 in steps of
0.2. Note that edge entities participating in local training
rounds are set to change continuously, while edge entities
under attack remain unchanged. It is because this setting is
more consistent with real-world situations.
Proposed Scheme:According to observations from the pre-

vious section, we have shown experimentally that performing
adversarial training using the TRADES loss function [33] or
the MART loss function [34] is better than using a traditional
min-max based loss function. In particular, in the case of
robust acc, best performance could be reached regardless of
loss function selection, but this was not the case in natural
acc.

We propose a scheme for edge entities that adaptively
selects a loss function in adversarial training depending on
whether the edge entity is under attack. For example, the
edge entities that are attacked perform adversarial training
using the TRADES or the MART loss function, while the
other edge entities perform standard FL learning (i.e., non-
adversarial training). Note that edge entities can choose
between adversarial and standard training simply by adopting
different loss functions.

The proposed approach should allow models trained using
different loss functions to be aggregated. To this end, two
challenges must be addressed: (i) When starting each local
training round, the edge entity can check whether it is under
attack by inferring local data with the global model sent from
the central entity. However, in this paper, we assume that
we know the list of attacked edge entities. The mathematical
analysis required to remove this assumption and/or the
development of algorithms to detect attacks on their own
are beyond the scope of this paper and are left to future
work. (ii) The second question is whether models trained
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FIGURE 4. Comparison of performance changes in adversarial training using two loss functions (TRADES, MART) as the proportion of edge
entities subjected to adversarial attack increases from 0.1 to 0.9.

using different loss functions can be integrated through an
aggregation process such as FedAVG. We experimentally
have proven that model parameters of the same network
structure can be directly aggregated even if the models are
trained with different loss functions.

A. RESULTS
Figure 4 shows the deep learning model’s malicious app
classification performance when some of the edge entities
are under adversarial attacks. The decimal point shown in the

legend is the AR value. The total number of edge entities in
the experiment is 100, and 10 edge entities participate in FL
in each learning round. Therefore, an AR value of 0.1 means
that on average, one attacked edge entity participates in each
FL training round.

1) WHEN A SMALL NUMBER OF EDGE ENTITIES ARE UNDER
ATTACK
When AR = 0.1, both TRADES and MART can hardly train
the features of adversarial examples. We did not observe a

96058 VOLUME 12, 2024



S. Lee: Adaptive Selection of Loss Function for Federated Learning Clients Under Adversarial Attacks

decrease in natural acc caused by training on adversarial
features. In the case of MART, robust acc is no different
from that in the case where adversarial training was not
performed. In the case of TRADES, it appears that the
adversarial features begin to melt into the model as the
training round exceeds 150, but not only is the convergence
of training slow, but the fluctuation is severe, so it is not
significant. These experimental results can be interpreted that
the opportunity to train the features of adversarial examples
is limited in the scenario where AR = 0.1. When AR = 0.3,
the best natural acc for both schemes decreases to about 80%.
However, a clear difference is found in robust acc. Through
the robust acc curve, we observed that adversarial training
was performed in the case of TRADES, and it converged at
about 48%. In the case of MART, the robust acc curve shows
that adversarial training is performed to some extent, but the
fluctuations are severe and it does not converge to a particular
point.

2) WHEN HALF OF THE EDGE ENTITIES ARE UNDER ATTACK
When AR = 0.5, the natural acc of TRADES does not show
much difference compared to that when AR = 0.3. However,
in the case of MART, not only did it experience severe
fluctuations, but its best performance also dropped to about
75%. The best robust acc is about 50% for both TRADES
and MART schemes, which means that the features of the
adversarial samples have been sufficiently trained. However,
MART’s robust acc curve shows significant fluctuations
and appears to lack convergence stability, and its overall
performance is also lower than that of adversarial training
using the TRADES loss function.

3) WHEN A LARGE NUMBER OF EDGE ENTITIES ARE UNDER
ATTACK
When AR= 0.7, both TRADES andMART sufficiently train
the features of adversarial attacks. In the case of adversarial
training using the TRADES loss function, significant fluctu-
ations were observed in the natural acc curve, and the best
performance decreased to about 75%. Training of features
of adversarial samples begins in the early stages of FL, and
shows a stable convergence robust acc curve. For adversarial
training using theMART loss function, we observed dramatic
performance degradation and fluctuations in the natural acc
curve due to training on adversarial features. The best natural
acc was around 60%. The best robust acc is 50%, which is
similar to the case of AR = 0.5, but fluctuation is reduced.
When AR = 0.9, both TRADES and MART sufficiently
train the capabilities of adversarial attacks. In the robust
acc curve, it was observed that both schemes converged
stably and without fluctuation to about 50%, which is the
best performance. However, the natural acc curve shows a
noticeable difference. TRADES’ best natural acc is around
75%, but there is a lot of fluctuation between 60% and 70%,
so it is difficult to say that it is representative. However, it is
clear that the performance is better than adversarial training
using the MART loss function. In fact, when AR = 0.9,

it is difficult to find any difference from the case where all
edge entities are subject to adversarial attacks (last graph in
Figure 4), except for the natural acc curve of TRADES.

4) SUMMARY
We summarize our proposed scheme and its experimental
results as follows: 1) We propose a scheme that adaptively
selects a loss function and performs local training depending
on whether or not it is under adversarial attacks. 2) The
proposed scheme achieves robust acc comparable to when
all clients are under adversarial attacks while minimizing
the decrease in natural acc. 3) In particular, the TRADES
loss function is the most effective among the loss functions
considered in this paper.

VI. COMBINING WITH BYZANTINE-ROBUST
AGGREGATION
In the previous section, the edge entities exposed to adver-
sarial attacks were trained adversarially, while the others
were trained standardly. Nowwe extend the proposed scheme
by incorporating it into the aggregation process. To this
end, we consider aggregation rules to discriminately reflect
or exclude edge entity models that are under adversarial
attacks. The rationale for applying such a strategy is as
follows. Training adversarial features on a small number
of edge entities is sufficient to induce a robust global
model, while excessive training can significantly degrade
natural acc.

A. EXISTING BYZANTINE-ROBUST AGGREGATION RULES
Before combining the proposed approach with Byzantine-
robust aggregation rules, we review some rules that are
frequently used in related studies.

1) KRUM [19] AND BULYAN [21]
Bulyan is an algorithm designed based on Krum. Krum
selects one of the local models that are similar to other
models transmitted to the central server as the global model.
Intuitively, even if the local model of the client under attack
is selected, its impact may be limited because it is similar
to other local models. It is assumed that among the total
m edge entities, up to eatk edge entities are attacked. For
each local model, the central server finds m-eatk -2 local
models with the smallest Euclidean distance from the local
model. Among these m-eatk -2 local models, the local model
with the smallest squared distance is selected as the global
model. Therefore, Krum cannot be completely free from
the influence of attacked edge entity models. To address
this, Mhamdi et al. [21] proposed Bulyan, which essentially
combines variants of Krum and trimmed averaging. The
ith parameter of the global model is calculated as follows.
Bulyan first applies Krum iteratively to select θ (θ ≤m-2eatk )
local models. Sort the ith parameters of the selected θ models,
and use the average of γ (γ ≤ θ -2eatk ) parameters close to the
median as the ith parameter of the global model.
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FIGURE 5. Comparison of the performance changes of adversarial training combining the proposed loss function adaptive selection method and
Byzantine-robust aggregation.

2) TRIMMED MEAN AND MEDIAN [20]
This aggregation rule aggregates the ith parameter of the
global model as follows: Specifically, sorting is performed on
the ith model parameter of local models transmitted from the
edge entity. In Trimmed mean aggregation, the average of the
sorted ith parameter values excluding the min and max values
is used as the ith parameter of the global model. And the
aggregation method that uses the middle value in the sorted
list of ith parameter values as the ith parameter of the global
model is called Median.

B. RESULTS
We now combine our adaptive loss function selection scheme
with the Byzantine-robust aggregation rules. Specifically,
in the model aggregation process of the central entity, Bulyan,
Trimmed mean, and Median aggregation are applied instead
of FedAVG. The TRADES loss function, which showed
the best adversarial training performance in the section V,
is used in local adversarial training. Here, Byzantine-robust
aggregation algorithms are basically methods of isolating
nodes that are attacked (referred to as Byzantine-fault nodes)

during the aggregation process, so the number of Byzantine
nodes must be entered into the algorithm. In this experiment,
the number of edge entities participating in each FL round ×

AR was entered as the parameter. Figure 5 shows the
experimental results.

1) WHEN A SMALL NUMBER OF EDGE ENTITIES ARE UNDER
ATTACK
When AR = 0.1, natural acc shows a similar form of
convergence for all three aggregation methods (Bulyan,
Trimmed mean, Median). We expected that the convergence
curve of natural acc would stabilize faster by isolating
Byzantine-fault nodes from the global model aggregation, but
we observed no experimental results meeting our predictions.
Even for robust acc, Median cannot train adversarial features
at all. This can be explained as follows. Since Median, as the
name implies, selects the median value as the aggregated
ones, it is rare for the model of the edge entity under attack
to be selected as the global model.

This phenomenon becomes worse when AR = 0.3. When
Median aggregation was used, natural acc became more
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fluctuating, but converged to the best performance. However,
in robust acc, the local model that trained adversarial features
still does not merge into the global model through Median
aggregation. Bulyan and Trimmed mean showed robust acc
curves similar to FedAVG.

2) WHEN A LARGE NUMBER OF EDGE ENTITIES ARE UNDER
ATTACK
When AR = 0.7, the best natural acc shows no significant
difference among all aggregation methods, but significant
fluctuations are observed. In particular, in the case of
Median aggregation, fluctuation is most noticeable because
the aggregate value is determined by the value of a specific
local model. The convergence pattern of the robust acc curve
is also similar to that of natural acc.
This convergence pattern is reversed when AR = 0.9.

Median aggregation’s best natural acc is about 55%,
a decrease of about 15-20%, and fluctuations were greatly
reduced during the training process. This is explained for the
following reasons. Median aggregation selects the median as
the combined value, so most of the selected model parameters
come from the local model of the edge entity under attack.
This makes it difficult to combine models from different edge
entities (e.g. those that are not under attack). In the robust acc
curve of Median aggregation, a sharp drop is observed during
convergence, and the best performance was observed to be
about 50%, which is about 5% lower than other aggregation
methods.

3) SUMMARY
We summarize experimental results on the combination
of our proposed scheme and Byzantine-robust aggregation.
1) We expected that the convergence speed and/or stability
of the model would increase by separating the severely
distorted models, but the experimental results were contrary
to our expectations. 2) Rather, the proposed scheme and
Byzantine-robust aggregation are not complementary. This
can be explained as follows: adversarial training is ultimately
intended to learn adversarial features, and Byzantine-robust
aggregation preventsmodels learnedwith adversarial features
from being aggregated into the global model. The Median
method that performs extreme separation is particularly
incompatible with adversarial training.

VII. CONCLUSION
In this paper, we experimentally investigated the performance
degradation problem and underlying causes of the simple
combination of adversarial training and FL. This was due to
the trade-off relationship in which the accuracy for normal
samples decreases as the features of adversarial examples are
trained. To leverage this, we proposed a method to perform
FL local training through adaptive selection of loss func-
tions, and demonstrated its effectiveness through extensive
experiments. Further, we applied our proposed scheme to
Byzantine-robust aggregation to isolate models that overfit
to adversarial features, thereby improving convergence
speed and/or model stability. Contrary to expectations,

we experimentally confirmed that these schemes are not
complementary and cannot currently be used simultaneously.

A. APPLICATIONS
Since adversarial attacks are very powerful attacks that
can be easily implemented without requiring much prior
information, our research results can be widely used as a
countermeasure in various security & privacy fields such
as cellular network, edge computing, medical, and malware
detection.

B. LIMITATIONS AND FUTURE WORK
Most deep learning based malware classification/detection
are applicable only to attacks that are known in advance.
In this context, the answer to the question, ‘‘How can
we detect newly emerged malware (so-called zero-day
attacks)?’’ has been a major obstacle for deep learning to
solve security problems. Existing unsupervised learning faces
accuracy issues, which limits its practical use. Recently,
research on semi-supervised learning, which utilizes both
labeled and unlabeled data during learning, has become
increasingly popular. In the security field, data labeling is
expensive, time-consuming, and requires expert knowledge,
and there is usually a huge amount of unlabeled data.
Semi-supervised learning utilizes this richness to learn
better representations and improve detection capabilities.
Therefore, research on semi-supervised learning will be one
of the future research directions in the security & privacy
fields that can answer the above question.
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