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ABSTRACT Assessing plantar pressure is crucial for fabricating diabetic insoles and preventing diabetic
foot ulcers (DFUs), which are caused by increased plantar pressure. However, the commonly used methods
for assessing plantar pressure distribution involve professional sensor-based equipment and expertise, which
are costly and time-consuming. Given the qualitative association between ink footprint images and plantar
pressure, this study proposes using the footprint images to predict the quantitative values of dynamic plantar
pressure in barefoot and 4 different insole conditions (including Nora Lunalastik EVA, Nora Lunalight A
fresh, Pe-Lite, and PORON® Medical 4708) based on a multilayer perceptron (MLP) neural network model.
To provide more precise insole material recommendations for specific foot regions for better plantar pressure
distribution, the plantar of the foot is divided into 5 regions: the toes, metatarsal heads, medial midfoot, lateral
midfoot, and heel. Patch-based MLP with localization embedding is introduced to learn the correspondence
between ink density and plantar pressure information. Ground-truth data collected from 52 diabetes patients
is constructed as a dataset named diabetes-footprint-to-pressure and used to train and validate the model.
The mean absolute error (MAE) of the models for the barefoot and 4 insole conditions is 5.51% (33.06 kPa),
3.99% (23.94 kPa), 4.85% (29.10 kPa), 4.25% (25.50 kPa), and 3.57% (21.42 kPa) of the sensing range,
respectively. Compared to traditional methods for plantar pressure assessment, this approach streamlines the
process of acquiring the overall and regional dynamic plantar pressure with barefoot and 4 different insole
materials. Clinicians can quickly provide recommendations on the type of insole material for individual
patients.
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I. INTRODUCTION
Abnormal plantar pressure of the foot is one of the
underlying risk factors with the development of diabetic
foot ulcers (DFUs) [1]. A timely diagnosis and prevention
can effectively delay the progression of this condition from
reaching to the more severe stages and reducing the risk of
complications. Offloading plantar pressure is considered to
be an important intervention for preventing DFUs [2], [3].
Appropriate interventions like customised insoles are key
prevention strategies to offload abnormal plantar pressure [4],
[5], [6]. Nevertheless, the type of insole materials used is
particularly critical in the prescription process to achieve
optimal offloading [7].
Plantar pressure maps of insoles designed with different

types of materials have been used to evaluate the offloading
performance [8]. The data obtained from patients and the
decision made by physicians are important as resources
towards fabricating optimal insole material. Except for evalu-
ating the offloading performance of insoles, plantar pressure
distribution is also used to assess the biomechanical function
of the foot, e.g. anatomical foot deformities, determine ulcer
risk [9], body motion function [10], and compare different
footwear/insole effects. Previous works have shown that the
reduced plantar pressure in the medial foot during walking
would show poor gait balance, thus increasing the fall risk
among the elderly [11]. An increase in plantar pressure was
found to be mostly in the forefoot region during walking
with the progression of diabetic neuropathy [12]. However,
the diabetic foot might not be able to sense abnormal plantar
pressure due to loss of sensation. Prolonged loading will lead
to DFUs if the excessive plantar pressure is not detected
and prevented in advance. Therefore, early management and
efficient detection of plantar pressure is critical for diabetic
feet.

As a low-cost and non-invasive method, ink footprints
are widely used to assess the foot type and foot problems
in clinical assessment [13], which is particularly suitable
for early management and efficient detection of DFUs.
There are various methods to obtain the footprints with
different instruments, like ink imprint, optical podoscopes,
radiography, and platinum scanners [14]. Ink imprint has
been widely used due to it is simple and quick to use, cost-
effective, and readily available amongst various methods.
It not only provides foot shape-related information [15],
like the Arch index [16], Staheli index [17], foot contact
area, etc. However, though with various advantages, as for
the plantar pressure assessment, the ink footprints can only
provide qualitative information, i.e. a higher ink density
corresponds to a greater plantar pressure. However, the
quantitative correlation between the ink density and the
plantar pressure is not clear. In clinical practice, clinical
experts subjectively identify the plantar pressure pattern
based on the ink density distribution and then prescribe the
insole structure and materials accordingly [18]. This method
is limited and subjective because the ink footprints only

qualitatively show the plantar pressure distribution thus the
diagnosis result greatly depends on the experience of the
clinician.

Developing automatic algorithm to recover the pressure
information is particularly difficult, due to the presumably
non-linear nature of the pressure-ink density response curve
as the pressure increases, the increase of ink density may
soon saturate and then reach plateau. If taken the diversity
of camera and lightening condition when taking the footprint
images into account, the problem becomes even more
complicated. To the best of our knowledge, there has not
yet been a study to quantitatively predict the plantar pressure
from the ink footprints.

Since the advent of machine learning (ML), significant
improvement on the tasks that requires high-level pattern
recognition, cognitive reasoning, and decision making has
been achieved, e.g. image classification [19], [20], [21], [22],
object detection [23], [24], [25], instance segmentation
[26], [27], and dense human pose estimation [28], [29], [30].
ML’s ability to learn hidden patterns from data [31], [32],
[33] has drawn to a wide range of applications in disease
detection [27], [34], [35], [36] and leads to improvement of
efficiency [37], [38], [39], [40].

This study aims at developing a machine learning model
to recover the plantar pressure information from the ink
footprints and predict the quantitatively pressure distribution
with barefoot and 4 different insole conditions for diabetes
patients. We first collect footprint images and dynamic
plantar pressure distribution data from a group of subjects,
constituting a dataset named diabetes-footprint-to-pressure
that contains 520 pairs of ground-truth footprint-pressure
correspondence. We then implement a data augmentation
scheme to drastically increase the sample numbers while
at the same time avoid hallucinating unrealistic artifacts.
These data samples are then used to train a patch-based
multilayer perceptron (MLP) model augmented with local-
ization embedding. Though the number of layers and
parameters is comparatively small, it is capable to outperform
comparison baselines constructed with advanced CNN based
architectures [41], [42]. The model is expected to provide a
quantitative measure of the plantar pressure, which can be
used to assist the clinical experts in the diagnosis of diabetic
foot ulcer risk and prescription of the insole structure and
materials, thus preventing foot ulcers caused by excessive
high plantar pressure and allowing diabetic patients to
maintain independence and better quality of life.

II. RELATED WORKS
Plantar pressure measurement systems such as those that
are platform-based (F-Scan system) and insole-based (Novel
Pedar®) have been traditionally used to evaluate the offload-
ing performance of orthotic insoles [43]. These systems
contribute to prescribing orthoses for diabetics to prevent
foot ulcers caused by maldistribution of plantar pressure.
However, the evaluation process is time consuming [44],
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intrusive, and costly, while subjects are burdened with
conducting a set of movements repeatedly during walking
experiments. Experienced and skilled technicians need to
calibrate and manipulate the system which poses a challenge
for some clinical practitioners who wish to evaluate the insole
performance during the design stage. Additionally, due to the
lack of suitable gait measurement equipment in hospitals,
inevitably re-measurements and repeated adjustments may
take place for insole fitting. Previous analyses of the biome-
chanical interactions between the foot and the insole are
largely based on a finite element analysis (FEA) [45], [46],
[47], [48]. The simulation process of foot-insole interaction
indeed offers cost-effective results, while the accuracy of the
results depends on the geometric model, material properties
and meshing density. However, the computational cost of the
simulations increases with total number of elements used in
the model and the complexity of the analysis, which can limit
the utility of finite element modelling in real-time clinical
applications [49].

To address the efficiency problem of FEA,Xidias et al. [50]
proposed a novel approach to predict the peak plantar
pressure of 3 phases of a gait cycle in different insole
conditions based on artificial neural networks (ANNs), with
a simulated databases created with FEA. The approach
provides an accurate (> 96%) and alternative means in
comparison to the FEA which incurs a computational
cost. However, the accuracy of prediction results from the
proposed ANNs model depends on the reliability of the FEA
database, while the FEA results depend on multiple factors
and reliable results acquisition are quite time-consuming
as mentioned in [49]. Another problem of FEA is that it
remains unknown whether the results are consistent with
the real-world plantar pressure distribution, since FEA is
a drastically simplified model of biological tissues and
its underlying physical assumptions may not hold for all
human subjects in real-world. To address this gap, this
research gathers real-world plantar pressure data from human
subjects and implements a data augmentation scheme that
place particular emphasis on avoiding introducing unrealistic
artifacts.

Plantar pressure can also be predicted by using different
methods and parameters as is the case in previous studies.
Mun and Choi [43] proposed a long short-term memory
(LSTM) deep learning model to predict the overall plantar
pressure distribution of the stance phase by using a small
number of main pressure sensors. Predictors in the regression
model proposed by Hazari et al. [51] can explain for 90.8%
of the peak plantar pressure. Amongst them, the grades of
neuropathy, knee and ankle velocities as well as acceleration
have significant contributions to the model. Su et al. [18]
also developed an automatic footprint segmentation method
for the contact area and arch index calculation and predict
the barefoot standing plantar pressure with the mathematical
model. However, these prediction methods either need many
clinical input predictors [51], [52], [53], [54], like HbA1c,

Vibration pressure threshold (VPT), the thickness of plantar
fascia or plantar fat pad which also need to measure using
professional devices, or only predict the plantar pressure
distribution of standing in bare feet condition [18].
Although proposed early in 1940s by McCulloch and

Pitts [55], MLP is still widely used in the field of
diabetes-related studies. Devarapalli et al. [56] proposed
a prototype MLP [57] to use brain derived neurotrophic
factor (BDNF) values and other biological variables to
predict diabetes. Mohapatra et al. [58] proposed to use
8 attributes of pregnant women for diabetes detection based
on MLP. Bani-Salameh et al. [59] compared the correct
classification rate (CCR) of anMLPwith two other classifiers
including support vector machines (SVMs) and K-nearest
neighbors (KNNs) and the results show that MLP provides
comparatively higher CCR.A similar prediction effectiveness
is also showed by Butt et al. [60]. In this research, the MLP
model is used to predict the plantar pressure from the ink
footprints, with patch-based data augmentation scheme and
localization embedding to improve the prediction accuracy.
Evaluations showed that though the number of layers and
parameters of the proposed network is comparatively small,
it is capable to outperform comparison baselines constructed
with advanced CNN based architectures [41], [42], indicating
advantages in diabetes-related studies and clinical practice.

III. METHOD
A. THE CONSTRUCTION OF
DIABETES-FOOTPRINT-TO-PRESSURE DATASET
1) PARTICIPANTS
A total of 52 subjects (26 females, 26 males) who are
between 50 and 75 years old (mean = 64, std = 5) with
type 1 or type 2 Diabetes Mellitus (DM) were invited to
participate in this study. Subjects with no history of ulcers or
neurological disorders (except neuropathy) [12], and are able
to walk freely without walking aids [61] are included in this
experiment. The exclusion criteria are those with active ulcers
at the time of the experiment and severe foot deformities, such
as cavus foot and Charcot arthropathy, have cardiovascular
and vascular diseases, claudication, retinopathy, nephropathy,
lower limb amputation, and other orthopaedic problems (e.g.,
fractures) or neurological (e.g., stroke) impairment that could
affect gait [12]. This study was approved by the Human
Subjects Ethics Sub-committee of The Hong Kong Polytech-
nic University (Reference Number: HSEARS20200128001).
Experimental requirements and written informed consent are
provided to all of the participants before participation in
the study. The descriptive statistics of the 52 participants
including age, body mass index (BMI), foot size and years
of diagnosis are listed in Table 1.

2) EXPERIMENT
Footprint images of both the left and right feet of each subject
were collected by using a Podograph (see Fig. 1). This device
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TABLE 1. Descriptive statistics of participants (n = 52).

FIGURE 1. Ink footprint image from podograph.

is used to take the outline of the foot and imprint of the sole.
The subjects were instructed to step onto the platform of the
Podograph in their bare feet for 10 s without any movement,
so that the body weight is evenly distributed onto both feet
as much as possible during this procedure. To ensure that the
footprints have a consistent quality, the same ink and device
was used to make sure the constant viscosity held across all
footprint samples. Additionally, the footprint images were
collected by the same operator who is well trained to use the
device, to ensure a consistent manner to control the pressure
used, reducing variability from this factor.

Studies [62], [63] have concluded that polyurethane
(PUR), ethylene vinyl acetate (EVA) and polyethylene (PE)
are most frequently used by orthopaedic technicians in
current clinical practice. They are all foam materials with a
different structure and properties. PUR foam is soft due to
an open cell structure, which allows breathability and offers
superior shock absorption in comparison to the other foams.
EVA and PE have a closed cell structure so that they are more
rigid than PUR, but also have better shock absorbing quality.
Four commonly used insole materials of these three types are
involved in this study, see Fig. 2. Aside from footprints, the
plantar pressure of both the left and right feet of each subject
in their bare feet and wearing the 3D insoles designed with
4 different kinds of materials (see Fig. 2) at their self-selected

FIGURE 2. 3D insoles designed with different materials used for insoles.

FIGURE 3. Experimental flow.

walking speed was also collected respectively by using the
in-shoe Pedar® system. The Pedar insole has been calibrated
by technicians before the wear trial experiment. The sensor
insoles of the in-shoe Pedar® system could be secured and
embedded in the footwear to record the plantar pressure
between the foot and the insole during standing and walking.
After applying the sensor, the subjects were required to repeat
walking back and forth until it is natural. To minimize the
order effect, the 5 experiment conditions for plantar pressure
collection are randomized and recorded 3 times for each
condition. The experiment environment was controlled at
about 25 ◦C air temperature and 55% humidity condition
during the experiment. The flow of the entire experiment is
illustrated in Fig. 3.
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FIGURE 4. Flowchart of model training. Noted that concatenation, fully connected layer, ReLU activation, and mean peak plantar pressure are
abbreviated as concat, fc, relu, and PPP, respectively.

3) DATA PROCESSING
The dynamic plantar pressure of each condition was collected
by using an in-shoe Pedar® system, which consists of
99 sensors on each insole. The raw plantar pressure data
collected by each sensor is a time series of pressure values,
representing its dynamic changes during walking. As a
representative metric of the pressure level in the sensing area,
the mean peak plantar pressure (PPP) of each sensor in the
left and right feet in 3 complete stance phases for each trial
was calculated, resulting to a pressure map. The pressure
values were normalized with the maximum sensing range of
the device (600 kPa), yielding normalized pressure values in
[0, 1] [64].

The footprint imageswere scannedwith a printer to convert
them to grayscale images before inputting to the model.
In total, 520 footprint image-plantar pressure distribution
pairs were collected from 52 subjects, each with left & right
feet footprint-pressure pairs under 5 conditions (bare foot +

4 insoles in Fig. 2). The diabetes-footprint-to-pressure dataset
can be accessed via [data repo link].

B. PATCH-BASED MLP WITH LOCALIZATION
EMBEDDING
The overall structure of the proposed model is depicted
in Fig. 4. Following is the detailed description of each
components.

1) CONSTRUCTING INK DENSITY PATCH-PLANTAR
PRESSURE PAIRS
One of severe challenges to train the model to learn the
correspondence between footprint ink density and plantar
pressure is the lack of data samples. As described in
subsection III-A, the 520 pairs of footprint-pressure pairs are
separated to 5 conditions (bare foot + 4 insoles in Fig. 2), i.e.
only 104 samples for each condition. To address this issue,
the following data augmentation scheme is implemented:

(a) The foot contact area in the footprint image is
located and segmented using canny edge detection
algorithm [65], warped to a rectangle, and resampled by
a 500 × 300 image grids.

(b) Since the sensor insole of the in-shoe Pedar® system is
arranged by 99 sensors, in order to better match the ink
information of footprint with each sensor, the footprint
was divided into 15 × 7 (row × column) patches.

(c) The plantar pressure collected by the 99 sensors are
distributed to the 15 × 7 patches. Here, we only roughly
assign a nearby sensor to a footprint image patch
with the index number of the sensor being recorded.
Experimental results show that such a simple assignment
scheme suffice to deliver satisfying results, although
a more sophisticated sensor assignment and pressure
distribution scheme may be beneficial. The footprint
image patches, distributed pressure value and the index
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number of the sensor together constitute the ink density
patch-plantar pressure pair.

This approach has 2 advantages: (1) it increases the
number of samples by around 100 times, reaching 10,400
data samples for each condition; and (2) it transforms the
difficult whole image pressure regression problem into a
simpler patch-based local pressure regression problem.

2) LOCALIZATION EMBEDDING
The drawback of transforming the whole image regression
to patch based local regression is that the localization
information of each locale is lost, which could mislead the
model to learn a blurry relationship between ink density and
plantar pressure. To address this issue, the index number
of the sensor that the pressure value is distributed from
is embedded to a 2D tensor with the same size of the
image patch, and then concatenated with the image patch.
This component is in sprit similar to the Word2Vec model
proposed by Mikolov et al. [66] and the positional encodings
in the Transformer by Vaswani et al. [67] and NeRF by
Mildenhall et al. [68].

3) MULTILAYER PERCEPTRON
The footprint image patch concatenated with the localization
embedding is flatten as a 1-d vector as the input to a stack of
fully connected layers with ReLU activation [41], as shown
in Fig. 4. The number of neurons following the input layer
are set as 512, 512, 256, 256, 128, 128, respectively. Mean
absolute error (MAE) loss is used as the loss function to train
the model.

C. IMPLEMENTATION DETAILS
The training data is randomly distributed for the training,
development and testing sets with the ratio of 6:2:2. Training
and testing is executed on a Window 11 Pro computer system
with a 64-bit operating system and x64-based processor,
Intel (R) Core (TM) i7-11700K CPU @ 3.6 GHz, 16 GB
RAM, with a Nvidia GeForce RTX 3060 GPU with 12 GB
memory. The Adam optimizer [69] is used with a learning
rate of 0.008. Training epochs is set to 400, while the batch
size is 64. Python 3.8.12 with PyTorch 1.10.0 [70] has been
used in learning environments for training and model testing.
5 models for each condition (bare foot + 4 insoles in Fig. 2)
were developed for each experimental scenario using the
same hyper-parameters. Code has been released at [code
repo link].

IV. RESULT
A. COMPARISON BASELINES
As discussed in section I, to the best of our knowledge, there
is no direct prior work on quantitatively predicting the plantar
pressure from the ink footprints. To validate the proposed
model, we construct a series of comparison baselines
with some widely used convolutional network structures,
including AlexNet [41], DarkNet [42], and ResNet [71],
all with versions with and without localization embedding

TABLE 2. Evaluation results of patch level predictions.

(subsubsection III-B2). For our patch based MLP, to validate
the network configurations, the full 7 layers version and the 5,
3 layers versions are constructed by removing later layers
accordingly. To validate the effectiveness of localization
embedding, each of these versions consists two sub-versions
with and without localization embedding. The models are
trained and evaluated on the same dataset as the proposed
model. The MAE and AUC are presented in Table 2, showing
that our proposed model outperforms all these comparison
baselines.

B. PATCH LEVEL EVALUATION
1) MAE
Since the network is trained on patches of footprint-pressure
pairs, the MAE is calculated on the patch level. As shown
in Table 2, all model structures present improved accura-
cies by leveraging the localization embedding, validating
its effectiveness. Among all models, only AlexNet with
localization embedding achieves accuracy comparable to our
model, but it is still slightly inferior. Among all variants of the
proposed batch based MLP models, the 7 layer version with
localization embedding achieves the highest accuracy with an
MAE of 4.45% of the sensor range, which can be considered
sufficient for the clinical use in assessing the plantar pressure
pattern.

2) ROC & AUC
Except for the averaged absolute error metric, we also
examined the receiver operating characteristic (ROC) curve
of the models by considering the patches with MAE under
certain threshold as positive predictions to illustrate the
models’ performance against different accuracy thresholds.
Following this setting, the area under the ROC curve
(AUC) values are also computed as shown in Table 2.
As shown in Fig. 5, all models with localization embedding
present better performance than those without localization
embedding and our proposed methods set the upper bound
of all other methods. The AUC of the proposed model
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FIGURE 5. ROC curves of patch level predictions. Curves of different
model structures are shown in different colors. Models with localization
embedding are shown in dashed lines, while those without localization
embedding are shown in solid lines.

TABLE 3. MAE of different conditions.

is significantly higher than the comparison baselines, with
the 7 layer embedded version achieves the highest AUC
of 95.08%, which further validates the effectiveness of the
proposed model in predicting plantar pressure from ink
footprints.

C. CONDITION LEVEL EVALUATION
Except for patch level evaluation, validating the performance
of the proposed method under different insole conditions is
crucial for clinical applications. The MAE of the proposed
model under different conditions are presented in Table 3.
Results show that the proposed model outperforms all
comparison baselines under all conditions, with the 5 and
7 layer versions achieves the best accuracy with an MAEs
from 3.57%–5.51% of the sensor range. The proposed
model also shows a consistent performance across different
conditions, illustrating its robustness and generalization
ability.

D. INSTANCE LEVEL EVALUATION
Previous results have shown the effectiveness of the proposed
model in predicting the plantar pressure from the ink
footprints in a patch level setting. The next question is does
aggregating all patch level predictions produce a reliable
and accurate result for the whole footprint instance. Fig. 6
shows some prediction samples of different models as well
as the ground-truth plantar pressure maps. As shown in
Fig. 6b, models without localization embedding tends to
generate blurry and flat pressure distribution, whereas models
with localization embedding, as shown in Fig. 6a, present
more accurate and detailed predictions. Among the models
with localization embedding, DarkNet and ResNet tends
to generate noised and discontinued pressure distribution,
while the proposed patch based MLP model and the AlexNet
present more smooth and similar pressure distribution to the
ground-truth. This result indicates that both our proposed
method and AlexNet are capable of qualitatively recovering
the plantar pressure distribution from the ink footprints, while
according to previous results our proposed model provides
more quantitatively accurate results.

V. DISCUSSION
Footprints have been widely studied as a source of infor-
mation of activities and personal characteristics. They are
generated on the contact interface between the foot and the
ground by the loads from body weight and body movement,
which has substantial potential valuable information for
studying the shape and function of the foot itself, but also
of value in analysing gait and general body movements [72].
This study has formulated artificial intelligent (AI) models
for dynamic plantar pressure prediction through the use of ink
images of the feet to quantify the relationship between the
two based on patch based MLP model. The results indicate
that the predicted overall and regional plantar pressure
distributions are in good agreement with the experimental
values. The generated plantar pressure distribution can be
used to estimate different offloading effects with 4 different
insole materials, leading to a better understanding of the
insole-foot interaction as well as provide information for
clinicians to prescribe the most suitable insole for diabetic
patients.

To the best of our knowledge, this study is the first study
to use the ink footprint image to predict the quantitative
plantar pressure value induced by insole intervention for
diabetic patients. Compared to traditional laboratory wear
trials and time-consuming FE prediction models relying on
complicated parameterization, the new approach can help
clinicians provide accurate insole recommendations - which
can even be specific to each plantar region. Nevertheless,
there are some limitations to our current approach. Firstly,
the dataset is relatively small. Secondly, the ink footprint
images are not perfectly aligned with the Pedar sensor
insole area. More sophisticated pressure sensor-footprint
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FIGURE 6. Prediction samples. The first column shows the ground-truth
pressure maps tagged with <condition>-<subject>-<foot>. The following
columns show the predicted pressure maps from: (a) models with
localization embedding; and (b) models without localization embedding.

patch association scheme may further improve the prediction
accuracy. Thirdly, the current study only considers the effect
of insole materials on plantar pressure. Future work may
consider other factors such as insole thickness, hardness, and
shape.

VI. CONCLUSION
We proposed an innovative approach to predict the plantar
pressure distribution from footprint images in various insole
conditions based on patch based MLP with localization
embedding. Though evaluation shows that the proposed
method outperforms all comparison baselines in terms of
patch level pressure prediction accuracy as well as the overall
plantar pressure pattern.

The proposedmodel can be leveraged to efficiently recover
the contact plantar pressure distribution between the insole
and the foot plantar with low-cost footprints. It provides a
tool to better understand the complex interactions between
the plantar of the foot of individuals and the 3D orthotic
insole made of various insole materials with different density,
softness, and other properties. The plantar pressure profile
when wearing a particular insole material can be prominently
visualized and quantitatively predicted, as well as the contact
plantar pressure distribution over different regions of the
foot, leading to more efficient and patient-specific insole
recommendations for diabetic patients in fulfillment of their
clinical needs.
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