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ABSTRACT Accurately tracking and analyzing human motion during aerobic exercise poses significant
challenges due to the dynamic complexity of human biomechanics. Traditional methods often fail to capture
this complexity, resulting in training plans that lack personalization and an increased risk of exercise-related
injuries. Therefore, developing a method capable of accurately understanding and analyzing the dynamics
of human motion has become particularly important. The motivation behind this study is to enhance the
safety and effectiveness of aerobic exercise training. By accurately monitoring and analyzing the movements
of athletes during their training, it aims to prevent injuries and create personalized training plans. To this
end, we believe a new approach is needed to deeply understand human motion, one that can adapt to
various environmental changes and provide real-time feedback. We propose a framework that combines
3D pose estimation with kinematic modeling. This method employs self-attention mechanisms and machine
learning techniques to precisely capture the complexity of human motion. Our core technology includes
a self-attention-based pose estimation system capable of accurately tracking 3D joint positions in various
environments, and a detailed kinematic model for biomechanical analysis, including the calculation of joint
angles, velocities, and accelerations. Our model was validated using a custom aerobic exercise dataset,
demonstrating superior accuracy and adaptability compared to existing models. Comparative analyses with
other models highlight the advanced capabilities of ourmodel in accurately interpreting and analyzing human
motion. Our experiments confirm that the model excels in precision, robustness to environmental changes,
real-time feedback, and injury prevention. Notably, it significantly reduces injury risks by identifying
potential stress points and facilitates the generation of personalized training plans.

INDEX TERMS 3D pose estimation, aerobics kinematic modeling, self-attention mechanisms, AI in sports
science.

I. INTRODUCTION
Aerobics, a vibrant and widely embraced form of physical
activity, skillfully merges rhythmic aerobic exercises with
stretching and strength training routines, all designed to
holistically enhance key aspects of fitness — including
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flexibility, muscular strength, and cardiovascular health,
as illustrated in Fig. 1. The holistic nature of aerobics makes
it an effective tool for promoting overall well-being and has
led to its endorsement by health professionals and fitness
enthusiasts alike.

The robust evidence supporting the multifaceted benefits
of aerobics is undeniable. Regular participation in aerobic
activities is linked not just to physical health improvements
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but also to mental health benefits, such as reduced stress
and anxiety levels, improved mood, and enhanced cognitive
function. Despite this, ensuring that participants perform
movements correctly tomaximize these health benefits, while
also mitigating the risk of injury, presents a substantial
obstacle. This is particularly relevant for beginners or those
with physical limitations, where incorrect form can lead to
strain or injury.

Addressing this critical gap, there has been a surge
in research and innovation within the realms of human
motion analysis and pose estimation. These advancements
aim to provide feedback and guidance on exercise form,
creating a safer and more effective workout environment.
Recent breakthroughs in sports science and computational
technology have propelled the development of sophisticated
3D pose estimation tools. These tools use complex algorithms
and data derived from high-speed cameras and sensors to
capture and analyze the full spectrum of human movement
in three-dimensional space.

The integration of these advanced technologies in aerobic
workouts could revolutionize how exercises are taught,
learned, and refined. Instructors and practitioners can utilize
these tools to monitor and correct form in real-time, ensuring
that each movement is performed with precision, thus
enhancing the effectiveness of the workout and reducing the
likelihood of exercise-related injuries.

Moreover, these technologies hold promise for the person-
alization of aerobic routines, catering to the unique needs
and limitations of individuals. Personal trainers and physical
therapists could use detailed analytics to tailor exercise
regimens that align with personal fitness goals and physical
rehabilitation requirements.

However, despite these technological strides, there are
challenges to overcome. Existing models are sometimes
unable to keep up with the rapid and varied movements of
aerobics, particularly in environments where lighting and
space constraints impact the accuracy of motion capture.
There is also a learning curve associated with the interpreta-
tion of complex data, which requires specialized knowledge,
making it less accessible to the average user or small fitness
studios.

To effectively address the challenges inherent in aerobic
training, our research innovatively applies a 3D pose estima-
tion and kinematic model specifically crafted for the intricate
movements of aerobics. This advanced model harnesses
the power of self-attention mechanisms—a cutting-edge
technique borrowed from the successes of natural language
processing—to significantly refine the precision of pose
estimation amidst the dynamic flux of aerobic movements.
Our ambition is to furnish the aerobics domain with a tool
that not only delineates the subtleties of human motion with
meticulous accuracy but also sheds light on the underlying
biomechanical processes. This could potentially herald a new
era in aerobic training, where monitoring, coaching, and
personalization are executed with a level of sophistication
previously unattainable.

FIGURE 1. Man engaged in an aerobics routine showcasing strength and
flexibility.

Embarking on this venture, we have meticulously curated
a custom dataset that encapsulates the extensive spectrum of
aerobic movements, ensuring that our model is trained on
data that is as representative and exhaustive as possible. Upon
this foundation, we have deployed our model for stringent
validation, subjecting it to a battery of tests that measure its
performance against a backdrop of well-established models.
This critical comparative analysis not only illuminates the
merits and prowess of our model but also casts light on
avenues for enhancement.

Our paper contributes substantially to the literature and
practice in three pivotal areas:

Firstly, it pioneers the synthesis of self-attention mecha-
nisms with pose estimation in aerobics, thereby enriching the
discipline of computer vision and the study of human motion.
This fusion represents a leap forward, breaking new ground
in accuracy and reliability of motion capture.

Secondly, the paper details the development of a compre-
hensive kinematic model, meticulously constructed to decode
the complex biomechanics of aerobic exercises. This model
stands out as a beacon for researchers and practitioners alike,
seeking to delve into the subtleties of human motion and its
application in health and fitness.

Thirdly, the pragmatic application of our models in real-
world environments solidifies their status as invaluable assets
in enhancing the efficiency of training protocols, delivering
real-time feedback to practitioners, and significantly miti-
gating the risk of injuries, thereby cementing the role of
technology as a cornerstone in the future of fitness.

II. RELATED WORKS IN GYMNASTICS AND SPORTS
POSE ESTIMATION
The realm of gymnastics and sports pose estimation has
undergone remarkable transformations with the advent
of deep learning technologies. This section provides an
overview of pivotal contributions that have significantly
influenced this field.

A. DEVELOPMENTS IN GYMNASTICS POSE ESTIMATION
The task of determining the spatial coordinates of key body
joints in gymnastics has been revolutionized by deep learning.
Key developments include:
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Toshev and Szegedy’s ‘‘DeepPose’’ marked a seminal
moment, employing deep neural networks in human pose
estimation, laying the groundwork for subsequent studies [1].
Moon and Lee’s ‘‘I2L-MeshNet’’ introduced an innovative
3D human pose estimation technique using RGB images,
crucial for gymnastics performance analysis [2]. Müller
et al. tackled the complexities of self-contact in gymnastics
poses, thereby increasing the accuracy of pose estimation
in intricate scenarios [3]. Chen, Tian, and He’s extensive
survey on deep learning methods for monocular human
pose estimation offered comprehensive insights into the
domain [4]. Andriluka, Pishchulin, Gehler, and Schiele
established a new benchmark for 2D human pose estimation,
essential for appraising gymnastics models [5].

B. INNOVATIONS IN DEEP LEARNING FOR KINEMATIC
ANALYSIS
Carreira and Zisserman’s integration of deep learning with
graphical models enhanced the recognition of gymnastics
actions by focusing on the interplay between body parts [6].
Rohan et al. developed a CNN-based real-time gait analysis
system, applicable in gymnastics training for its immediacy
and accuracy [7]. Zhao et al. demonstrated the versatility
of deep learning with their view-adaptive recurrent neural
networks, underscoring its adaptability in various settings [8].
Boukhayma et al.’s LEGO framework introduced a novel
approach to learning edge geometry from videos, open-
ing new pathways in gymnastics action recognition [9].
Fastovets, Guillemaut, and Hilton proposed a unique non-
sequential key-frame propagation technique for athlete pose
estimation, applicable in gymnastics contexts [10].

C. EXPANDING HORIZONS IN SPORTS POSE ESTIMATION
Rohan, Rabah, Hosny, and Kim’s CNN-based real-time gait
analysis technique is also capable of analyzing gymnasts’
movements [11]. Song and Fan’s posture recognition and
estimation method holds potential for adaptation to gym-
nastics poses [12]. Takeichi, Ichikawa, Shinayama, and
Tagawa’s mobile application for running form analysis hints
at possible gymnastics applications [13]. Kazemi, Burenius,
Azizpour, and Sullivan’s work on multi-view body part
recognition sheds light on the complexities of gymnastics
movements [14]. Kondragunta, Jaiswal, and Hirtz’s method
for deducing gait parameters from 3D poses can be tailored
for gymnastics movement analysis [15].

D. RECENT ADVANCEMENTS IN POSE ESTIMATION
Gong et al.’s ‘‘DiffPose’’ at CVPR significantly enhanced the
accuracy of 3D pose estimation [21]. Lin et al. delved into the
transition from 2D to 3D models in boxing pose estimation,
underscoring advancements in sports analytics [22]. Zhou
et al. offered a deep learning-focused survey on pose
estimation, tracking, and action recognition [23]. Ingwersen
et al. introduced ‘‘SportsPose,’’ a dynamic 3D sports pose
dataset, vital for sports analytics research [24]. Baumgartner

and Klatt demonstrated a novel approach for 3D pose
estimation in sports broadcasts, incorporating partial sports
field registration [25]. Qiu et al. proposed a structure-guided
diffusion model for 2D human pose estimation, marking
a significant improvement in the field [26]. These studies
collectively represent significant strides in the evolution of
pose estimation technology, particularly in the context of
sports and movement analysis.

Our study builds upon this existing body of work by
focusing on aerobics. We aim to integrate pose estimation
with specialized kinematic modeling, seeking to bridge the
gap between 3D pose estimation technology and the practice
and analysis of aerobics, potentially improving how this
discipline is approached and understood.

III. METHODOLOGY
Our methodology is comprised of three distinct components:
data collection, a specialized approach to 3D pose estimation,
and the design of a kinematic model, all of which are
specifically tailored for aerobics.

A. DATASET COLLECTION
Our team, in collaboration with Nanjing University of
Posts and Telecommunications, has meticulously compiled a
comprehensive dataset featuring aerobic exercise videos for
the development and validation of our pose estimation model.
This dataset showcases a broad spectrum of participants
engaging in diverse aerobic routines, ensuring comprehensive
representation of movements for accurate model training.

Utilizing a single camera setup, we captured 100 unique
aerobic exercise segments, each approximately five minutes
in duration. These segments encompass five distinct aerobic
routines, with each routine performed by 20 different
participants. To guarantee the precision of our model, each
video segment was carefully annotated to capture both 2D
and 3D joint positions of the participants, reflecting our
commitment to data accuracy and quality.

The dataset comprises the following aerobic routines:

1) CLASSIC AEROBICS
Features traditional aerobic exercises set to high-energy
rhythms, emphasizing basic steps to enhance cardiovascular
health.

2) DANCE AEROBICS
A fusion of dance movements and aerobic exercises designed
to improve rhythm and coordination while offering a
cardiovascular workout.

3) STEP AEROBICS
Focuses on choreographed routines performed on an aerobic
step, aimed at strengthening the lower body and boosting
cardiovascular fitness.

4) BODY CONDITIONING AEROBICS
Combines aerobic activities with strength training, employ-
ing either light weights or bodyweight exercises to tone
muscles and increase stamina.
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5) BALL AEROBICS
Incorporates various ball exercises to target balance and
core strength, simultaneously improving cardiovascular
endurance, coordination, and muscle strength in a fun,
engaging manner.

B. POSE ESTIMATION
This entire procedure is visually depicted in Fig. 2, while
the overall framework of the estimation model is outlined in
Fig. 3.

1) MODEL STRUCTURE
In our computer vision model development for human pose
estimation, we have concentrated on accurately deducing the
3D positions of key body joints from 2D video footage.
Grounded in deep learning principles, our model is uniquely
tailored for enhancing the analysis and optimization of
human movements, especially in aerobics. We have made a
significant leap beyond traditional approaches by integrating
a self-attention structure, substantially refining conventional
methods.

The integration of self-attention in our model offers three
principal advantages:

1. Enhanced Modeling Capabilities: The self-attention
mechanism equips the model with the ability to effectively
discern global dependencies within sequences, a crucial
factor for accurately depicting complex human poses.

2. Improved Accuracy: By employing self-attention,
we significantly boost the precision of our 3D pose esti-
mation. This is essential for precisely locating human joint
positions and enhancing the model’s efficacy in motion
analysis and optimization.

3. Increased Applicability: Thanks to its superior per-
formance, our model demonstrates versatility in diverse
domains, such as sports, healthcare, and fitness, thereby
positioning it as a versatile tool for various human motion
analysis scenarios.

Integrating self-attention into the pose estimation architec-
ture marks a major stride forward, offering a deeper and more
nuanced understanding of human movement while greatly
enhancing the model’s precision and adaptability in multiple
applications.

Our model comprises several integral modules:
1. 2D PoseGeneration (UsingAlphaPose):We leverage the

pre-trained AlphaPose model, known for its exceptional 2D
pose estimation accuracy. It detects human figures in images
and identifies key joints, forming the basis of our 2D pose
matrix for further analysis.

2. Position Encoding: In the initial phase, we utilize
position encoding to preserve the sequential order of data.
This is vital for correctly interpreting the temporal dynamics
of human movement, offering advantages over traditional
RNNs in terms of processing speed and stability.

3. Feature Extraction with CNNs: Our model features a
five-layer CNN architecture inspired by ResNet principles,

FIGURE 2. Overview of a pose estimation pipeline: This schematic
illustrates the complex stages of a pose estimation workflow, starting
with the application of AlphaPose for 2D joint detection, followed by
position encoding to retain the sequential order of data. Feature
extraction is performed using a Convolutional Neural Network (CNN) that
draws upon ResNet principles, merging the outputs of different layers to
preserve original information. Temporal modeling with self-attention
mechanisms captures the dynamics of human movement across frames,
employing Query (Q), Key (K), and Value (V) components for an enhanced
analysis. The final stage involves a regression network, translating 2D
features and temporal data into accurate 3D joint positions, with a
10-layer fully connected architecture incorporating elements of residual
learning for improved stability and performance.

extracting key features from 2D input data to build a
comprehensive feature set detailing posture and spatial
relations.
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FIGURE 3. An illustration of a 3D pose estimation process for human
motion during aerobic exercise, utilizing a self-attention neural network
module. The diagram shows a sequence of pose detections leading to a
neural network, indicating the flow from raw data input through position
encoding to the self-attention mechanism that processes and interprets
the complex patterns of movement.

4. Temporal Modeling with Self-Attention Mechanisms:
This component captures the complex temporal dependencies
in human movement across frames. The model dynamically
adjusts its focus on the importance of joint positions and their
movements at each time step.

5. 3D Pose Estimation: We employ a specially-designed
regression network to convert the 2D features and temporal
data into accurate 3D joint positions. The network includes
a 10-layer fully connected architecture with residual learning
elements for enhanced stability and performance.

2) GENERATE 2D IMAGE
In the process of generating 2D points for image representa-
tion, our system utilizes a pre-trained iteration of AlphaPose,
a distinguished tool in the realm of computer vision, cele-
brated for its unparalleled 2D pose estimation capabilities.
AlphaPose excels in identifying human figures within images
and accurately mapping out their key body joints. This
proficiency is crucial for creating intricate 2D representations
of human poses. By leveraging a pre-trained AlphaPose
model, our system efficiently transforms video data into
precise 2D pose estimations. This adaptation harnesses the
advanced functionalities of AlphaPose, ensuring elevated
accuracy and performance in diverse contexts. Incorporating
AlphaPose into our methodology markedly amplifies our
ability to analyze and decode human movements within a
two-dimensional perspective.

The output of this phase is encapsulated in a matrix of pixel
points, formatted as [17, 2], which outlines the coordinates of
crucial body joints on the 2D plane. Formally, this matrix can
be represented as:

P =


x1 y1
x2 y2
...

...

x17 y17

 (1)

where each row in P corresponds to a unique joint, and
the two columns represent the x and y coordinates of
that joint within the image domain. This structured output
acts as a pivotal element for subsequent stages in our
pose estimation workflow, facilitating advanced analysis and
further applications.

3) POSITION ENCODING
In the initial stage of our model’s operation, we integrate
position encoding - a technique that enhances the model’s
ability to process data in parallel, presenting a marked
improvement over the sequential data handling by traditional
Recurrent Neural Networks (RNNs). Position encoding
accelerates computation by facilitating simultaneous process-
ing of multiple data points, which significantly reduces the
time required for processing when compared to the step-by-
step approach of RNNs.

The adoption of position encoding is crucial in preserving
the sequential integrity of data, which is fundamental for
the accurate depiction of the temporal dynamics in human
movements. Our model incorporates position information
into the input data, allowing for the concurrent processing
of several data points. This not only expedites the compu-
tation but also augments the model’s stability by reducing
the dependence on sequential processing, which in turn,
diminishes the potential for bottlenecks and the instability
that RNNs often face.

Position encoding also contributes to the model’s robust-
ness in dealing with vast and intricate datasets, ensuring
a consistent and reliable analysis of human movements.
The method of position encoding that we implement is
represented by the following formulae:

Consider the original 2D pose estimation matrix Pwith the
dimension [17,2]. Define the position encodingmatrixE with
the dimension [17,1], where each element ei corresponds to
the position encoding of the ith joint. The enhanced matrixM
that encapsulates both the spatial and temporal information is
calculated using the equation:

M =
[
P E

]
(2)

This equation signifies that the matrix M is the horizontal
concatenation of the 2D pose matrix P and the position
encoding matrix E . As a result, the matrixM now holds com-
prehensive information, with P providing spatial coordinates
and E adding the temporal context, collectively facilitating
a more holistic understanding and processing of human
movements within the model.
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4) FEATURE EXTRACTION WITH CNNs
In our research, we’ve implemented a sophisticated five-layer
Convolutional Neural Network (CNN) architecture, drawing
upon the principles of ResNet. An innovation in our design is
the merging of the output from the first layer with that from
the fourth layer. This fusion strategy is critical, as it helps
in preserving the original information, thereby enhancing the
model’s stability and robustness. The CNNs are instrumental
in extracting pivotal features from 2D input data. This data
primarily consists of joint coordinates that map out the spatial
positioning of key body joints in each video frame.

The CNNs meticulously construct a hierarchical feature
set, abundant in details about the subject’s posture and spatial
relationships within the frame. These extracted features lay
the groundwork of our model, enabling it to capture the
intricate details and unique patterns present in the input
data. This capability is crucial for our model to accurately
interpret complex human poses, ranging from subtle gestures
to elaborate body configurations.

This foundational feature extraction process, driven by
CNNs, is vital for the subsequent stages of our approach. The
extracted features provide a robust base for further modeling
and refinement, setting the stage for our multi-layer neural
network architecture to achieve a nuanced understanding of
human movement and posture. The overall algorithm of this
block is shown in Algorithm 1.

Algorithm 1 Feature Extraction with CNN
Require: X : Input data
Ensure: HierarchicalFeatures: Extracted features

FeatureExtractionCNNX
1: CNN ← InitializeCNN() {Initialize CNN with ResNet

principles}
2: L1← CNN.Layer1(X ) {Output of the first CNN layer}
3: IntermediateOutput← ProcessThroughLayers(CNN, X )

4: L4 ← CNN.Layer4(IntermediateOutput) {Output of the
fourth CNN layer}

5: MergedOutput ← L1 + L4 {Merge outputs of the first
and fourth layers}

6: HierarchicalFeatures ← BuildFeature-
Set(MergedOutput)

7: return HierarchicalFeatures

5) TEMPORAL MODELING WITH SELF-ATTENTIONS
In our approach, we employ Self-Attention Mechanisms,
which are enhanced with components such as Query (Q), Key
(K), andValue (V) to capture complex temporal dependencies
in human movement. Our model analyzes sequential data
from 2D joint positions across a wide range of video frames.

Unlike traditional methods, our model extends temporal
analysis significantly, considering information from ten
frames before and after the current frame. This is achieved
through a learned attention mechanism that weights the
importance of these frames dynamically.

The Self-Attention Mechanisms focus on joint relation-
ships and their temporal development. For each joint position
in the sequence, we generate Q, K, and V as follows:

Q = Wq · X , K = Wk · X , V = Wv · X (3)

where X represents the input joint positions, andWq,Wk , and
Wv are the weight matrices for Q, K, and V, respectively.

The model computes attention scores using:

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V (4)

Here, dk is the dimension of K. The attention scores are
computed by comparing the Q representation of each joint
at a specific time step with the K representations of joints
at other time steps, guiding the model in aggregating the V
representations.

This mechanism allows the model to dynamically adjust
its focus, learning the relative importance of different joints
and their movements at each time step. The integration of
QKV components ensures the model tracks joint positions
and understands their interrelations over time.
3D Pose Estimation: In the final stage of our methodology,

we focus on the essential task of converting the extensively
extracted 2D features and comprehensive temporal data
into precise 3D joint positions. This complex conversion
is facilitated by a specially designed regression network,
engineered for accurate construction of 3D joint coordinates.

This phase represents the culmination of our approach,
where the synergy of 2D feature data and temporal infor-
mation is effectively utilized. The regression network plays
a pivotal role in this transformation, translating 2D pose
estimations into detailed 3D spatial representations. This
process is central to our methodology and lays a solid
foundation for further motion analysis and pose optimization,
crucial for precise 3D motion reconstruction.

To improve the stability and performance of our model,
we have implemented a 10-layer fully connected architecture
with elements of the ResNet structure. We employ a residual
learning framework, described by the following equation for
each layer L:

xL+4 = f (xL+3)+ xL (5)

Here, xL is the input to the L-th layer, and f (xL)
represents the transformation function of the layer. This
residual connection, starting from the first layer and added
to the input of every third subsequent layer, helps preserve
essential information throughout the network. This design
enhances the model’s stability and robustness, enabling
effective capture and reconstruction of 3D human motion.

To finalize our model’s input for the 3D regression,
we integrate the outputs from the self-attention mechanism,
the CNN block, and the position encoding. This integration
forms a comprehensive input, enrichedwith spatial, temporal,
and positional data, thereby optimizing the input for the final
3D pose regression. This holistic approach ensures that the
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model is fed with a rich blend of data, crucial for producing
highly accurate and detailed 3D joint estimations.

The overall algorithm of the estimated model is shown in
Algorithm 2.

Algorithm 2 Pose Estimation Model
Require: X : Input 2D joint positions for T frames

PreprocessWithAlphaPoseX
1: P← {}
2: for xt in X do
3: pt ← AlphaPose(xt ) {Apply AlphaPose for 2D pose

estimation}
4: P← P ∪ {pt }
5: end for
6: return P

FeatureExtractionAndTemporalModelingP
7: E ← PositionEncoding(P)
8: F ← FeatureExtraction(E)
9: G← TemporalModeling(F)
10: return G,F

PoseEstimationP, G, F
11: I ← Concatenate(P,G,F) {Merge for regression input}

12: Y ← {}
13: for it in I do
14: yt ← RegressionNetwork(it ) {Estimate 3D pose}
15: Y ← Y ∪ {yt }
16: end for
17: return Y
18: P← PreprocessWithAlphaPoseX
19: G,F ← FeatureExtractionAndTemporalModelingP
20: Y ← PoseEstimationP,G,F {Final 3D joint positions}

C. KINEMATIC MODEL DESIGN
We have devised a kinematic model meticulously designed
to capture the intricate interconnections between body joints
during the dynamic and multifaceted movements of aerobics.
Rooted in principles borrowed from biomechanics and
robotics, ourmodel takes into account the inherent constraints
and degrees of freedom associated with human joints. Within
this specialized coordinate system, we can articulate the
fundamental components of our kinematic model and provide
pertinent formulas.

1) JOINT ANGLE COMPUTATION
At the heart of our kinematic model lies the pivotal task of
computing the angles of each joint, which succinctly describe
the body’s posture during diverse aerobics movements. This
is achieved through the application of the following formula:

θi = arctan2(Py,Px) (6)

where: θi denotes the angle of joint i.
Px and Py signify the x and y coordinates of joint i within

the coordinate system.

2) VELOCITY AND ACCELERATION DETERMINATION
For a more comprehensive insight into motion dynamics,
we extend our analysis to calculate the velocity and
acceleration of the joints. Velocity is derived by computing
the rate of change of joint angles:

ωi = dθi/dt (7)

Acceleration, in turn, is the derivative of velocity:

αi = dωi/dt (8)

Within these equations, ωi represents the angular velocity
of joint i, while αi corresponds to the angular acceleration of
joint i.

3) COMPOSITE MODEL
The amalgamation of the aforementioned elements results in
a comprehensive kinematic model, effectively constituting
a coordinate system encompassing joint angles, velocities,
and accelerations. Within this framework, we can precisely
depict the body’s posture and its dynamic transformations
throughout a myriad of aerobic exercises. This model serves
as a valuable tool, facilitating a deeper comprehension of
joint interactions during aerobic workouts and discerning
alterations in body posture. It aids in the optimization of
training techniques while mitigating stress on specific joints
and muscle groups, thereby enhancing the effectiveness and
safety of aerobic training protocols.

The overall algorithm is shown in Algorithm 3.

Algorithm 3 Kinematic Model for Aerobics Movements
Require: Px ,Py: Joint coordinates

ComputeJointAnglesPx ,Py
1: for each joint i do
2: θi← arctan2(Py,Px) {Compute angle for joint i}
3: end for

ComputeVelocityθ, dt
4: for each joint i do
5: ωi← dθi/dt {Compute angular velocity for joint i}
6: end for

ComputeAccelerationω, dt
7: for each joint i do
8: αi← dωi/dt {Compute angular acceleration for joint

i}
9: end for

KinematicModel
10: Px ,Py← JointCoordinates() {Get joint coordinates}
11: θ ← ComputeJointAngles(Px ,Py)
12: dt ← TimeDifference() {Get time difference for

derivative calculation}
13: ω← ComputeVelocity(θ, dt)
14: α← ComputeAcceleration(ω, dt)
15: return θ, ω, α {Return joint angles, velocities, and

accelerations}
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IV. EXPERIMENTS AND RESULTS
In this section, we present the outcomes of our study,
which focused on advanced pose estimation, kinematicmodel
design, and human-machine interaction (HMI). Our objective
was to improve training effectiveness, reduce injury risks,
and customizeworkout programs in aerobics while enhancing
user engagement. The results are divided into three primary
categories: Pose Estimation, Kinematic Model Analysis, and
Human-Machine Interaction.

A. TESTING AND EVALUATION
In our study’s testing and evaluation phase, we conducted
comprehensive trials to gauge the performance of our
trained model. Our focus was specifically on its accuracy
in estimating 3D joint positions from previously unseen
aerobics videos. The central goal of these evaluations was to
assess the model’s precision in determining these positions,
a critical factor for the success of our application. To ensure
a detailed and rigorous assessment, we utilized the Mean Per
Joint Position Error (MPJPE) as our sole metric:
Mean Per Joint Position Error (MPJPE):This fundamental

metric assesses the model’s precision in estimating 3D joint
positions. It is calculated as the average Euclidean distance
between the ground truth joint positions and the estimated
joint positions across all joints.

MPJPE =
1
n

n∑
i=1

|Yi − Ŷi| (9)

where Yi represents the ground truth 3D positions, and Yi
denotes the model’s predictions. A lower value of MPJPE
indicates higher accuracy, showing a closer match between
the model’s predictions and the actual data.

This focused evaluation approach allowed us to gain
an in-depth understanding of the model’s performance.
By exclusively using the MPJPE metric, we could precisely
determine the effectiveness of the model on new aerobics
video data. This critical evaluation step was essential in
confirming the model’s capability and efficacy for analyzing
aerobics movements.

B. BASELINE DESIGN
In our study, we conducted a comprehensive evaluation of our
pose estimation model by comparing it with six established
baseline models, each notable for its unique approach and
contributions to the field. This comparison provides an in-
depth understanding of our model’s performance in various
scenarios and helps identify areas for future enhancements.

Videopose3D [29]: Distinguished for its ability to analyze
dynamic movements in videos, this model is a benchmark
in evaluating pose estimation, particularly in scenarios
involving motion.

DiffPose [21]: A cutting-edge model that combines deep
learning with differential equations. It is particularly adept
at recognizing intricate and subtle movements, making it a
valuable reference for our comparative analysis.

VNect [30]: Known for its real-time 3D human pose
estimation using a single RGB camera. This method is well-
suited for real-time applications such as interactive games,
recognized for its efficiency and versatility across different
settings.

A Simple Yet Effective Baseline [31]: This approach
emphasizes practicality and straightforward implementation,
providing an efficient solution for accurate pose detection
with minimal complexity.

Sparseness Meets Deepness [32]: This method integrates
deep learningwith sparse coding for enhanced accuracy in 3D
human pose estimation from videos, particularly in dynamic
environments.

Lifting from the Deep [33]: Utilizes deep learning to infer
3D human poses from 2D images, employing advanced visual
processing for 3D pose estimation based on single-image
inputs.

By benchmarking our model against these diverse and
influential methods, we aim to not only quantify its perfor-
mance but also to understand how it fares in comparison,
particularly in areas like accuracy, efficiency, and adaptability
in various scenarios. This thorough comparative analysis will
illuminate the distinct advantages of our model and guide
future development efforts.

C. POSE ESTIMATION
In this subsection, we present a comprehensive evaluation
of our pose estimation model, focusing on its accuracy and
robustness across various aerobics routines and environmen-
tal conditions.

1) ACCURACY EVALUATION
The research focused on evaluating the accuracy of a novel
pose estimation model across a variety of aerobics exercises.
This model underwent rigorous testing with participants
performing five distinct routines, each featuring different
group sizes. The precision of the model in detecting 3D
joint positions was quantified using the Mean Per Joint
Position Error (MPJPE), which involved comparing the
model’s estimations to the actual observed positions.

The findings were exceptionally promising. The model
consistently demonstrated outstanding accuracy in identi-
fying 3D joint locations, as indicated by consistently low
MPJPE scores across all routines and group configurations.
This high level of precision is crucial for providing immediate
and accurate feedback, which is essential for designing
customized exercise plans and enhancing the effectiveness of
aerobics training.

The results highlight the advantages of the novel pose
estimation model in assessing accuracy across various aer-
obic exercises. Using the MPJPE analysis method allows for
an objective comparison of different models’ performance.
In this comparative analysis, it is noteworthy that the
model consistently achieves low MPJPE scores across all
exercise routines and different participant configurations,
demonstrating its outstanding stability and accuracy.
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TABLE 1. Pose estimation performance evaluation.

Simultaneously, the study compared this new model with
several commonly used pose estimation models, including
‘‘Videopose3D,’’ ‘‘DiffPose,’’ ‘‘VNect,’’ ‘‘A Simple Yet
Effective Baseline,’’ ‘‘Sparseness Meets Deepness,’’ and
‘‘Lifting from the Deep.’’ The results clearly indicate that
‘‘Our Method’’ outperforms the other models, exhibiting
significantly lower MPJPE scores, implying its superior
precision and reliability in estimating 3D joint positions. This
finding holds substantial significance for the field of aerobic
exercise, as it provides a robust tool capable of delivering
accurate 3D pose estimation data across various aerobic
exercise scenarios, thereby offering improved feedback
and guidance to both exercisers and trainers, ultimately
enhancing training effectiveness and facilitating the design
of personalized exercise plans. Consequently, this research
underscores the immense potential and competitive edge of
this novel pose estimation model within the realm of aerobic
exercise.

2) ROBUSTNESS TO ENVIRONMENTAL FACTORS
To assess the resilience of our model, we subjected it to
various environmental conditions, such as different lighting
and backgrounds, to simulate real-world scenarios. The
model exhibited high accuracy in these tests, affirming its
robustness and adaptability to diverse conditions. The results
of this evaluation are presented in Table 2.

The thorough examination of our model’s resilience under
various environmental conditions, including diverse lighting
scenarios and backgrounds aimed at simulating real-world
complexities, yielded compelling results as presented in
Table 2. In bright environments, ‘‘Our Method’’ exhibited
a remarkable level of precision with the lowest Mean Per
Joint Position Error (MPJPE) of 0.18 cm, showcasing its
exceptional performance under optimal lighting conditions.
This not only underscores the model’s robust design but also
positions it as a reliable solution for applications in well-
lit settings. Equally noteworthy is the model’s adaptability
in dim environments, where it maintained its resilience with
the lowest MPJPE of 0.22 cm, signifying its effectiveness in
scenarios characterized by lower light levels.

Comparative analysis with competing models such as
‘‘VNect’’ and ‘‘Lifting from the Deep’’ reveals the consis-
tent superiority of ‘‘Our Method’’ across both bright and
dim environmental factors. While these competing models
demonstrate commendable performance, ‘‘Our Method’’
stands out with consistently lowerMPJPE values, reaffirming

its robustness and adaptability. Even in scenarios with
different backgrounds, the model showcased a low MPJPE
of 0.19 cm, further attesting to its ability to handle diverse
environmental challenges.

In summary, the comprehensive evaluation positions ‘‘Our
Method’’ as a resilient and versatile model, excelling under
varying conditions. These findings not only underscore its
efficacy in controlled environments but also highlight its
potential for real-world applications where adaptability and
precision are paramount.

D. KINEMATIC MODEL ANALYSIS
In this subsection, we delve into the results of our kinematic
model analysis, which was rigorously tested for its precision
in tracking joint angles and movements in various scenarios.
This analysis is crucial for understanding the model’s
capability to accurately capturing the biomechanical aspects
of human motion, particularly in aerobics.

1) COMPARATIVE ANALYSIS IN MOTION DYNAMICS
To evaluate the performance of our kinematic model,
we conducted a comprehensive comparative analysis against
established models. This assessment was conducted using
a custom aerobics dataset, encompassing diverse testing
scenarios. Across these scenarios, our model consistently
exhibited outstanding accuracy in capturing intricate motion
dynamics, surpassing the performance of competing models.
The comprehensive results of this comparative analysis are
presented in Table 3.

The comprehensive analysis detailed in Table 3 provides
a profound insight into the prowess of our kinematic model
across diverse aerobics routines. In every testing scenario,
ranging from Routine A to Routine E, our model consistently
exhibits outstanding accuracy, capturing motion dynamics
with precision and finesse. Notably, the accuracy values,
ranging from 0.4◦ to 0.7◦, showcase the model’s superior
performance when compared to prominent counterparts such
as Videopose3D, Diffpose, VNect, A Simple Yet Effective
Baseline, Sparseness Meets Deepness, and Lifting from the
Deep.

The inherent consistency in the excellence of our model’s
accuracy throughout different routines positions it as a robust
and reliable solution for motion dynamics analysis. The
nuanced nature of aerobics routines demands a high level of
accuracy in capturing diverse movements, and our kinematic
model rises to the occasion, outperforming competing
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TABLE 2. Robustness evaluation with competing models and environmental factors.

TABLE 3. Consolidated kinematic model performance evaluation.

models across the board. This not only underscores the
model’s technical superiority but also emphasizes its practical
applicability in real-world scenarios.

In considering the implications of these results, the
exceptional accuracy exhibited by our kinematic model
suggests its potential deployment in a variety of applications
requiring precise motion analysis, such as sports training,
rehabilitation exercises, and virtual reality simulations. The
holistic performance evaluation thus recommends our model
as a preferred choice for scenarios where nuanced and
accurate motion dynamics capture is paramount. In essence,
the results of this analysis position our kinematic model as a
standout performer, paving the way for advancements in the
field of motion analysis and providing a reliable foundation
for applications demanding excellence in capturing intricate
human movements.

E. AEROBIC EXERCISE-SPECIFIC APPLICATION
This section delves into the application of our 3D pose
estimation and kinematic model in the context of aerobic
exercise. The aim is to demonstrate how our model enhances
training effectiveness.

1) PERSONALIZED TRAINING PLANS
Our model is meticulously crafted to provide highly per-
sonalized training plans, taking into account the unique
health levels and performances of individuals during aerobic
exercises. By conducting a thorough analysis of factors
such as range of motion and joint activity, our model
precisely recommends methods to adjust exercise intensity
and complexity. This personalized approach not only ensures
significant exercise effectiveness but also prioritizes safety
and individual health to the maximum extent.

In an extensive study involving 50 students from Nanjing
University of Posts and Telecommunications, we conducted a
comprehensive assessment to understand the practical effects
of our personalized training plans. The results showcased
substantial impacts of our approach:

15% Increase in Exercise Adherence: Our customized
plans exhibited an outstanding ability to encourage indi-
viduals to sustain their exercise routines, resulting in a
notable 15% increase in exercise adherence. This significant
improvement reflects the model’s capability to inspire
exercise habits and promote sustainable progress.

20% Enhancement in Overall Exercise Efficiency: By
optimizing various aspects of the exercise experience,
our model’s recommendations led to a remarkable 20%
improvement in overall efficiency. Participants experienced
more efficient and productive exercise sessions, obtaining
greater benefits from each training session.

Moreover, our data-driven approach, grounded in a wealth
of information, encompasses not only individual health levels
but also biomechanical insights and performance metrics.
This multifaceted analysis ensures that our personalized
training plans not only adapt to current capabilities but also
facilitate progressive improvement over time.

With a commitment to holistic health, our model becomes
a reliable partner in achieving fitness goals. The combi-
nation of personalized precision, data-driven insights, and
validated results emphasizes our dedication to providing
a safe, efficient, and impactful fitness journey for each
user.

The survey conducted with 50 students from Nanjing
University of Posts and Telecommunications serves as a
testament to the real-world effectiveness of our model.
The positive impacts on exercise adherence and overall
efficiency highlighted in the survey findings underscore the
model’s commitment to personalized precision and data-
driven excellence, further reinforcing its role as a trustworthy
companion in the pursuit of fitness objectives.

2) REAL-TIME FEEDBACK AND CORRECTION
In the realm of aerobic exercise, immediate feedback is
paramount for optimizing performance and ensuring safety.
Our model excels in this regard, continuously monitoring
athletes’ postures in real-time during their workouts, and
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TABLE 4. Comprehensive real-time response evaluation of our model vs. manual assessment.

offering prompt feedback. If it detects incorrect movements
or potentially harmful postures, it instantly alerts the athlete
to make necessary adjustments. In a comparative study,
our model achieved a remarkable 30% reduction in the
occurrence of incorrect postures compared to traditional
coaching methods.

To assess the real-time responsiveness of our model,
we conducted comparative tests involving 50 individuals,
focusing on how quickly our model provides feedback
during aerobic routines compared to manual assessments by
professional trainers. The findings, as detailed in Table 4,
highlight the exceptional efficiency of ourmodel in delivering
instant feedback, a critical factor for effective and safe
exercise routines.

The table highlights our model’s capability to deliver
feedback with an average response time of just 0.2 seconds,
significantly faster than the 2.5 seconds required for manual
assessment by trainers. This rapid response time plays a
pivotal role in real-time posture and movement correction,
greatly enhancing the training experience and reducing the
risk of injury.

The comprehensive results from our specialized applica-
tion in aerobic exercise underscore the precision, reliability,
and adaptability of our model in real-world scenarios. This
demonstrates the tremendous potential of our approach to
improve aerobic training, leading to improved performance,
reduced injury risk, and an overall enhanced workout
experience for individuals of all skill levels.

V. CONCLUSION AND FUTURE WORKS
The research presented in this paper demonstrates a sig-
nificant advancement in the field of aerobics training
through the implementation of a novel 3D pose estimation
and kinematic modeling approach. Utilizing self-attention
mechanisms and a comprehensive dataset, our model shows
outstanding accuracy and robustness in various environments
and routines. The model’s ability to provide real-time
feedback, coupled with its superior performance in injury
prevention and personalized training, marks a substantial step
forward in the domain of sports science and fitness training.

The key findings of our research highlight the model’s high
precision in estimating 3D joint positions, its adaptability
to different lighting and backgrounds, and its superior per-
formance in motion dynamics analysis compared to existing
models. These attributes make it an invaluable tool for
athletes, trainers, and health professionals, offering insights
into optimizing training routines, enhancing performance,
and minimizing injury risks.

In conclusion, this research lays the foundation for
future developments in human motion analysis and poses

estimation. The potential applications of this model extend
beyond the realm of aerobics, offering promising prospects in
various fields such as rehabilitation, ergonomics, and even in
the development of interactive technologies and virtual reality
systems. As we continue to refine and enhance this model,
we anticipate further contributions to the understanding and
optimization of human movement, impacting a wide range of
disciplines and industries.
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