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ABSTRACT This paper presents the application of a methodological approach based on multi-objective
optimization for identifying a nonlinear model and designing controllers for an air pressure system. First,
the parameters of the system’s nonlinear model are determined based on experimental data obtained from the
process. Subsequently, the methodology is extended to tuning cascade PI controllers, where experimental
tests are performed in the laboratory. This methodology allows a designer to have a detailed view of the
proposed multi-objective problem (both in the modeling and controlling the air pressure system). Depending
on the level of detail required, the design objectives of the multi-objective problem are proposed. In this
case, two objectives are proposed to evaluate the model’s performance and three objectives for evaluating the
control system’s quality. Among the advantages offered by this methodology is the easy understanding of the
conflicts that arise between the design objectives, which allows for selecting an optimal solution according
to the preferences established by a designer and based on detailed information on the system’s performance.
In this case, a conflict between the dynamics of the pressures of the air pressure system could be evidenced,
both in the modeling and in the control. The proposed methodology also allows the analysis of the behavior
of the air pressure system in a global framework without loss of information, which would not be feasible
in a traditional single-objective analysis that agglutinates all the information in a single design objective.
Although the decision-making stage of the proposed methodology is more complex than a single-objective
analysis, it is justified as it provides detailed and complete information to a designer to make accurate and
effective decisions on how to model and control the compressed air pressure system effectively.

INDEX TERMS Air pressure systems, multi-objective optimization methodology, multi-objective
evolutionary algorithm (ev-MOGA), level diagram (LD), cascade PI controller, nonlinear model,
decision-making processes.

I. INTRODUCTION
The air pressure systems are commonly used in various
applications such as compressed air energy storage, pneu-
matic actuation, and air-powered tools. These systems involve
storing air under pressure in tanks or vessels to provide a
reliable and versatile energy source for various processes. For
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approving it for publication was Xiwang Dong.

example, air pressure systems drive pneumatic actuators and
cylinders in automation processes, enabling precise and con-
trolled movement of components and machinery. Therefore,
control algorithms play a crucial role in ensuring efficiency
and safety in various industrial processes and applications [1],
[2], [3]. Several control approaches for air tank pressure sys-
tems have been widely studied and applied in various indus-
trial and engineering domains. For example, in [4], a practical
method for implementing a proportional-integral-derivative
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(PID) controller for compressed air pressure systems by
applying a set of experimental tuning rules and a frequency
domain system analysis is proposed. The authors provide
a PID tuning rule specifically tailored for pressure control
applications in fluid power systems. The proposed rule
considers the system dynamics and aims to achieve optimal
performance regarding disturbance rejection and set-point
tracking. The experimental results support the effectiveness
of the proposed tuning rule, highlighting its advantages over
other methods. A variable universal fuzzy PID controller for
a multi-level gas tank system is proposed by Zhang et al. [5].
Five controllers are designed based on desired pressures and
compared with conventional PID control. Simulation results
exhibit improved pressure dynamics using variable universal
fuzzy PID control, reducing overshoot and response time.
The study demonstrates successful pressure regulation and
suggests potential extensions for more complex systems with
disturbances.

On the other hand, advanced control techniques have been
studied for air tank pressure systems, such as generalized
predictive control (GPC), fuzzy supervisory control, robust
control, multi-objective evolutionary algorithms (MOEA),
fractional control techniques, etc. The work presented
in [6] addresses challenges in controlling a three-level air
tank system due to time delay and inertia. A constrained
generalized predictive control (GPC) algorithm is proposed,
utilizing recursive least squares for parameter identification
and Diophantine equations for prediction modeling. The
quadratic programming-based rolling optimization strat-
egy enhances control law calculation. The experimental
comparison demonstrates the superior effectiveness of the
approach over PID and unconstrained GPC methods, reduc-
ing overshoot, vibration, and settling time while improving
control performance. An optimization model for compressor
station scheduling, employing a constrained multi-objective
evolutionary algorithm named CMOEA/D-CDP to tackle
multi-objective problems is proposed in [7]. It proposes
a novel encoding scheme to simplify decision variables
and mitigate complexities. The results offer a set of
Pareto optimal solutions for production guidance. Case
studies indicate the superiority of the proposed encoding
over conventional methods, highlighting challenges with
different compressor types. However, the conclusion calls
for further exploration using different CMOEAs. The paper
provides valuable insights but requires broader validation
across diverse algorithms for comprehensive assessment and
applicability. Another paper introduces a fuzzy supervisory
control system for pressure processes using integral-based
identification [8]. This method enhances robustness to noise,
with theoretical analysis and experimental validation showing
improved performance over constant PID gains designed by
pole placement. The work presented by Bingi1 et al [9]
introduces the 2DOF-FOPID controller for real-time pressure
process control, highlighting its advantages over conven-
tional PID controllers. It emphasizes improved set-point
tracking and disturbance rejection capabilities, substantiated

by experimental results showing superior performance in
overshoot reduction and faster settling time. Parameter tuning
and controller conversion methods are outlined, enhancing
applicability in parallel and series configurations. However,
the assessment of disturbance rejection across compared
controllers lacks depth. The proposed adaptation algorithm
for parameter tuning is an intriguing suggestion for future
enhancement.

Finally, Velmurugan et al. [10] explores the robust
performance of a fractional first-generation controller for
an air pressure system, achieving linear behavior in a
nonlinear system. Controller performance is evaluated using
error and time indices for three operating points, showing
that it outperforms conventional controllers. Based on the
literature described previously in this article, the modeling
and control of an air pressure system are proposed by
applying a multi-objective design procedure (MOOD). In the
optimization stage, an evolutionary multi-objective genetic
algorithm ev-MOGA was applied [11], [12] and in the stage
of visualizing Pareto fronts for decision-making, the Level
Diagram (LD) tool was used, [13]. Further details about the
multi-objective design procedure applied in this article are
shown in section II. The main contributions of this research
are outlined below:

• A multi-objective design approach is shown as a real
application of [14] for the modeling and control of an
experimental air pressure system.

• Through the integration of ev-MOGA and the LD,
a robust decision-making framework is introduced for
the visualization of multidimensional Pareto fronts.

• A multidimensional analysis of the conflicts or
trade-offs that typically occur between design objectives
in real engineering problems with the goal of keeping a
designer sufficiently informed to make right decisions.

• Extensive laboratory and simulation tests have been
carried out to show the reliability and effectiveness of
the proposed multi-objective methodology in process
modeling and control.

The paper is organized into several key sections. It begins
with a comprehensive exploration in Section II, delving into
the fundamentals of multi-objective optimization, providing
a robust theoretical foundation. Section III focuses on
elucidating the model of the didactic pressure regula-
tor (RT 450.03), offering a clear understanding of the
system under study. Sections IV and IV-A elaborate on
applying a multi-objective identification approach to the
air pressure system, detailing the optimization techniques
employed for system model identification. Furthermore,
Section IV-B extends this optimization methodology to the
fine-tuning of system controllers. The pivotal findings and
discussions arising from this approach are encapsulated in
Section V, elucidating the results and engaging in insightful
discussions. Finally, Section VI encapsulates the paper
with conclusive remarks and implications drawn from the
conducted research, providing a structured closure to the
study.
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II. FUNDAMENTALS OF MULTI-OBJECTIVE
OPTIMIZATION
In real engineering applications, it is very common to find
problems that require the optimization of multiple design
objectives simultaneously. Generally, these design objectives
are also in conflict (meaning that improving some entails
worsening others) and subject to physical constraints. Multi-
objective optimization techniques are advisable to solve these
problems [14], [15], [16].

Amulti-objective optimization design generally consists of
at least three stages: 1) the definition of the multi-objective
problem (MOP); 2) the multi-objective optimization process;
and 3) the multicriteria decision stage [17], [18].

According to [11], [19], and [20], a multi-objective
optimization problem (stage 1) can be defined as shown
in (1)-(5).

min
x∈D

J (x) (1)

J (x) = {J1(x), J2(x), . . . , Js(x)} (2)

subject to: g(x) ≤ 0 (3)

h(x) = 0 (4)

x ≤ xi ≤ x, i = [1, . . . , n] (5)

where, x = (x1, x2, . . . xn) ∈ Rn represent the decision
vector; D is the decision space; J (x) ∈ Rm is the design
objectives vector; g(x), h(x) are the constraint vectors; y
x, x are the upper and lower bounds of the decision space.
Therefore, from a multi-objective perspective, there is not
a single optimal solution to a problem but rather a set of
optimal solutions (where none is better than another) with
different trade-offs among the design objectives. This set
of optimal solutions forms what is known as the Pareto
front [19], [21]. The optimal Pareto set is based on the
definition of Pareto dominance proposed in [22] and [23].
The definitions of dominance, Pareto set, and Pareto front
are schematized in Figure 1 and shown in (6), (7), (8)
respectively.
Definition 1 (Dominance [22], [23]): A vector x1 domi-

nates another vector x2, (denoted by x1 ⪯ x2), if J (x1) is
not worse than J (x2) in all design objectives, and it is better
in at least one objective.

∀i ∈ A := [1, . . . , s], Ji(x1)≤Ji(x2) ∧ ∃i ∈ A : Ji(x1)<Ji(x2)

(6)

Definition 2 (Pareto Set [23]): The Pareto set (denoted by
Xp) is the set of solutions in D not dominated by other
solutions in D and defined by:

Xp := {x ∈ D| ̸ ∃x′
∈ D : x′

⪯ x} (7)

Definition 3 (Pareto Front [23]): Given the Pareto set Xp,
the Pareto front J (Xp) is defined by:

J (Xp) := {J (x)|x ∈ Xp} (8)

In Figure 1 (a), the Pareto front J (Xp) of a multi-objective
optimization problem with two design objectives, J1(x) and

FIGURE 1. Notion of Pareto front and Pareto set in a MOP with two
dimensions.

J2(x), is depicted in red. Figure 1 (b) illustrates the decision
space with its decision variables x1 and x2 (The solutions in
red constitute the Pareto set).

The solutions shown with red diamonds in Figure 1 (a)
are non-dominated, as there are no other solutions within the
Pareto front that are better in all design objectives. On the
contrary, the red ones dominate the solutions shown in blue
diamonds. Therefore, they are not part of the Pareto front.
The solutions in red in Figure 1 (b) are Pareto optimal,
as their corresponding design objectives are on the Pareto
front.

In the multi-objective optimization stage (stage 2), it is
necessary to choose an optimization algorithm that satisfac-
torily obtains the approximations of the Pareto fronts of each
MOP [24], [25].

Multi-objective optimization algorithms aim to find a
set of solutions X∗

p ⊂ Xp, such that J (X∗
p) satisfactorily

characterizes J (Xp). Sometimes, J (Xp) may be infeasible to
obtain if it has infinite solutions.

It is essential to mention that X∗
p is not a unique set. When

obtaining a set X∗
p, a designer can select a solution according

to their preferences, for example, by choosing the solution
closest to the ideal solution (utopian solution Jideal , which
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minimizes each design objective of a MOP, as shown in
Figure 1).

Currently, various optimization algorithms use different
techniques to approximate the Pareto front [26], [27], [28].
Among the most used optimization techniques are evolution-
ary techniques, which have had remarkable development and
application in solving increasingly complex multi-objective
optimization problems [29], [30], [31]. A significant example
of these techniques ismulti-objective evolutionary algorithms
(MOEAs), successfully applied to many real engineering
problems [12], [32], [33].

Multi-objective genetic algorithms (MOGA) can be con-
sidered the most applicable representatives [34], [35]. These
algorithms have been used to solve various optimization
problems with satisfactory results [20], [36], [37].
In this paper, the ev-MOGA algorithm was used to

obtain the Pareto fronts of the MOP [11], [38]. The
ev-MOGA algorithm is an elitist multi-objective evolutionary
algorithm, where two sub-populations evolve simultaneously
and iteratively to achieve effective convergence to the Pareto
front.

After the optimization algorithm calculates an approxi-
mation of the Pareto front J (X∗

p), it is necessary to analyze
the features of the solutions that form this front J (X∗

p)
(stage 3). The objective of conducting a detailed analysis of
the front is to offer the best solution to the MOP according
to the designer’s preferences. For this purpose, Pareto front
visualization tools are handy and powerful. Therefore, they
have been widely accepted to assist a designer in selecting
optimal solutions from a Pareto front [39], [40], [41].

In this work, the multidimensional Pareto front visu-
alization tool called Level Diagram was used to analyze
the solutions of each MOP [13]. The Level Diagram has
interesting features such as easy analysis of solutions on
the fronts (interaction with colors, highlighting solutions,
exporting data, etc.) and ease of generating or incorporating
various viewpoints on the Pareto fronts, since it allows
working with different synchronized norms.

In Figure 2 (a), a Pareto front of a bi-dimensional MOP
is shown traditionally, and in Figure 2 (b), its representation
using LD is demonstrated. Three points (A, B, C) have been
taken on each Pareto front to show their equivalences. For
example, Point A in Figure 2 (a) represents the solution
with the best performance for objective J1(X) and the worst
performance for J2(X). Figure 2 (b) represents each design
objective in a separate graph. Therefore, point A is located
on the left for objective J1(X) and on the right for J2(X).

III. MODEL OF THE DIDACTIC PRESSURE REGULATOR
The RT 450.03 pressure regulation module consists of two
steel pressure vessels and uses compressed air as its working
fluid, as shown in Figure. 3.

Both tanks are provided with a pressure gauge and an
overpressure valve, and the B2 tank also has an evacuation
valve. The two tanks communicate with each other through

FIGURE 2. Representation of Pareto fronts using Level Diagram.

FIGURE 3. Components of the air pressure system.

a vent valve, so they are connected in series. In this way,
a second-order pressure regulation system can be represented.

The components of the RT 450.03 pressure regulation
module are V1, V2, G, and VU (see Figure 3). The details
of the components are shown below.

• B1, B2: Pressure vessels
• V1: Vent valve
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• V2: Evacuation valve
• G: Pressure gauce
• VU : Overpressure valve
To describe the behavior of the compressed air system,

we start with a dynamic state mass balance for each tank
described as shown in (9)-(10).

Q1(t) − Q2(t) =
dm1(t)
dt

(9)

Q2(t) − Q3(t) =
dm2(t)
dt

(10)

On the other hand, the flow rate in the valves can be
described as shown in (11).

Q1(t) = KsCvs
√
(Ps − P1)ρ

Q2(t) = K2Cv2
√
(P1 − P2)ρ

Q3(t) = K3Cv3
√
(P1 − P3)ρ (11)

where,m1(t) andm2(t) are the masses of the gas in each tank,
if the pressure in the tank is low, the relationship between the
mass of the gas and the pressure is established by the equation
of state for ideal gases shown in (12).

P(t) =
RT
VM

m(t) (12)

where, T is the absolute temperature in the tank, V is the tank
volume, M is the molecular weight of the gas and R is the
ideal gas constant.

Finally, the equations governing the dynamic behavior
of pressures in each tank as a function of changes in the
percentage of the opening of the control valve are:

KsCvs
√
(Ps − P1)ρ − K2Cv2

√
(P1 − P2)ρ =

V1M
RT1

dP1(t)
dt
(13)

K2Cv2
√
(P1 − P2)ρ − K3Cv3

√
(P1 − P3)ρ =

V2M
RT2

dP2(t)
dt
(14)

where Ks, K2, and K3 are adjustment constants for the
conductance coefficients of the valves.

The parameters considered for the nonlinear model for the
air pressure system are summarized in Table 1.

IV. MULTI-OBJECTIVE IDENTIFICATION APPROACH
APPLIED TO THE AIR PRESSURE SYSTEM
A. MULTI-OBJECTIVE OPTIMIZATION FOR SYSTEM
MODEL IDENTIFICATION
When defining the multi-objective optimization problem for
system identification, it is necessary to consider the parame-
ters identified in the proposed model (9)-(14). In addition to
the system’s initial conditions, the constraints of theMOP and
the optimality criterion applied to represent the Pareto front.
For this application, the criteria defined in (15)-(20) were
established, where the average errors of pressures P1 and
P2 of each tank in the system are evaluated. The experiment
was conducted for 1000 seconds, taking the plant through

TABLE 1. System parameters.

TABLE 2. Bounds of the decision vector xm for system model
identification.

TABLE 3. Bounds of the decision vector xc for system control.

different operating ranges, and 10000 samples were acquired
(N = 10000).

min
xm∈D

J (xm) (15)

J (xm) = {J1(xm), J2(xm)} (16)

J1(xm) =
1
N

N∑
k=1

|P1 experimental(k) − P1 identified (k)| (17)

J2(xm) =
1
N

N∑
k=1

|P2 experimental(k) − P2 identified (k)| (18)

The decision vector is represented by:

xm = {Ks,K2,K3} (19)

xm ≤ xm ≤ xm (20)

where, xm and xm were established taking into consideration
the technical information of the system valves provided by
the manufacturer (see Table 2).

B. MULTI-OBJECTIVE OPTIMIZATION FOR TUNING
SYSTEM CONTROLLERS
To control the pressures P1 and P2 of the nonlinear
compressed air system, a cascade control structure was imple-
mented as shown in Figure 4 (see the video of the system con-
trol at https://www.youtube.com/watch?v=AQaUshBU57I).
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FIGURE 4. Air pressure system control structure.

FIGURE 5. Pareto front representation of air pressure system models.

The control structure employs two proportional-integral (PI)
controllers, as depicted in (21)-(22).

U1(s) =

(
Kp1 + Ki1

1
s

)
E1(s) (21)

U2(s) =

(
Kp2 + Ki2

1
s

)
E2(s) (22)

where, (Kp1, Ki1) and (Kp2, Ki2) represent the proportional
and integral gains of the PI controllers for pressures P1 and
P2, respectively.
For the tuning of the system controllers, optimization

criteria such as the Integrated Absolute Error (IAE) and the
Integral of the absolute value of the derivative control signal

(IADU) were used. The IAE index is applied to evaluate the
quality of each controller for monitoring an input reference
signal, while the IADU allows evaluating the quality of the
control effort applied to the system.

Each MOP was proposed to find the tuning parameters
of each proposed controller (Kp1, Ki1, Kp2, Ki2) as shown
in (23)-(27). Each PI controller is tuned to track a step type
input reference of 2 [Bar] in amplitude. The signal sampling
period is (Ts = 0.1 s) and throughout the experiment,
10000 samples were acquired (N = 10000).

min
xc∈D

J (xc) (23)

J (xc) = {J1(xc), J2(xc), J3(xc)} (24)
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TABLE 4. Performance of the selected models (PA, PB, PC ) on the Pareto
front in Figure 5.

J1(xc) = [IAE]1 = Ts
N∑
k=1

|P1 ref (k) − P1(k)| (25)

J2(xc) = [IAE]2 = Ts
N∑
k=1

|P2 ref (k) − P2(k)| (26)

J3(xc) = [IADU ]system =

N∑
k=1

|ucontrol(k) − ucontrol(k − 1)|

(27)

The decision vector is composed of the tuning parameters
of the controllers, as shown in (28)-(29).

xc = {Kp1,Ki1,Kp2,Ki2} (28)

xc ≤ xc ≤ xc (29)

The bounds of the decision space are shown in Table (3),
which were determined based on the reference controllers
with the linearized models of the system (the multi-objective
optimization approach was applied to the nonlinear model of
the system).

V. RESULTS AND DISCUSSION
The ev-MOGA algorithm was used to identify models that
satisfactorily represent the dynamics of the air pressure
system and tune the PI controllers [11]. For both cases,
the optimization process (multi-objective optimization stage)
was carried out on a hardware platform with an Intel Core i7
4700MQ processor at 2.4GHz and 12GB of RAM. The Level
Diagram tool was used in the visualization and analysis stage
of the Pareto fronts of each MOP [13], [42].

A. AIR PRESSURE SYSTEM IDENTIFICATION USING
MULTI-OBJECTIVE OPTIMIZATION
For model identification, a pseudorandom binary sequence
(PRBS) signal was applied to pneumatically actuate the input
regulating valve (see Figure 3). It is important to note that
the identification was performed on the nonlinear model of
the system shown in (9)-(14), and the identified parameters
have a physical interpretation. This ensures to some extent
the operation of the system in different operating ranges.

Figure 5 shows the Pareto front obtained from the
multi-objective optimization process using the Level Dia-
gram tool. Each point on the front represents an optimal
solution (a possible system model). The ∞-norm was
selected to analyze the trade-offs that occur between the
design objectives J1(xm) and J2(xm). An increase in this
norm directly reveals a worsening of at least one of the
objectives of the proposed MOP. Each design objective can

FIGURE 6. Models identified for pressures P1 and P2 of the air pressure
system.

FIGURE 7. Models identified in the Pareto front of Figure. 5, (PA, PB, PC )
to characterize the dynamics of the air pressure system.

be analyzed and visualized independently and synchronously
on the Pareto front. This helps the designer to select the best
solution for each MOP according to their preferences.

The Pareto front has been divided into two zones (A
and B), and each point on the front represents a model
with different performances or characteristics to describe
the system’s dynamics. Additionally, three points on the
Pareto front (PA,PB,PC ) were selected to show the different
trade-offs between models belonging to each zone. PA and
PB show a conflict between the models of pressures P1 and
P2 since improving one implies worsening the other. Point
PA (zone A) represents the best model for characterizing the
dynamics of pressure P1 but also the worst for representing
pressure P2 (see Table 4 where, J1 in PA < J1 in PB, and J1
in PA < J1 in PC , moreover J2 in PA > J2 in PB and J2 in
PA > J2 in PC ).
Point PB (zone B) represents the best model for pressure

P2 but also the worst model for pressure P1 (see Table 4
that J2 in PB < J2 in PA). Point PC represents a model
with satisfactory performance for both pressures P1 and
P2 (chosen as a compromise model) without being the
best for either of them. PA represents pressure P1 better
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FIGURE 8. Pareto front representation of air pressure system controllers.

FIGURE 9. Tuning parameters of air pressure system controllers.

than PC , and PB represents pressure P2 better than PC .
It is possible for a designer to select any of the models
PA, PB, or PC to represent the dynamics of the system
under study. The choice of the model will be influenced by
the designer’s preferences. That is, if a designer prioritizes
pressure P1 over pressure P2, the model to choose would
be represented by PA on the Pareto front (see Figure. 5). If,
on the contrary, a designer prioritizes pressure P2 over P1,
they should select the model represented by PB on the Pareto
front.

Finally, if a designer wishes to choose a model that,
although not the best to represent pressures P1 or P2, can
satisfactorily characterize both, they could choose any other
point on the Pareto front. In this case, PC was selected as
the compromise model to represent the dynamics of the air
pressure system. Figure 6 shows all identified models (21
models) for pressures P1 and P2 using a multi-objective
optimization approach. In Figure 7, the system models
represented on the Pareto front as PA, PB, and PC are shown,
and their performances are shown in Table 4.
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FIGURE 10. Tuning parameters of air pressure system controllers for J1 < 0.00615.

FIGURE 11. Tuning parameters of air pressure system controllers for J2 < 0.2573.

TABLE 5. Performance of controllers in PD and PE of the Pareto front, with their tuning parameters.

Based on integrated absolute error (IAE), an acceptable
range of errors in nonlinear models for real-world air
pressure systems is typically around 5-10 % of the full-
scale range [43]. Errors within this range ensure reliable

system performance without significant deviation, maintain-
ing control accuracy and operational efficiency. The model
at point PC is within the indicated range, as shown in
Table 4.
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FIGURE 12. Responses of air pressure system PI controllers in tank 1 for
J1 < 0.00615, and J2 < 0.2573.

FIGURE 13. Responses of air pressure system PI controllers in tank 2 for
J1 < 0.00615, and J2 < 0.2573.

FIGURE 14. Responses of air pressure system PI controllers in tank 1 for
points PD, PE.

B. AIR PRESSURE SYSTEM CONTROL USING
MULTI-OBJECTIVE OPTIMIZATION
The optimization process was carried out to tune the PI
controllers of the pressure system, and the Pareto front shown
in Figure 8 was obtained. Objective J1(xc) evaluates the
quality of control for pressure P1, objective J2(xc) evaluates

FIGURE 15. Responses of air pressure system PI controllers in tank 2 for
points PD, PE.

FIGURE 16. Response real vs simulated of air pressure system PI
controller in tank 1 for point PE.

FIGURE 17. Response real vs simulated of air pressure system PI
controller in tank 2 for point PE.

the quality of control for pressure P2, and objective J3(xc)
evaluates the control action received by the system.

The tuning parameters of the Pareto front controller set are
shown in Figure 9. Two regions of interest were established
on the Pareto front (see Figure 8) to expand the multi-
objective analysis. One region of interest (brown solutions)
corresponds to the controllers with the best performance for
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controlling pressure P1, that is, when J1(xc) < 0.00615,
and the other (yellow solutions) represents controllers with
the best performance for controlling pressure P2, that is, for
J2(xc) < 0.2573.
In Figure 8, it is observed that both controller regions are

in conflict because the best controllers for pressure P1 are
the worst for pressure P2 (they are on opposite sides of the
Pareto front) and vice versa. Similarly, the control actions
for pressure P1 are less drastic than those for pressure P2.
In Figures 10 and 11, the tuning parameter sets of the
controllers for each selected region of interest on the Pareto
front are visualized. Meanwhile, Figures 12 and 13 depict the
responses of each set of controllers belonging to each region
of interest.

For pressure P1, the responses from the set of controllers
where J1(xc) < 0.00615 (brown outputs) have a lower
average IAE compared to the controllers where J2(xc) <

0.2573 (yellow outputs), (see Figure 12). For pressure P2, the
responses from the set of controllers where J2(xc) < 0.2573
(yellow outputs) have a lower average IAE compared to the
controllers where J1(xc) < 0.00615 (brown outputs), (see
Figure 13). A representative from each region of interest of
the Pareto front of controllers was selected to quantify their
performance and labeled as PD and PE . Table 5 shows the
value of each design objective (performance) and its tuning
parameters.

In Table 5, it can be observed that the controller in PD
exhibits better performance than the controller in PE for
regulating the pressure P1 because J1(xc)PD < J1(xc)PE .
On the contrary, to regulate the pressure P2, the controller

in PE performs better than the controller in PD because
J2(xc)PE < J2(xc)PD . Regarding control effort, it can be
observed in Table 5 that for the controller in PD, the objective
J3(xc) is lower than for the controller in PE , meaning
J3(xc)PD < J3(xc)PE .

In Figures 14 and 15, the responses of the controllers in PD
and PE for pressures P1 and P2 respectively are shown. The
PE controller was chosen to conduct real tests in the pressure
system, as it was prioritized for the control of pressure P2 to
stabilize more quickly and have a lower IAE compared to the
PD controller. Figures 16 and 17 display the real responses of
the PE controller for pressures P1 and P2 versus the simulated
response. Section IV-B details the link to a video showing the
plant in operation with the PE controller.

VI. CONCLUSION
This paper presents a methodological approach based on
multi-objective optimization to identify optimal models that
characterize a system satisfactorily and determine optimal
controllers that achieve its stabilization effectively. The
framework applied in this paper follows the proposal shown
in [14]. It is used in an experimental air pressure system to
regulate two pressures, P1 and P2, with a single control input
(underactuated and nonlinear system). A first multi-objective
problem was proposed to identify models that satisfacto-
rily represent the system dynamics. It could be analyzed

quantitatively and qualitatively that the models of both pres-
sures were in conflict since the best model to represent one of
the pressures is the worst to represent the other. According to
the designer’s preferences, a compromise model was chosen
that adequately describes both pressures. Subsequently,
another multi-objective problemwas proposed to tune a set of
optimal PI controllers to regulate each of the pressures in the
system properly. Amulti-objective analysis of the controller’s
performance was conducted according to the designer’s
preferences. That is, establishing to what extent one is willing
to sacrifice one objective to gain another, a controller for the
system was chosen (prioritizing the control of pressure P2).
The compressed air system was operated with the selected

controller, and its real response was compared with the
simulated one. The multi-objective analysis done in this
work facilitates the multidimensional understanding of the
system’s behavior, as it allows analyzing all required
objectives without loss of information, which would be
inevitable in a single-objective approach that consolidates all
design objectives into one. Although it has a more complex
decision stage, the knowledge of the possible solutions
available to a designer compensates for this. Future work will
focus on generating new nonlinear models to characterize
the dynamics of the air pressure system and using different
performance metrics to evaluate its behavior.
Finally, it is noted that the paper focuses on exploring to

the fullest extent the possibilities offered by a multi-objective
approach to meet certain design objectives that are in
opposition and have been proposed by the designer, showing
some available tools for multi-objective analysis to aid in the
final decision-making process, rather than aiming to compare
different control structures.
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