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ABSTRACT Real-time object detection in urban environments is critical for security, transportation, and
surveillance applications. This work presents an approach based on the You Only Look Once model for
real-time object detection in urban scenarios. The methodology employed includes the collection and
annotation of a diverse dataset, as well as the implementation of an intuitive user interface for real-time
monitoring. A detailed method is designed in stages, including semi-supervised annotation techniques and
data collection strategies in various urban and lighting conditions. The model was evaluated in urban
environments, highlighting its ability to handle variations in the density of objects and unpredictable
urban events. The results demonstrate that the proposed model achieves a precision rate of 90% and an
average processing time per frame of 16 ms, which is suitable for real-time applications. Furthermore,
this implementation can handle multiple objects simultaneously and offers robust responses to rapid
environmental changes. We demonstrate real-time precision and efficiency improvement by comparing
our model with other widely used approaches, such as Faster R-CNN, SSD, and EfficientDet. Additional
metrics such as recall, F1 score, and Intersection over Union, essential for a holistic model performance
evaluation, are also discussed. This work contributes to research in object detection in urban environments
and offers a practical and ethical solution for real-time security and surveillance. Potential applications of
our approach range from traffic monitoring to public safety and event management in urban environments.
Ethical considerations are addressed, including privacy protection and bias mitigation, which are critical in
surveillance technology.
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I. INTRODUCTION
Real-time object detection, recognition, and tracking in
urban environments are crucial in critical areas such as
public safety, traffic management, industrial automation, and
autonomous driving. Urban environments, with their mix
of moving objects such as pedestrians and vehicles and
static elements such as traffic signs, pose unique challenges
for object detection [1]. These challenges are exacerbated
by lighting variability, changing weather conditions, and
visual obstructions, further complicating achieving accurate
detection [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Sharif .

Given the growing urbanization and expansion of cities, the
need for advanced solutions in computer vision technologies
is evident. Historically, object detection in images and videos
has been an area of intense research, with notable advances in
precision and speed thanks to the evolution of algorithms [3].
However, adapting to the dynamics and complexity of urban
environments demands specialized approaches capable of
managing multiple objects in real-time [4].

This work focuses on deep learning models, partic-
ularly convolutional neural networks (CNN), which are
highly effective in learning relevant features from images
and adapting to various urban conditions. Implement-
ing these technologies allows us to address the spe-
cific challenges of detecting moving objects, adapting to
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lighting variations, and simultaneously handling multiple
objects [5], [6].

The research highlights the You Only Look Once (YOLO)
model’s efficiency and superior speed in detecting objects in
urban environments compared to traditional methods. YOLO,
known for processing images in real-time using a single
pass through the network, outperforms previous models, such
as R-CNN, that require multiple stages for detection [7],
[8]. Its improved versions, YOLOv3 and YOLOv4, offer
advances in precision, false positive reduction, and gener-
alization, making it ideal for urban surveillance and traffic
management applications [9].

This work explores how YOLO adapts to urban environ-
ments, opening new possibilities for intelligent surveillance
and trafficmanagement systems and emphasizing its practical
relevance in urban safety and efficiency [10]. The results
obtained are of great importance in several aspects. First, our
solution has practical applications in various fields, from pub-
lic safety to traffic management and industrial automation.
Improving the precision and efficiency of object detection
in urban environments can significantly impact the safety
and efficiency of cities. Furthermore, the results contribute
to advancing research in computer vision and deep learning
by addressing a specific and challenging problem. Managing
multiple objects in real-time and adapting to changing urban
conditions is a significant achievement in this field.

This article is structured into several sections, beginning
with an introduction that highlights the importance of
real-time object detection in urban environments and the
unique challenges it presents—followed by ‘‘Materials and
Methods’’, which details the process of data collection,
preprocessing, dataset selection and annotation, model
architecture, training, and evaluation, and finally, real-
time implementation. The ‘‘Results’’ section analyzes the
study’s findings, comparing the proposed model with
others regarding precision and efficiency. The ‘‘Discussion’’
addresses the implications of these results and possible
improvements, while the ‘‘Conclusions’’ summarizes the
main achievements of the work.

II. MATERIALS AND METHODS
For the development of the method, several critical steps
followed in the implementation of our real-time object
detection system in urban environments are considered. For
this, a review of similar works is carried out to establish
a solid context for our research. Then, data collection,
image preprocessing, dataset selection and annotation, the
model’s architecture, the training, and evaluation process,
and finally, the implementation are described. Each step is
meticulously addressed to provide a complete understanding
of our methodology and the fundamentals of our approach.

A. RELATED WORKS
The evolution of technology and the rise of deep learning
have generated significant interest in object recognition
and real-time tracking, especially in urban environments.

The review of similar works provides an essential foundation
for understanding the current state of research in this field and
highlights areas that require further exploration.

One of the first approaches in the literature focuses on
applying CNN for object recognition in static images [11].
While these methods have proven effective, transitioning to
real-time urban environments imposes additional challenges.
Studies such as the one by Kulshreshtha et al. [12]
have explored network architectures such as YOLO, which
seek to optimize detection speed without compromising
precision. These approaches have made notable progress, but
continuous tracking of moving objects and their integration
into complex urban scenarios remains an area of interest.

Another crucial aspect focuses on computational efficiency
and adaptation to variable conditions. Research such as
that of Rahman et al. [13] has introduced transfer learning
techniques to improve the model’s generalization to new
situations, thus addressing the problem of variability in urban
environments. However, these approaches have presented
limitations in their ability to handle dynamic scenarios and
accurately detect fast-moving objects.

A significant contribution, such as that made by
Padalia [14], has addressed the complexity of urban
surveillance by using hierarchical clustering techniques for
tracking multiple objects. Although these approaches have
proven efficient in controlled scenarios, their application
in urban environments characterized by rapid changes and
unexpected situations remains challenging. This underlines
the need to develop more adaptable and robust methodologies
that consider the dynamics of cities.

The work we present in this paper incorporates a com-
bination of advanced deep learning architectures, transfer-
learning techniques, and specific considerations for real-time
urban surveillance. The innovation lies in the ability of our
model to address accurate detection and continuous tracking
of objects in complex and dynamic urban environments,
overcoming previous limitations [15]. Our proposal is
positioned as an extension of existing research, providing
additional advances and overcoming specific challenges of
urban surveillance. The combination of proven elements and
methodologies reinforces the robustness and applicability of
our proposal in a realistic and dynamic context [16]. Fur-
thermore, our proposal distinguishes itself by amalgamating
lessons learned from previous research and presenting a
comprehensive approach that addresses existing limitations,
thus significantly contributing to advancing this field of study.

B. DATA COLLECTION
Data was collected in a specific urban environment to develop
and evaluate our real-time object tracking and recognition
model using deep learning. The setting was strategically
chosen to represent the challenges inherent in urban policing
realistically. The selection of a central metropolitan area with
a combination of public and private spaces allowed us to
address varied and challenging urban scenarios, considering
the presence of objects in constant movement and variable
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lighting conditions [17]. Data was collected during different
times of the day and in varied weather conditions to capture
a representative spectrum of the urban environment.

High-resolution surveillance cameras were strategically
used to cover the most important area possible. The
installation included fixed cameras on light poles and walls
and mobile cameras placed on vehicles to capture moving
areas [18]. The resolution of the captured images was
1920 × 1080 pixels, ensuring precise details for real-time
object analysis.

Data collection took place over four weeks, covering
different times of day and weather conditions to capture
variability in the urban environment. Day and night sessions
were scheduled to evaluate the model’s capabilities under
different lighting conditions. The sampling frequency was set
at regular 30-minute intervals, which allowed for capturing
significant events and changes in the dynamics of the urban
environment. It is essential to differentiate between the
methodology used for data collection and the operation of
the object detection model. The 30-minute sampling rate was
explicitly used during the data collection phase to ensure
a representative diversity of urban conditions, significant
events, and dynamic changes in the urban environment,
which is crucial for comprehensive model training and
validation. This strategy reflects the real-time processing
capacity of the model, which is designed to detect and track
objects continuously in life, demonstrating its effectiveness
in complex urban scenarios with unforeseen changes and
situations. Once implemented, the model’s real-time per-
formance enables instantaneous detection and tracking of
objects without restricting fixed intervals, thus addressing the
critical needs of applications in urban environments such as
security surveillance and traffic management.

We implemented specific techniques to minimize biases in
the data. Demographic biases, for example, can arise if data is
collected at a single location or at a particular time that does
not represent the diversity of the urban population. To counter
this, we collect data in multiple locations and at different
times, including day and night, to ensure a more balanced and
representative sample of the urban population and activities.

Additionally, we used data augmentation to simulate
different lighting and weather conditions that were not
directly captured during collection. This approach helps
improve the model’s robustness, ensuring that it performs
reliably under a variety of conditions without bias toward
a specific type of data. Data collection was carried out
ethically and in compliance with relevant privacy regulations.
Measures were taken to preserve people’s privacy in the
images, using anonymization and blurring techniques where
necessary.

C. DATA PREPROCESSING
Data preprocessing is critical in developing deep learning
models for object recognition and real-time tracking. This
phase ensures that the data collected is suitable for practical
use in model training and evaluation [19]. Figure 1 presents

FIGURE 1. Data preprocessing block diagram.

the data preprocessing stages performed in this research,
along with a block diagram illustrating the flow of these
stages.

Data quality is critical to the precision of our real-time
detection and tracking model. Variations in the resolution and
contrast of captured images can significantly affect model
precision. For example, low resolution can result in less
clear details of objects, making them difficult to identify
accurately. Likewise, poor contrast can affect the distinction
of objects from the background, especially in adverse lighting
conditions.

To counteract these variations and improve the robustness
of the model, several preprocessing techniques were imple-
mented in the data cleaning and denoising stages to eliminate
unwanted artifacts in the captured images. Advanced filtering
techniques, such as removing outlier pixels using anomaly
detection algorithms and edge smoothing using Gaussian fil-
ters, were applied, improving image quality in previous stud-
ies [20]. Additionally, image normalization was employed
to standardize pixel intensity, a practice supported by
Beguería et al. [21] to facilitate convergence during model
training.

These operations ensured that the data used for model
training were free of interference and faithfully represented
the objects of interest in the urban environment, following the
recommendations of Huang [22] on preparing data for image
analysis.

D. DATASET SELECTION AND ANNOTATION
Dataset selection and annotation are crucial for developing
and evaluating deep learning models. This work followed
a meticulous process to ensure the representativeness and
diversity of the dataset used and the accurate annotation of
the objects of interest [23].
The dataset used comprises a total of 10,000 images

captured in the urban environment described above. Each
image has a resolution of 1920×1080 pixels andwas obtained
at regular 30-minute intervals over the four-week collection
period. This dataset covers a variety of lighting conditions,
urban events, and constantly moving objects, thus simulating
realistic situations.

For data annotation, five objects relevant to the study
were identified: pedestrians, vehicles, traffic signs, street
furniture, and potentially dangerous objects. These classes
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were selected considering their importance in urban contexts
and the need for accurate recognition.

Annotation of the objects was carried out using the
annotation tool VGG Image Annotator (VIA). Each image
was reviewed, and objects of interest were delimited with
bounding boxes [24]. Each bounding box was accompa-
nied by a label that identified the class of the object
(e.g., ‘‘pedestrian,’’ ‘‘car,’’ ‘‘traffic sign,’’ etc.).

The dataset was divided into two parts: training and test
sets. On the one hand, 80% of the images were allocated to the
training set to teach the model to recognize and track objects.
On the other hand, the remaining 20% of the test set was used
to evaluate the model’s ability to generalize to unseen data.

During annotation, privacy measures were applied to
ensure the confidentiality of personal information present
in the images. Additional precautions were taken to guar-
antee privacy and comply with current ethical and legal
standards [25]. This dataset selection and annotation process
ensures that the model is trained and evaluated in repre-
sentative scenarios of the urban environment, promoting
generalization and its applicability.

E. MODEL ARCHITECTURE
The choice of the deep learning model architecture is
essential in object recognition and real-time tracking in urban
environments. The YOLOv4 architecture, which has proven
efficient in detecting real-time objects, especially in dynamic
urban environments, was chosen. YOLOv4 is selected for its
ability to handle multiple objects in a single pass, speed, and
robust performance under changing conditions.

In this work, we have chosen the YOLOv4 architecture,
presented in Figure 2, due to its specific capabilities that
align with our requirements for real-time object detection
in urban environments—a critical feature given the density
and diversity of objects in the metropolitan areas we
are analyzing. Additionally, we have implemented specific
adaptations to the standard YOLOv4 architecture to improve
its performance in our usage scenarios, such as tuning
hyperparameters to optimize detection precision and speed
in dynamic urban conditions. These modifications include
the implementation of a temporal attention mechanism to
improve the model’s ability to track continuously moving
objects, which is essential for real-time urban surveil-
lance [26], [27].

YOLO’s distinctive technique, which integrates class
prediction and object localization in a single operation,
significantly optimizes object detection precision. Unlike
region-based models such as R-CNN, which first generate
regions of interest and then classify, YOLO evaluates the
entire image, significantly reducing the incidence of false
positives [28]. This capability allows for more reliable and
efficient detection, especially in urban environments where
precision is crucial to avoid false alarms and improve security.
YOLO’s effectiveness in accurately identifying objects in
complex and dynamic scenes makes it an invaluable tool for
advanced urban surveillance and monitoring systems.

Figure 3 represents the model architecture structured in
five blocks, highlighting their connections and information
flows. This reflects the YOLOv4 architecture, high-lighting
the input layers, CSPDarknet53 blocks, YOLOv4 heads, the
panoptic head, and the output layer.

• Input Layer: This layer receives input images with a
resolution of 416 × 416 pixels, the standard size for
YOLOv4.

• CSPDarknet53 blocks: The CSPDarknet53 architecture
is used as a basis for feature extraction [29]. This archi-
tecture improves efficiency and feature representation,
critical for accurate object detection.

• YOLOv4 heads: Three YOLOv4 heads are incorpo-
rated for detecting objects at different scales in the
architecture. Each head is responsible for predicting the
coordinates of the bounding boxes and the probabilities
of each class.

• Panoptic Head: An additional head, known as the
panoptic head, is added to address object occlusion and
improve precision in high-density situations [30].

• Output Layer: The output layer provides the final
predictions of the model, which include the coordinates
of the bounding boxes and the probabilities associated
with each class.

Convolutional layers are designed to extract high- and
low-level features from images. We use filters of different
sizes to capture varied details, from simple edges to
complex textures. This approach is essential for identifying
small and large objects in various lighting conditions and
backgrounds.

We mainly employ the Leaky ReLU for activation func-
tions in most convolutional layers. This choice is due to its
ability to maintain network activation through nonlinearity,
allowing richer representations to be learned compared to
traditional activation functions such as ReLU. Leaky ReLU
helps prevent the problem of dead neurons during training,
which is vital given the wide range of visual features in urban
environments [31]. Additionally, our architecture includes
batch normalization layers after each convolutional layer to
stabilize learning and reduce training time by normalizing
each layer’s inputs. This improves model efficiency, allowing
real-time detection without sacrificing precision.

Furthermore, the model design also incorporates pooling
layers to reduce the feature maps’ dimensionality, decreasing
the required calculations and speeding up the detection
process. Combining these techniques and carefully selecting
each architectural component ensures that our model is fast,
highly accurate, and capable of operating effectively in the
dynamic urban environment.

F. MODEL TRAINING
Training the model determines the system’s ability to
recognize and track objects in real time. A robust training
process ensures that the model performs well in various
urban scenarios, adapting to urban environments’ complex
dynamics and variability. Our training approach incorporates
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FIGURE 2. YOLOV4 general architecture.

FIGURE 3. Data preprocessing block diagram.

advanced techniques and careful parameter selection to
optimize both precision and processing speed.

The specific settings and configurations used during the
model training phase are detailed below. This includes our
options for learning rates, batch sizes, and epochs, which are
critical to achieving the desired performance. Additionally,
the hardware and software environments that support efficient
training of our complex models and the rationale behind our
architectural and design decisions are discussed.

1) TRAINING SETTINGS
• Learning Rate: An initial learning rate of 0.001 was
established, allowing the model to gradually adjust its
parameters to optimize the detection of objects in the
urban environment [32].

• Batch Size: A batch size of 64 images was used, optimiz-
ing the balance between computational efficiency and
the model’s ability to generalize to different situations.

• Number of Epochs: The model was trained over
50 epochs. This number was selected after

experimenting with model convergence and the evolu-
tion of performance metrics.

2) HARDWARE AND SOFTWARE USED
• Hardware: Training was carried out on a server equipped
with an NVIDIA GeForce RTX 2080 Ti GPU, using
its parallel processing capacity to accelerate model
training.

• Software: The TensorFlow deep learning framework
was used to implement and train the model. TensorFlow
provides an efficient interface and tools for training
complex models such as YOLOv4.

3) DIVISION OF THE DATASET
The dataset was divided into 80% for training and 20%
for evaluation. This split ensures the model learns general
patterns during training and evaluates its ability to generalize
to unseen data during validation.

The training followed a stochastic gradient descent (SGD)
methodology with moments. A transfer learning scheme
was implemented using pre-trained weights from a previ-
ous YOLOv4 network on a similar dataset to accelerate
convergence. During training, metrics such as loss and
precision were monitored to evaluate model performance in
real-time [33].

Data augmentation techniques, such as rotations, hori-
zontal inversions, and changes in luminosity, were applied
during training to improve the stability of the model and its
ability to deal with variations in the urban environment. These
techniques enrich the diversity of the dataset and help the
model to generalize better.
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4) MODEL EVALUATION
The evaluation of the model allows us to measure its
performance and its ability to perform object recognition
and real-time tracking in urban environments. In this work,
several methods are used to evaluate the effectiveness of the
model, as well as the description of test sets and evaluation
scenarios.

The metrics used are: Precision measures the proportion of
correct positive detections among all positive detectionsmade
by the model:

Precision =
True positives

True positives+ False positives
(1)

Recall measures the proportion of correct positive detec-
tions among all positive objects in the dataset:

Recall =
True positives

True positives+ False negatives
(2)

The F1-score is the harmonic mean of precision and recall,
providing a combined metric that considers false positives
and false negatives:

F1 Score =
2 × Precision× Recall
Precision+ Recall

(3)

Intersection Over Union (IoU): The IoU metric evaluates
the overlap between the predicted area and the actual area of
the object:

IoU =
Intersection Area
Union area

(4)

An independent test set of the training set was used to
evaluate the model on data not seen during training. This
test set spanned various conditions, including variations
in lighting, object densities, and movement speeds. The
evaluation scenarios were designed to simulate realistic
urban situations, such as interactions between pedestrians
and vehicles, rapid changes in the arrangement of objects,
and challenging lighting conditions. The diversity of these
scenarios allowed for a thorough evaluation of the model’s
ability to generalize to dynamic urban conditions [34].

Model predictions were generated on the test set during
the evaluation and compared to the actual annotations. The
metrics mentioned above were calculated for each object
class separately, providing a detailed review of the model’s
performance in different categories. This focus on metrics
and evaluation settings ensured an accurate understanding of
the model’s effectiveness in object recognition and real-time
tracking in urban environments.

G. REAL-TIME APPLICATION
The real-time implementation of the object recognition and
tracking model in urban environments is crucial to evaluating
its feasibility in real-world situations. Parallelization tech-
niques were implemented to take full advantage of the GPU’s
computing power and ensure low latency in object detection.

The implementation focused on the integration of the
model with real-time surveillance cameras. High-resolution

cameras were strategically positioned in critical urban areas
like road intersections and pedestrian areas. These cameras
provided continuous input to the model for detecting and
tracking moving objects.

Interface software displayed the model predictions in
real-time to facilitate interaction and visualization of the
results [9]. This software allowed users to monitor the urban
environment, visualizing detected objects, their trajectories,
and any alerts generated by the model. The interface was
designed intuitively, providing detailed information about
each identified object. The practical implementation was
extensively tested in natural urban environments to evaluate
its performance in real-world situations. Tests were carried
out at varied times, considering conditions of intense
pedestrian traffic, changes in lighting, and unpredictable
urban events. These tests provided valuable information
about the model’s ability to adapt to dynamic situations and
sudden environmental changes.

Specific adjustments were made to optimize the real-time
efficiency of themodel. Parameters such as frames per second
(FPS) processing rate were adjusted, and code optimization
strategies were implemented to ensure smooth, real-time
object detection. False positive reduction techniques were
also explored to improve precision in complex urban
situations.

Performance evaluation focused on precision and real-time
processing speed. Specific metrics, such as processing time
per frame and precision rate, were used to detect moving
objects. The model’s ability to handle multiple objects
simultaneously and respond to rapid environmental changes
were vital evaluation criteria.

Special attention was paid to ethical and privacy consider-
ations during implementation in natural urban environments.
Measures were applied to ensure data anonymization,
blurring faces, and vehicle license plates in the visualizations.
Additionally, protocols were established to manage captured
information ethically and by privacy regulations.

H. RESULTS
For the presentation of the results obtained through our
implementation and evaluation of real-time object detection
in urban environments. The performance of our model is
examined, evaluating its ability to detect and track objects
in various urban conditions and scenarios. Furthermore,
we compare our approach with other deep learning and
machine learning models widely used in object detection to
demonstrate its effectiveness. The results will be presented as
performance metrics, graphs, and critical analyses to evaluate
our method’s validity and effectiveness.

1) DATA COLLECTION
Data collection is a fundamental step to ensure the represen-
tativeness and quality of the dataset used in the training and
evaluation of the object recognition and real-time tracking
model in urban environments.
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TABLE 1. Distribution of classes in the urban road intersection dataSet.

The dataset was collected by installing surveillance
cameras at a specific location in the center of a metropolitan
city. The total duration of data collection spanned four weeks,
during which images were captured at regular 30-minute
intervals. This capture frequency was selected to ensure
adequate temporal coverage and capture significant events
and changes in the dynamics of the urban environment. The
choice of this specific location, a critical road intersection
with high pedestrian and vehicular traffic, was made con-
sidering the complexity of the environment and the presence
of multiple classes of relevant objects, such as pedestrians,
vehicles, traffic signs, and urban objects.

The choice of this specific location, a critical road
intersection with high pedestrian and vehicular traffic, was
made considering the complexity of the environment and
the presence of multiple classes of relevant objects, such as
pedestrians, vehicles, traffic signs, and urban objects.

The collected dataset includes over 10,000 images; image
annotation was done using semi-supervised learning tech-
niques and automatic labeling tools. Initial object detection
algorithms were implemented to identify the objects’ classes
in the images automatically. Human experts then reviewed
and corrected the automatically generated annotations to
ensure precision and consistency in object identification.

Table 1 reveals a broad representation of urban entities
for object recognition and real-time tracking. The set covers
different categories, including pedestrians, vehicles, traffic
signs, and other urban objects, thus providing a complete and
varied scenario. This variety is essential to accurately train
the model to identify objects in dynamic urban situations and
contributes significantly to the system’s robustness in natural
conditions. Although the pictures are not evenly distributed
between classes, with 4,200 images of vehicles and only
1,000 traffic signs, strategies were implemented to ensure
balanced learning. This includedweighting techniques during
model training to compensate for variability in the number of
images per class, allowing the model to effectively generalize
and respond accurately to the diversity of urban scenarios.

It is important to note that although Table 1 presents a
distribution of classes within the dataset, this distribution
reflects the total number of annotations per class and does
not imply that each image contains exclusively one type of
object. In fact, in the dynamic urban environment captured
by our cameras, it is expected to find images that contain
multiple classes of objects simultaneously. For example,
a single image can include pedestrians, vehicles, and traffic
signs, reflecting the complexity of urban elements and typical
interaction. This image diversity is essential to train a model
that can effectively recognize and track different objects in
real and dynamic urban situations.

TABLE 2. Summary of results by object class.

The camera position was strategically planned to minimize
points with limited vision and ensure complete coverage
of the area of interest. Factors such as height, tilt angle,
and orientation were considered to optimize the visibility of
objects in different parts of the intersection. The diversity of
environmental conditions, such as variations in lighting due
to climate changes and differences in traffic density during
other times of the day, were comprehensively captured in
the dataset. This diversity provides the model with varied
experiences to adapt to dynamic urban conditions.

These data provide a solid foundation for model training
and evaluation, addressing the complexity of computer vision
in urban environments. The results of evaluating the model
trained with this dataset are presented below.

2) MODEL EVALUATION
Evaluation of the real-time object recognition and tracking
model reveals robust performance on various classes of
urban objects. The key metrics of precision, recall, and
F1-score, along with the IoU metric, provide a detailed
view of the model’s performance in identifying and tracking
specific objects. Table 2 presents the results obtained from
the analysis. The values reflect the model’s ability to detect
and effectively track different categories of urban objects
accurately. The high precision in identifying pedestrians and
traffic signs suggests a robust response to elements critical to
safety in urban environments.

Consolidation of global results reveals a solid overall
performance of the model in urban object recognition and
tracking tasks. The IoUmetric highlights the spatial precision
of the model, confirming its ability to generate predictions
that efficiently overlap with actual annotations. Therefore,
themodel effectively balances precision and recall, indicating
that it identifies objects accurately and recovers most objects
in the dataset. The precision of traffic signs highlights
the model’s ability to recognize critical details in urban
environments.

Figure 4 provides a comprehensive visualization of the
evaluation results on different object classes, showing the
model’s performance in recognition and tracking. Each bar
represents a specific class: Pedestrians, Vehicles, and Traffic
Signs, exhibiting the contribution of individual metrics
(Precision, Recall, F1-score, and IoU). The figure 4 allows
for a quick and intuitive assessment of the model’s strengths
and areas for improvement in different categories of objects,
highlighting the overall effectiveness of the model in urban
environments.
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FIGURE 4. Model Evaluation by Object Class.

I. REAL TIME IMPLEMENTATION
The real-time implementation of the object recognition
and tracking model in urban environments was done with
a comprehensive approach, addressing critical aspects of
hardware, software, and real-time visualization.

A GPU-equipped system was employed during the imple-
mentation to accelerate model inference operations. The
configuration of the deep learning framework was opti-
mized, adjusting parameters to ensure efficiency in real-time
processing. Hardware selection and software optimization
resulted in robust performance and improved responsiveness.

Effective integration with surveillance cameras played a
crucial role in the success of the real-time implementation.
Strategically placed cameras with adequate resolutions were
used to capture essential details. The camera layout was
designed to maximize coverage of the area of interest,
ensuring continuous and fluid input to the recognition model.

The strategic deployment of cameras for the real-time
recognition and tracking system, presented in Table 3,
includes cameras with various resolutions to address different
capture requirements in the urban environment. The first
camera, located at the main intersection, has a resolution
of 1920 × 1080 and allows optimal coverage of a crucial
area. The second camera, with a resolution of 1280 ×

720 and located at key entry points, focuses on capturing
specific details at the beginning of the tour. The third camera,
also 1920 × 1080, is placed in high-traffic areas to cover
areas with a significant density of moving objects. This
continuous input strategy is implemented uniformly across
all cameras, ensuring smooth data transmission to the deep
learning model. This diversified and strategic configuration
of cameras reflects a careful approach to addressing different
necessary contexts within the urban environment, contribut-
ing to efficient surveillance and accurate tracking of relevant
objects. It is important to note that although it was previously
stated that all captured images had a resolution of 1920 ×

1080, the resolution varies depending on the specific camera
used, reflecting the adaptability of the capture approach to the
specific needs of each location within the urban environment.

An intuitive interface software was designed and devel-
oped to facilitate the visualization of predictions in real-time.

TABLE 3. Cohort enrollment, completion and retention rates (2021-2022).

The interface provides a graphical representation of themodel
detections, allowing for effective monitoring. Usability was a
key consideration during development, ensuring the interface
provides clear and relevant information for surveillance
operators.

Figure 5 illustrates the real-time detection interface
designed to monitor and detect vehicles in urban environ-
ments. This interface provides a graphical representation of
the model’s detections, facilitating effective monitoring. The
image shown has been processed for the article, omitting
descriptive data of the objects for confidentiality reasons.

In the real-time detection interface software, the ‘‘Real-
Time Display’’ functionality graphically represents the
model predictions, giving operators an instant view of the
situation. ‘‘Object Labeling’’ allows efficient identification
and labeling of objects in captured images, improving the
understanding of detected elements. Including ‘‘Alerts and
Notifications’’ introduces the software’s ability to generate
alerts for specific events, providing an early warning system.
Additionally, the ‘‘Intuitive Interface’’ feature underlines the
user-friendly design of the software, making it easier for
operators to use and contributing to a more efficient and
accessible surveillance experience.

This software has been developed to offer a comprehensive
platform that detects vehicles in real time, as illustrated in
Figure 5. It provides additional tools for efficient manage-
ment of the displayed information. Combining these features
makes the interface a valuable tool for surveillance in urban
environments, improving decision-making and response to
critical events.

J. TESTING IN REAL URBAN ENVIRONMENTS
Various tests were carried out in different scenarios to
evaluate the robustness and versatility of the real-time
detection model in urban environments. These scenarios
varied in lighting, object density, and unpredictable urban
events.

• Lightning:
– High: Simulating daytime conditions with intense

sunlight.
– Moderate: Typical light conditions during dusk or

dawn.
– Low: Reproducing low light situations at night.

• Object Density:
– High: Scenarios with many vehicles and pedestri-

ans.
– Moderate: With an average number of moving

objects.
– Low: Situations with few objects present.
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FIGURE 5. Real-Time Detection Interface for Vehicles in Urban Environments.

• Urban Events:
– Yes: Scenarios included urban events such as

demonstrations, parades, or construction.
– No: Conditions without additional urban events.

The real-time efficiency of the model was optimized by
considering several aspects, including FPS settings and code
optimization techniques. Strategies were implemented to
ensure rapid and accurate responses in dynamic situations,
and adjusted FPS settings were to balance detection precision
with real-time processing speed. Different configurations
were experimented with to determine the optimal threshold.
Additionally, advanced code optimization techniques, such
as parallelization of critical operations and redundancy
reduction, were applied to improve model efficiency with-out
compromising detection quality.

Table 4 presents the test results, highlighting the model’s
efficiency in different scenarios. These results provide a
vision of the model’s performance in diverse urban condi-
tions, validating its ability to adapt to changing situations and
maintain satisfactory efficiency over time. The optimization
enabled addressing specific challenges associated with the
complexity of natural urban environments.

In evaluating the results, qualitative terms are used to
describe lighting, density of objects, and urban events, as well
as the real-time efficiency of the system. These terms are:

• Lightning:
– High (High): Daylight conditions with intense sun

or strong artificial lighting.
– Moderate: Light conditions typical of dawn or dusk

or moderate artificial lighting.

– Low: Low light conditions, such as at night or in
dimly lit areas.

• Object Density:
– High: Scenarios withmany vehicles and pedestrians

present.
– Moderate: With an average number of moving

objects.
– Low (Low): Situations with few objects present.

• Real-Time Efficiency:
– High (High): The system recognizes and tracks

objects quickly and accurately, with minimal
delays.

– Moderate: The system has some delays but main-
tains adequate functionality.

– Low: The system experiences significant delays or
difficulties maintaining accurate real-time tracking.

K. REAL-TIME PERFORMANCE EVALUATION
Specific metrics highlighting its ability to process data
quickly and accurately were used to evaluate themodel’s real-
time efficiency. The average time the model takes to process
each frame was measured. This metric evaluates the speed
of response in dynamic situations. The precision rate was
calculated by considering the proportion of correctly detected
moving objects among the total moving objects present in the
scenario. This metric quantitatively assesses the model’s real-
time ability to identify moving objects.

The model’s ability to handle multiple objects simulta-
neously and its response to rapid environmental changes
were evaluated using specific scenarios. We evaluated how
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TABLE 4. Test results in real urban environments with variations in
lighting, density of objects, and urban events, evaluating efficiency in real
time.

TABLE 5. Model performance metrics of time series models.

the model detects and tracks various objects in a single
frame. The ability to distinguish between different classes
of concurrent objects was also considered. The model’s
response to situations where moving objects experience rapid
changes in their speed or direction was analyzed. This
is crucial to ensure accurate detection in dynamic urban
scenarios.

Table 5 presents the real-time performance testing results
of the object detection model. Each test evaluated the
processing time per frame and the precision rate in detecting
moving objects. Highlighting the variability in dynamic
urban scenarios, the tests reveal an average processing
time per frame of 16 ms, indicating an agile response to
the model. The precision rate in detecting moving objects
reached 90%, underscoring the model’s ability to identify
dynamic elements in real time accurately.

Test results indicate an average processing time per frame
of approximately 16 ms. The precision rate reached 90%,
demonstrating the model’s ability to identify moving objects
reliably.

The model demonstrated a robust ability to detect and
track multiple objects in real time, maintaining precision
in complex environments. Testing revealed that the model
responds effectively to sudden changes in the direction
and speed of objects, dynamically adapting to changing
environmental conditions.

L. ETHICAL CONSIDERATIONS AND PRIVACY
Implementing a detection system in natural urban environ-
ments involves proactively addressing ethical and privacy
considerations. In this sense, various ethical measures have
been implemented to safeguard the fundamental principles.
A data anonymization process was carried out to ensure that
any personally identifiable information in the images, such as

TABLE 6. Comparison of the proposed model with other object detection
models, evaluating the precision rate and processing time per frame.

faces or license plates, was eliminated or blurred. This is done
to respect the individual’s privacy in the captured images.
In cases where the identification of certain elements could
compromise privacy, blurring of sensitive information has
been applied. This encompasses concealing specific details
that could identify individuals or locations. Additionally,
clear procedures have been established to obtain consent
and provide appropriate notifications in environments where
detection and monitoring may impact privacy. Transparent
communication with involved parties is essential to foster
ethical implementation.

These measures balance system utility with privacy
protection, ensuring that implementation in natural urban
environments is done responsibly and ethically. The sub-
sequent discussion will delve into these aspects, evaluating
the results and considering possible further improvements to
optimize ethics and privacy in future implementations.

M. COMPARISON WITH OTHER MODELS
To evaluate the effectiveness of the proposed model, a com-
parison was carried out with several deep learning and
machine learning models widely used in object detection
tasks in urban environments, specifically with three models:
Faster R-CNN, YOLO, SSD, and EfficientDet. Benchmark-
ing stands out for its unique focus on speed and precision.
While Faster R-CNN offers high precision but with lower
speed, YOLO balances both aspects, which is crucial in
applications that require real-time response. On the other
hand, SSD is similar in speed but may need to be more
accurate in detecting small objects. EfficientDet, although
efficient in terms of computational resources, may not match
the processing speed of YOLO. This comparison highlights
how YOLO balances precision and speed, making it ideal for
dynamic urban environments.

Tests were conducted using diversified datasets and urban
scenarios to evaluate the performance of each model in terms
of precision and speed. The results are presented in the
following Table 6.

The proposed model achieves a precision rate of 90%,
outperforming Faster R-CNN (88%), YOLO (89%), and SSD
(89%) and approaching the efficiency of EfficientDet (92%).
In terms of speed, the proposed model achieves an average
processing time per frame of 16 ms, outperforming models
such as YOLO (25 ms) and SSD (20 ms) and being compar-
atively efficient relative to EfficientDet (18 ms). Compared
to benchmark models, the proposed model demonstrates
a strong balance between precision and speed. Choosing
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the ideal model will depend on the application’s specific
requirements, highlighting our model’s ability to deliver
competitive performance across various metrics.

N. PRACTICAL CASES AND APPLICATIONS
The model was implemented at a vehicular intersection in a
city with constant traffic flow. The objective was to monitor
and improve traffic management in a critical area to reduce
congestion and accidents. The model achieved a precision
rate of 90% in vehicle detection and tracking. This allowed for
more efficient traffic management and significantly reduced
waiting times. Additionally, we used the model in a busy
public park to identify suspicious behavior, such as erratic
movements or unusual activities. The goal was to improve
visitor safety.

Our model detected anomalous behavior that triggered a
security alert. This allowed for a quick response from security
teams and the prevention of potential incidents. Additionally,
during an outdoor event with multiple attendees, the model
was deployed to monitor the crowd for potential safety issues,
such as dangerous crowding or disruptive behavior. The
model identified abnormal movement patterns and helped
organizers take preventive measures to ensure the safety of
attendees. No serious incidents were reported during the
event.

Likewise, it was implemented in an urban areawith parking
problems, for which we applied the model to identify parking
violations, such as vehicles that were parked incorrectly or
exceeded the allowed time, where the model contributed to
a 20% reduction in parking violations during a month of
testing: this improved traffic circulation and the availability
of parking spaces.

In another environment, we deployed the model on a
construction site to track the location of heavy machinery and
materials. This environment presented unique challenges due
to the dynamic nature of the site, where assets are constantly
moving, and lighting conditions and background can change
dramatically. The main objective was to improve asset
management and reduce the downtime of heavy machinery.

To address these challenges, the model was adapted to
recognize and track specific construction site machinery and
materials, even in low light conditions and against various
backgrounds. Specialized deep learning techniques were
deployed to ensure accurate detection of assets in real-time,
enabling continuous monitoring and rapid identification of
asset locations.

Implementing the model improved asset management
significantly, achieving a 10% reduction in heavy machin-
ery downtime. This resulted in greater efficiency on the
construction site, allowing for more effective operations
and machinery utilization planning. The ability to track the
location of heavy machinery and materials in real time
not only improved on-site logistics but also contributed
to a reduction in project delays and operating costs. This
case highlights the model’s versatility to adapt to different
environments and specific needs, demonstrating its potential

TABLE 7. Application case results.

to transform asset management in the construction industry
through real-time recognition and tracking technology. These
cases illustrate how the real-time surveillance model can
be applied in various urban scenarios to address specific
challenges. Table 7 provides a summary of the results
obtained in each application case.

The results support the model’s effectiveness and versatil-
ity, highlighting its ability to address various challenges in
urban environments. The precision and real-time detection
capability are valuable for improving safety and efficiency
in numerous real-world scenarios.

III. DISCUSSION
The review of similar works reveals a growing trend
in applying deep learning models in object detection in
urban environments. The intersection of computer vision
and artificial intelligence has generated a set of innovative
techniques and approaches that seek to address the unique
challenges presented by this field of study. This work is
distinguished by its ability to detect objects in real-time in
complex urban environments. This is evident in the analysis
of similar works, where the lack of models that achieve
a solid balance between precision and speed in dynamic
urban scenarios stands out. Our proposal addresses this gap
and provides an efficient and accurate solution for detecting
moving objects in urban environments [35].
Method validation is a critical component in evaluating any

object detection approach. In our study, rigorous measures
were implemented to ensure the validity and effectiveness
of our model. Data collection in natural urban environments
was carried out comprehensively, including multiple strategic
locations and diverse conditions [36], [37].

Data annotation was performed using semi-supervised
learning techniques and automatic labeling tools, allow-
ing initial identification of object classes, and reducing
manual workload. Human experts reviewed and corrected
the automatically generated annotations to ensure precision
and consistency in object identification [22]. This hybrid
annotation approach ensured that the dataset accurately
reflected the complexities of urban environments. The choice
of model architecture was also based on carefully considering
the specific sensing requirements in urban environments.
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The architecture was designed to strike a balance between
precision and speed, resulting in outstanding performance
compared to other models [38].

Furthermore, it is essential to recognize potential biases
in data collection and how these may affect the model’s
applicability in various urban settings. Variability in data
quality, especially in terms of illumination and image
resolution, could also negatively impact model precision.
In future work, advanced methods will be investigated to
mitigate these biases and improve the model’s robustness to
variations in data quality.

An essential consideration in our study is the scalability of
the proposed model. Previous research has explored solutions
to extend processing capacity in large urban environments
using distributed architectures and model compression
techniques, which can serve as a reference for future improve-
ments in our work [39]. Regarding practical limitations,
we recognize that both processing capacity and storage
constraints play a critical role. To address these challenges in
the continuation of our research, we plan to explore resource-
efficient hardware optimizations and network architectures.
Edge computing also emerges as a promising solution to
process data directly at the capture point, minimizing latency
and reducing bandwidth requirements [40].

The results obtained in our real-time performance tests
reveal the effectiveness of our model. With a precision rate
of 90% and a processing time per frame of 16 ms, our
approach outperforms benchmark models such as Faster R-
CNN, YOLO, and SSD in precision and effectively competes
in speed with EfficientDet. This comparison highlights the
relevance and advantage of our model in object detection
in urban environments [41], [42]. Combining high precision
with agile performance is essential in practical security
surveillance and traffic monitoring applications. Our model
is positioned as a competitive solution that can effectively
address the demands of ever-changing urban scenarios.

Implementing our real-time recognition and tracking
model offers essential benefits for security and surveil-
lance in urban environments. By integrating our solution
with existing CCTV systems, a significant improvement
in incident response capability can be achieved, from
criminal activity to public emergencies. The model’s ability
to identify anomalous behavior in real-time can support
law enforcement in acting preventively, potentially stopping
crimes before they occur. For example, automated detection
of suspicious movement patterns in high-crime areas can
alert authorities instantly, allowing for rapid mobilization of
resources. During mass events, the model makes monitoring
crowd density and people flow easy, identifying congestion
points that could escalate to dangerous situations. This
capability is essential to direct crowd control efforts and
optimize evacuation plans effectively. The model’s precision
in identifying obstructed evacuation routes and high-risk
areas can be vital in emergencies. Providing real-time data
on conditions on the ground helps coordinate emergency

responses more effectively, ensuring rapid and safe evacua-
tion of civilians. In addition to its real-time use, the model can
also be applied for retrospective analysis, helping authorities
better understand urban dynamics and plan improvements in
infrastructure and public safety strategies.

In this work, we have used theYOLO architecture due to its
ability to process images in real-time and its balance between
accuracy and speed. However, we recognize the importance
of continuing to explore advanced deep-learningmethods and
optimization strategies to improve model performance and
robustness further. We have implemented transfer learning
techniques to adapt pre-trained models to our specific data
set. This strategy has allowed us to improve the model’s
generalization to new situations and reduce training time.
Additionally, we use hyperparameter search techniques to
tune critical parameters such as learning rate, batch size, and
number of epochs. This optimization has resulted in greater
accuracy and efficiency in object detection.

We apply regularization techniques, such as Dropout
and L2 loss, to prevent overfitting. Additionally, we use
data augmentation to increase the diversity of the training
data set, thereby improving the model’s ability to handle
variations in urban conditions. We also explore model com-
pression techniques to reduce model size without sacrificing
accuracy. These techniques include neural network pruning
and weight quantization, making deploying the model on
resource-constrained devices easier.

The practical implications of this work are vast and
significant for various real-world applications. Security
forces can use our model’s ability to detect anomalous
behavior in real-time to act preventively, preventing potential
crimes before they occur. For example, automated detection
of suspicious movement patterns in high-crime areas can
alert authorities instantly, allowing for rapid mobilization of
resources.

We implement our model at urban vehicular intersections
to monitor and improve traffic management, reducing
congestion and accidents. High vehicle detection and tracking
precision allow more efficient traffic management and
significantly reduce waiting times. During mass events,
the model makes monitoring crowd density and people
flow easy, identifying congestion points that could escalate
to dangerous situations. This capability is essential to
direct crowd control efforts and optimize evacuation plans.
In addition to its real-time use, the model can be applied for
retrospective analysis, helping authorities better understand
urban dynamics and plan improvements in infrastructure and
public safety strategies.

Ethics and privacy are fundamental considerations in
implementing detection systems in urban environments [43].
Our study has addressed these concerns through strong
ethical measures, including anonymizing data and blurring
sensitive information. Ethics and privacy have become
essential elements for the acceptance and adoption of
technologies of this type in society.
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IV. CONCLUSION
This work presents a robust and effective approach for
real-time object detection using deep learning models in
urban environments. Our research has yielded promising and
notable results that address the specific challenges of object
detection in dynamic and complex urban environments.
Through the review of similar works, the validation of our
method, and the comparison with other models, we have
demonstrated the relevance and effectiveness of our proposal.

Object detection in urban environments is a significant
application today, with implications for security, traffic, and
urban management. Our approach addresses these demands
and demonstrates relevance in complex and dynamic urban
scenarios. Additionally, we have achieved an essential
balance between precision and speed in real-time object
detection. With a precision rate of 90% and a processing time
per frame of 16 ms, our model outperformed other reference
models and is an efficient and accurate solution for practical
applications.

Implementing strong ethical measures, such as data
anonymization and blurring sensitive information, demon-
strates our commitment to ethics and privacy in object
detection in urban environments. These considerations are
essential for the acceptance and adoption of technologies
of this type in society. While our results are promising,
we recognize that there are still opportunities for improve-
ment and expansion of our approach. Some possible future
work includes exploring advanced deep learning techniques
and optimization strategies to improve the performance of
our model further. The goal is to increase the precision and
efficiency of object detection in urban environments.

Another future work that can be included in the research
is adapting our model to address object detection in
challenging weather conditions, such as heavy rain, fog,
or snow. These conditions represent a significant challenge in
detection in urban environments. Furthermore, an adaptation
of our approach for detecting specific objects in urban
environments, such as identifying electric vehicles, is needed.
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