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ABSTRACT It is crucial to diagnose transmission line faults quickly and accurately. Belief rule base (BRB)
has strong nonlinear modeling ability, allowing for the effective utilization of both qualitative knowledge
and quantitative data related to these faults. To ensure accurate diagnosis results, the model must account for
uncertainty and ignorance. Additionally, interpretability of the results is essential for improving diagnostic
credibility. Therefore, a transmission line fault diagnosis model based on interpretable BRB with power set
(PBRB-I) is proposed in this paper. Firstly, transmission line faults and data are analyzed, with the use of
the Spearman correlation coefficient for data preprocessing. Secondly, according to the characteristics of
transmission lines, interpretable modeling criteria are defined. Then, a power set identification framework is
utilized to represent ignorance. Finally, the evidence reasoning (ER) algorithm is applied as a reasoning tool,
and a parameter optimizationmethodwith interpretable constraints based on the projection covariancematrix
adaptive evolutionary strategy (P-CMA-ES) is proposed. In the case study, the PBRB-I model demonstrates
an accuracy of 91.11%, and it exhibits high performance stability across different data allocation ratios. It not
only shows outstanding accuracy but also effectively expresses ignorance and produces interpretable results.

INDEX TERMS Belief rule base, power set, interpretability, fault diagnosis, transmission line.

I. INTRODUCTION
Transmission lines are vital components in power sys-
tems [1], facilitating efficient and reliable transmission of
electric energy across long distances [2]. The expansion
of transmission lines in different terrain and geographical
locations easily results in faults [3], causing potential
disruptions to power supply. In severe cases, transmission line
faults can lead to major power accidents such as power grid
disconnection [4] and collapse [5]. Therefore, it is essential
to diagnose faults in transmission lines with both speed and
accuracy.

Fault diagnosis of transmission lines has always been a hot
topic for scholars worldwide. At present, the main methods
of transmission line fault diagnosis include physical models,
data-driven models and hybrid models [6]. The physical
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model establishes the corresponding model from the essential
characteristics. Wang et al. proposed a single-ended fault
location approach that utilized a distributed parameter model,
which was specifically designed for half-wavelength lines.
The method is unaffected by fault location and type, and has
high location accuracy [7]. Chuncheng and Jiao gave a predic-
tion model of the icing quality and thickness of transmission
line conductors with uniform icing and non-uniform icing
by introducing the collision coefficient, freezing coefficient
and collection coefficient [8]. However, understanding the
system’s operating principles is fundamental to constructing
a physical model. A physical model requires a detailed
description of the system’s physical behavior. This increases
the difficulty of building and applying physical models.

The data-driven model mines the characteristic informa-
tion of system faults from a large amount of data by analyzing
the data. Guo et al. developed a stacked-informer network
to extract the hidden features contained in long-sequence
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time series data and combined gradient concentration (GC)
technology with an optimizer [9]. Shakiba et al. proposed
a convolutional neural network-based diagnostic system that
analyzes factors such as phase difference between connecting
buses and fault resistance. This analysis demonstrates the
robustness of themethod. Themethod can detect and estimate
fault locations between fault zones [10]. Theoretically,
data-driven models have the potential to improve accuracy
through training, but they also have certain application
limitations. Data-driven models require a large amount of
high-quality training data to achieve high accuracy. However,
in practical applications, especially for some rare types of
faults, it may be difficult to obtain sufficient sample data,
which can directly affect the reliability of the diagnostic
results [11].
The hybrid model is a synthesis of the above two models.

Hou et al. predicted transmission line damage probability by
simulating random wind fields using the extreme value type
I probability distribution and the Monte Carlo method [12].
Teimourzadeh et al. used the cownvolutional neural network
(CNN) and the hybrid model of deep reinforcement learning
(DRL) to detect the operation fault of transmission lines [3].
The hybrid model combines the advantages of physical mod-
els and data-driven models, providing a more powerful and
flexible diagnostic tool [28]. It not only improves diagnostic
accuracy and reliability but also addresses the limitations
of using a single model in applications. By leveraging
the theoretical foundation of physical models and the high
accuracy of data-driven models, hybrid models can offer
more reliable and effective fault diagnosis solutions for
complex application scenarios.

In the actual fault diagnosis of transmission lines, there are
two problems that need to be considered. First, considering
that transmission lines are affected by many disturbing
factors [13], such as equipment state changes and natural
meteorological disasters, it is necessary to adopt rigorous
technology with the ability to deal with uncertain information
for fault diagnosis, which reduces the influence of uncertain
factors on diagnosis accuracy. Second, because data-driven
models require a substantial amount of data and complex
algorithms for model training, the modeling process is often
opaque [14], which can be challenging for individuals to
comprehend intuitively and explain the diagnosis results of
the model. However, interpretability is of great significance
in fault diagnosis of transmission lines, which can support the
reliability of the model.

In this complex scene, the belief rule base (BRB) can show
powerful adaptability and can be regarded as an excellent
model choice. First, BRB has outstanding nonlinearmodeling
ability, which is capable of effectively handling uncertain
information, including fuzziness, uncertainty, inconsistency
and randomness [15]. It can comprehensively apply expert
knowledge and limited data samples and maintain good per-
formance even with small training sample sizes [16]. Second,
BRB is a modeling method based on If-Then rules [17]
and has an easy-to-understand knowledge expression process.

BRB has been applied in many fields, such as safety
assessment [29] and behavior prediction [30].
Nonetheless, employing BRB for transmission line fault

diagnosis faces two problems. First, the improvement of
diagnosis accuracy often becomes the theme of model
optimization, but interpretability is ignored, which affects
the credibility of the model [18]. Second, through the
actual diagnosis, it has been discovered that there are
similarities between different types of fault data, which
results in local ignorance and then reduces the accuracy
of diagnosis. The power set effectively addresses ignorance
by encompassing both the signal sets and all of their
subsets [19]. This comprehensive approach ensures that
a wide range of possibilities and potential variations are
considered. Therefore, a transmission line fault diagnosis
model based on an interpretable BRB with a power set
(PBRB-I) is proposed in this paper. Next, the reasoning
procedure utilizes the evidential reasoning (ER) algorithm,
and an optimization algorithm with interpretable constraints
based on the projection covariance matrix adaptive evolution
strategy (P-CMA-ES) is designed according to interpretable
modeling criteria defined by the characteristics of transmis-
sion lines.

This paper makes the following key contributions:
1) A PBRB-I model is proposed to implement the fault

diagnosis of transmission lines. By preprocessing the data,
the complexity of the model is reduced.

2) Using the power set identification framework to address
the issue of ignorance, by comprehensively considering
all possible combinations, avoids missing any potential
diagnostic results, thereby ensuring the reliability of the
diagnosis.

3) An optimization algorithm with interpretability con-
straints is designed. It enables the model to not only
have efficient diagnostic capabilities but also provide clear
explanations and decision-making rationales.

The remaining sections of this paper are organized
as follows: In Section II, the formulation of problems
related to transmission line fault diagnosis is presented, and
the construction process is outlined. Section III describes
the structure, reasoning and optimization. In Section IV, the
superiority of the PBRB-I model is demonstrated via a case
study. Section V concludes this paper.

II. PROBLEM DESCRIPTION
Section II-A describes four problems in transmission line
fault diagnosis. Section II-B describes the construction of the
PBRB-I model.

A. PROBLEM DESCRIPTION
To build an interpretable BRB with a power set for
transmission line fault diagnosis, the following four problems
must be addressed.

1) The redundancy among various fault features affects the
diagnosis results. Therefore, it is necessary to select a set of
feature subsets that can clearly distinguish fault types through
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an evaluation criterion to improve the accuracy of diagnosis.

X∗
= g(X , �) (1)

where X represents original features of faults, X∗
=

{X1, · · ·,XM } represents selected features, g(·) represents the
evaluation criterion for feature selection, � represents the
parameter set in the selection.

2) Interpretability helps to increase the credibility of fault
diagnosis results, so to guarantee the model’s interpretability,
the basic requirements to be met in the modeling process
should be defined as follows:

principle:{d |d1, · · ·, dn} (2)

where d represents the n interpretability criteria.
3) According to the interpretability criteria, the diagnosis

process is defined as follows:

y = f (X∗, 8, d) (3)

where 8 is the parameter set of the diagnosis procedure for
transmission lines, f (·) is the diagnosis process, and y is the
diagnostic output result.

4) To enhance the diagnostic accuracy, the model’s
parameters should be optimized under interpretable criteria.

8best = optimize(X∗, y,O, d) (4)

where optimize(·) is the optimization function, 8best is the
parameter set after optimization, and O is the parameter set
of the optimization.

B. CONSTRUCTION OF THE MODEL
To address the problems summarized in Section II-A, the
PBRB-I model is proposed. Its output can be defined as
follows:

Type = {D1,D2, . . . ,DN } (5)

where D1, . . . ,DN is N fault types of the transmission line.
In its fault diagnosis, global ignorance refers to a scenario
where the fault could be any one of all N fault types, and
local ignorance refers to a scenario where the fault could be
any J types of all N fault types, where J < N . The set of fault
types with ignorance is described as follows [20]:

2Type = {Ø,D1,D2, . . . ,DN , {D1,DN },

. . . , {D1, . . . ,DN−1},Type} (6)

where Ø is an empty set, {D1,DN } represents that the fault
diagnosis result of the transmission line may be D1 or DN ,
which is employed to illustrate local ignorance, and Type is
used to describe global description. According to the above
definition, 2Type fault probabilities can be obtained.

The BRB consists of belief rules, and the kth rule of the
PBRB-I model can be described as follows:

IFx1 is Ak
1 ∧ x2is Ak

2 ∧ · · · ∧ xN is Ak
N

THEN y is {(D1, β1,k ),(D2, β2,k ), · ··, (D2Type , β2Type,k )},

FIGURE 1. The modeling process of PBRB-I.

2Type∑
m=1

βm,k = 1

with rule weight θk , k ∈ {1, 2, . . . ,R}

and attribute weight δ1, δ2, . . . , δi, i ∈ {1, 2, . . . ,N }

in d1, d2, . . . , dn (7)

where x1, . . . , xN represents antecedent attributes of the
fault diagnosis model for transmission lines, Ak

1, . . . ,A
k
N

represents reference values corresponding to the N
attributes, D1, . . . ,D2Type represents the diagnosis results,
β1,k , . . . , β2Type,k represents belief degrees corresponding to
the 2Type diagnosis results, θi represents the rule weight of
the kth rule among R rules, and δ1, . . . , δi represents the i
attribute weight of the kth rule.

III. TRANSMISSION LINE FAULT DIAGNOSIS MODEL
The modeling procedure for the PBRB-I model is detailed
in this section. Section III-A defines the basic structure
of the transmission line fault diagnosis model based on
the PBRB-I. Section III-B defines the model’s inter-
pretability. Section III-C describes the reasoning procedure.
Section III-D describes the optimization.

The PBRB-I fault diagnosis model for transmission lines,
as shown in Fig.1, includes the following steps:

1) Through Spearman correlation analysis, highly corre-
lated fault features can be selected, significantly reducing
dimensionality, and improving the accuracy and interpretabil-
ity of the results.

2) Initial construction of the PBRB-I model. The power
set identification framework is applied to describe global
ignorance and local ignorance.

3) Reasoning on the model, and utilizing the P-CMA-
ES algorithm with interpretability constraints to optimize
the fault diagnosis model, to enhance interpretability and
accuracy.
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A. THE BASIC STRUCTURE OF THE PROPOSED MODEL
The basic structure of the model encompasses the following
steps:

1) DEFINE THE INPUT ATTRIBUTES OF THE MODEL
Feature selection plays an important role in optimizing model
performance [21]. By selecting typical features from the raw
data, the dimension of the input data is reduced, and so are
unnecessary calculations. At the same time, the interpretabil-
ity of the model is improved, and it is easier for people to
understand the implementation process of diagnosis.

Spearman correlation analysis is a feature selectionmethod
suitable for nonlinear data that can make full use of the corre-
lation between variables when selecting the best features, thus
reducing unnecessary features and improving the effect of the
model [22]. Consequently, Spearman correlation analysis is
employed for data preprocessing in this paper.

The Spearman correlation coefficient possesses a value
range of -1 to 1, where a value above 0 denotes a positive
correlation, and a value below 0 signifies a negative correla-
tion. As the absolute value of the coefficient approaches 1,
the correlation strength increases. The Spearman correlation
coefficient is calculated as follows [23]:

ρ =

c∑
i=1

(Ri − R̄)(Ti − T̄ )√
c∑
i=1

(Ri − R̄)2
c∑
i=1

(Ti − T̄ )2
(8)

where R and T represent two features, R̄ and T̄ represent the
averages of the two features, and c represents the number of
samples of each feature.

2) DEFINE THE OUTPUT
The output is defined according to the fault types of the
transmission line. The transmission line fault types are
described as follows:

Type = {D1,D2,D3,D4,D5,D6} (9)

The BRB discriminative framework is ineffective in rep-
resenting the local ignorance information that arises from
similar attributes, while the power set can describe ignorance
well [24]. Therefore, this paper uses an identification
framework with a power set, which is explained as follows:

2Type = {Ø,D1, . . . ,D6,

{D1,D2}, . . . , {D5,D6}

{D1,D2,D3}, . . . , {D4,D5,D6}

{D1, . . . ,D4}, . . . , {D3, . . . ,D6}

{D1, . . . ,D5}, {D2, . . . ,D6}

Type} (10)

3) GENERATE BELIEF RULES
Setting the belief distribution according to expert knowledge
not only combines the mechanism of transmission lines but is

also more practical and beneficial to enhancing the reliability
of the results. The kth rule is described as follows:

IF x1 is Ak
1 ∧ x2 is Ak

2 ∧ x3 is Ak
3

THEN y is {(Ø, β1,k ), (D1, β2,k ), . . . , (D6, β7,k )

({D1,D2, }β8,k ), . . . , ({D5,D6} β22,k ),

({D1,D2,D3} β23,k ), . . . , ({D4,D5,D6}, β42,k ),

({D1, . . . ,D4, }β43,k ), . . . , ({D3, . . . ,D6}, β57,k ),

({D1, . . . ,D5, }β58,k ), . . . , ({D2, . . . ,D6}, β63,k ),

(Type, β64,k )},

with θk

and δ1, δ2, δ3

in d1, d2, . . . , dn
(11)

B. INTERPRETABILITY OF THE MODEL
Criteria 8: Optimized belief rules need to meet the require-
ments of the actual system. As the main interpretable
aspect of BRB, belief rules can transform expert knowledge
into models and provide accurate semantic descriptions of
the relationships between inputs and outputs [25]. Rea-
sonable forms of belief distribution should reflect the true
relationship between inputs and outputs, conform to the
expectations of the actual system, and help users understand
the reasoning process of the system. However, people often
focus on improving accuracy while neglecting the loss of
interpretability. For example, reasonable belief distributions
should be monotonic or convex, as shown in Fig.3(a).
However, concave belief distributions, as shown in Fig.3(b),
are unreasonable and may occur when accuracy is overly
emphasized. This distribution not only violates the logic of
the actual system but may also lead to unnecessary confusion.
Therefore, meeting this guideline is crucial.
Only when belief rules meet the requirements of the actual

system and reasonably reflect the relationship between inputs
and outputs can the BRB system truly leverage its advantages
in decision support and knowledge transmission, providing
effective support for practical applications.
To make the belief distribution conform to the mechanism

and reality, the constraints are as follows:

βk ∼ Vk (k = 1, . . . ,L)

Vk ∈ {{β1 ≤ β2 ≤ · · · ≤ β2Type}

or{β1 ≥ β2 ≥ · · · ≥ β2Type}

or{β1 ≤ · · · ≤ max(β1, β2, · · ·, β2Type) ≥ · · · ≥ β2Type}}

(12)

where Vk represents the interpretability constraint in the kth
rule.

C. THE REASONING PROCEDURE OF THE MODEL
Drawing upon the preceding analysis, the fault features
applied to the model are selected, and the fault diagnosis
model based on the PBRB-I model is constructed. The
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FIGURE 2. General interpretability criteria.

reasoning procedure based on the ER algorithm is summa-
rized as follows:
Step 1: Calculate the matching degree.
Through the calculation of the following formula, the

matching degree aki between the ith input and the kth rule
can be calculated.

aki =



Al+1
i − xi

Al+1
i − Ali

k = l,Ali ≤ xi ≤ Al+1
i

1 − aki k = l + 1

0 k = 1 · · · K , k ̸= l, l + 1

(13)

where Aki is the kth reference value of the ith input.
Step 2: Calculate the activation weight.
The activation weightwk of the kth rule is obtained through

this equation:

wk =

θk
N∏
i=1

(aki )
δi

K∑
i=1

θl
N∏
i=1

(ali)
δi

(14)

Step 3:Generate the belief degree.
The belief degree and utility value of the nth diagnosis

result are calculated below:

βn =

µ × [
L∏
i=1

(wlβn,l + 1 − wl
N∑
i=1

βi,l) −

L∏
i=1

(1 − wl
N∑
i=1

βi,l)]

1 − µ × [
L∏
i=1

(1 − wl)]

(15)

µ =

1
N∑
n=1

L∏
l=1

(wlβn,l+1−wl
N∑
i=1

βi,l) − (N − 1)
L∏
l=1

(1 − wl
N∑
i=1

βi,l)

(16)

Step 4: Calculate the final output.

µ(S(A′)) =

N∑
n=1

µ(Dn)βn (17)

where µ(Dn) is the utility value of Dn,A′ is output vectors in
real systems, S(·) is a set of belief distributions, and µ(S(A′))
is the final expected utility value. The final belief distribution
y is represented as follows:

y = {(Dn, βn), n = 1, . . . ,N } (18)

D. OPTIMIZATION OF THE PROPOSED MODEL
The P-CMA-ES algorithm is an effectivemethod for practical
optimization, with several advantages: 1) The ability to
handle large-scale optimization problems. 2) The ability
to converge rapidly towards the global optimal solution.
3) Its high robustness. Therefore, utilizing the P-CMA-ES
algorithm is indeed a favorable optimization choice, espe-
cially for situations requiring the management of large-scale
optimization problems and aiming to attain efficient and high-
quality solutions.

Incorporating an optimization algorithm can greatly
enhance the accuracy of model diagnosis. However,
to enhance the accuracy, the optimization algorithm may
choose some specific working methods and parameters,
whichmakes the realization process of themodel complicated
and difficult to understand, so with the improvement
of accuracy, the interpretability will decrease. Because
the fault diagnosis of transmission lines is very critical,
it is also crucial to consider the interpretability of the
model while ensuring accuracy. Therefore, this paper
proposes a modified P-CMA-ES optimization algorithm
with interpretable constraints, and the objective optimization
function of the PBRB-I model is defined as:

minMSE(8)

s.t.
N∑
n=1

βk,n = 1

0 ≤ θk ≤ 1 k = 1, . . . ,R

0 ≤ βk,n ≤ 1 n = 1, . . . , 2M
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FIGURE 3. Reasonable and unreasonable belief distribution.

FIGURE 4. Optimization process of the modified P-CMA-ES algorithm.

0 ≤ δi ≤ 1 i = 1, . . . ,N

βk ∼ Vk (19)

where MSE(·) is the error between the diagnosis result and
the real situation, which can be expressed as:

MSE =
1
t

t∑
i=1

(yi − ỹi)2 (20)

where t is the total number of training samples, yi is the real
value of the transmission line, and ỹi is the fault diagnosis
result of the PBRB-I model.

The steps of the modified P-CMA-ES optimization
algorithm with interpretable constraints are shown in Fig. 4,
as follows:
Step 1: Initialize parameters
The parameters to be initialized include the following: 8,

the initial average value ave, the number of solutions in the
populationP, the number of solutions in the optimal subgroup
S, the dimension of the problem d , the optimal subgroup e,
and the weight of the optimal subgroup hi. 8 was initialized
as follows:

8 = [θ1, . . . , θR, β1,1, . . . , β1,2M ,

. . . , βR,1, . . . , βR,2M , δ1, . . . , δN ] (21)

Step 2: Sampling operation

8t+1
v = avet + γ tG(0,C t ), v = 1, . . . , h (22)

where 8t+1
v is the vth solution vector generated for the (t +

1)th time, γ is the step size, G is the normal distribution, and
C t is the covariance matrix of the tth generation population.
Step 3: Constraint operation
Adjust unreasonable rules according to the eighth inter-

pretable criterion.

β t+1
k ∼ Criterion8, k = 1, 2, . . . , d (23)

where β t+1
k stands for the newly generated belief distribution

that satisfies the eighth interpretability criterion Criterion8.
Step 4: Projection operation
This process makes the solution vector satisfy the con-

straints of optimization, which is summarized as follows:

8t+1
i (1 + b× (ε − 1) : b× ε)

= 8t+1
i (1 + b× (ε − 1) : b× ε) − LT × (L × LT )−1

× 8t+1
i (1 + b× (ε − 1) : b× ε) × L (24)

where the number of variables b satisfies b = (1 . . .B),
and B is the solutions of each equality constraint. a, when
the constraints are equal, the number is expressed by ε.
In addition, L = [1, 1, . . . , 1]1×R is used to express a
parameter vector.
Step 5: Selection operation
The optimal parameter solutions that meet the conditions

are selected, and the mean value and covariance matrix of the
population are updated accordingly.

avet+1
=

S∑
i=1

qi8
t+i
i ,

S∑
i=1

qi = 1 (25)

where qi is the weight of the ith solution in the optimal
subgroup,1 ≤ i ≤ S.
Step 6: Adapting operation
The method for updating the covariance matrix is as

follows:

C t+1
= (1 − le1 − leS )T t + le1st+1

c (st+1
c )T

+ leS
S∑
i=1

ti(
8t+1
i − avet

γ t
) × (

8t+1
i − avet

γ t
)T (26)

st+1
c = (1 − lec)stc+

√√√√lec(2 − lec)(
S∑
i=1

t2i )
−1 ×

avetavet+1

εt

(27)

εt+1
= εt exp(

eε
Oε

(
||sg+1

c ||

||H (0, Im)||
− 1)) (28)

st+1
ε = (1 − leε)stε +

√√√√lec(2 − lec)(
S∑
i=1

t2i )
−1

× C t- 12 ×
avet+1

− avet

εt
(29)
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where le1, leS , lec, leε represent learning rates, stε represents
the tth evolutionary step, and stε = 0. In addition, Im
represents the identity matrix, oη represents the damping
coefficient, and H (0,C t ) represents the mathematical expec-
tation.

IV. CASE STUDY
Section IV-A introduces the dataset used in this case
study. Section IV-B introduces the processing of raw data.
In Section IV-C, the initial PBRB-I model is constructed.
In Section IV-D, the interpretability of the PBRB-I model is
verified. In Section IV-E, compared with the diagnosis results
of other methods, the results show the effectiveness of this
model.

A. DATASET DESCRIPTION
The three-phase transmission line system fault classification
data set from literature [27] is used in this paper. A, B,
and C represent the three phases of the transmission line
system, and G represents ground. The input of the model
is three-phase voltage and three-phase current, which are
denoted as la, lb, lc, Va, Vb and Vc respectively. The faults
in this dataset include six states, including normal (N) and
five fault states. The faults are LG faults (between phase A
and ground), LL faults (between phase A and phase B), LLG
faults (between phase A and phase B and ground), LL faults
(between all three phases) and LLLG faults (three phase
symmetric faults).

B. DATA PREPROCESSING
In this paper, Spearman correlation analysis is used as the
method of feature selection, and the relatively useful features
for the target variable are selected for modeling, which
provides assistance to enhance the accuracy and reliability
and reduce the complexity.

Through the comprehensive consideration of correlation
and significance, the weak features are removed, so lb, lc and
va are input into the model as attributes.

Controlling the number of input attributes is crucial for
reducing model complexity. By selecting the most relevant
attributes through correlation analysis, not only can compu-
tational and storage costs be reduced, but the interpretability
and generalization ability of the model can also be improved.
In this chapter, if all six attributes are input into the model, the
model’s complexity significantly increases. Assuming each
attribute is assigned four reference values, 46rules would
be generated, leading to a combinatorial explosion of rules.
However, after correlation analysis, the number of rules is
reduced to 43 rules, a reduction of 98.44% compared to the
former.

C. THE INITIAL MODEL CONSTRUCTION
After many practical verifications and mechanism analyses,
expert knowledge with rich experience and theory has been
formed. The model founded on expert knowledge can better

TABLE 1. Attribute reference points.

TABLE 2. Output reference points.

adapt to the complex actual situation of transmission lines and
has high interpretability [25].

The core algorithm of PBRB-I model proposed in this
paper is based on Matlab. The setting of model reference
points is through the analysis of data and the mechanism of
transmission line faults. In Table 1, the three attributes are
assigned four semantic values in turn, including extremely
low (EL), low (L), middle (M), and high (H). The fault types
of the transmission line are shown in Equation (30), and six
reference values are used to indicate the fault types in Table 2.

Type = {N ,LG,LLG,LL,LLL,LLLG} (30)

The basic structure of the model is demonstrated, and the
power set identification framework based on fault types is
introduced in Section III-A. By analyzing the data of faults,
it is concluded that there is only local ignorance between
adjacent faults in Type. Therefore, the power set identification
framework for transmission line fault diagnosis is expressed
as follows:

Type∗ = {N , {N ,LG},LG, {LG,LLG},LLG,

{LLG,LL},LL, {LL,LLL},LLL, {LLL,LLG}}

(31)

D. VERIFICATION OF THE INTERPRETABILITY OF THE
MODEL
Expert knowledge can guide model optimization. The
optimization of the PBRB-I model is a process of gradually
approximating expert knowledge. However, the BRB model
lacks the ability to approach expert knowledge during the
optimization process, leading to an overemphasis on accuracy
and a decline in interpretability. Fig. 5 compares the belief
distributions of expert knowledge, BRB, and PBRB-I, show-
ing how different models retain expert knowledge features
during optimization. When the optimized belief distribution
more closely resembles expert knowledge, more key features
of expert knowledge are preserved. The belief distribution
optimized by PBRB-I better fits expert knowledge. For
example, in rules 1, 4, 5, and 10, PBRB-I accurately
describes the actual faults of transmission lines. The PBRB-I
model proposed in this paper considers interpretability
criteria during optimization, preserving more features of
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FIGURE 5. The belief distribution comparison.

expert knowledge, thus having stronger interpretability and
credibility. However, the BRB model produces many rules
that do not conform to the transmission line mechanism
during optimization, such as rules 2 and 16, leading to
compromised interpretability. This phenomenon indicates
that in random model optimization, the preservation of
expert knowledge is neglected, thereby affecting the overall
performance of the model.

Fig. 6 depicts the belief distribution of different diagnosis
results of PBRB-I model. It is evident that PBRB-I model
provides a clear semantic description of transmission line
faults.

E. VERIFICATION OF THE MODEL
To validate the effect of the proposed PBRB-I model on
the fault diagnosis of transmission line faults, the following
evaluation indicators are introduced in this section:

1) Overall accuracy. The overall accuracy O_acc refers
to the diagnostic accuracy for all test samples All in the
diagnostic task. This indicator can comprehensively and
intuitively describe the overall performance of the model, and
the calculation method is as follows:

O_acc =
TN
All

× 100 (32)

where TN represents the number of samples correctly
diagnosed.

2) Fault diagnosis accuracy. The fault diagnosis accuracy
F_acc considers the diagnostic accuracy of fault samples
FN , which is targeted and can be obtained by the following
methods:

F_acc =
FN ∗

FN
× 100 (33)

where FN ∗ represents the number of correctly diagnosed
fault samples.

3) Fault detection rate. The fault detection rate f _rate refers
to the model’s accuracy in fault detection, focusing on the
model’s ability to distinguish between the normal state and
fault state. The methods are as follows:

f _rate =
FN ′

FN
× 100 (34)

where FN ′ indicates the total number of detected faults.
Through the above three evaluation indexes, the diagnosis

results obtained from the experiment are analyzed. The
overall accuracy reflects the correct classification ability of
the model on the whole test set, and the fault diagnosis
accuracy reflects the ability of PBRB-I model to judge
transmission line faults. The fault detection rate shows that
PBRB-I model can find faults of transmission lines in time,
which is beneficial to the maintenance and overhaul of
transmission lines.

The data are randomly divided into six groups: 8:2, 7:3,
6:4, 5:5, 4:6 and 3:7. The model undergoes training under
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FIGURE 6. The belief distributional results generated by PBRB-I.

FIGURE 7. Comparison of diagnostic results under different sample
ratios.

each training set, following which it is tested on the corre-
sponding test set. The experimental results under different
sample ratios show that the PBRB-I model maintains high
accuracy and the index value fluctuates little, as shown in
Fig. 7. In Fig. 7, the column represents the three indexes of the
PBRB-I model, and the broken line reflects the three indexes
of the BRB model. This indicates that these two models still
show good performance even when provided with limited
samples and possess the capability to train small samples.
Meanwhile, the PBRB-I model exceeds the BRB model in
accuracy. Therefore, the PBRB-I model can provide higher
reliability and accuracy for small sample fault diagnosis.

Mean square error (MSE) is also introduced as an auxiliary
indicator in this section. According to Fig. 8, with the increase
of iteration times, the accuracy increases and the MSE
decreases, indicating that the model gradually approaches the

TABLE 3. Comparative experiments.

best diagnosis effect. When the model has been trained for
900 times, the diagnosis effect tends to be stable, showing
good diagnosis ability.

F. COMPARATIVE EXPERIMENTS
In this section, the back propagation neural network (BPNN),
the k-Nearest Neighbor (KNN), the Latent Dirichlet Alloca-
tion (LDA) and the Decision Tree are used as comparative
experiments to validate the effectiveness of the PBRB-I
model. The effects of different models verified based on the
training set and the test set are shown in Table 3. The accuracy
of PBRB-I model for fault diagnosis of transmission lines
exceeds the above four methods. In addition to its superior
accuracy, PBRB-I model also has the following advantages:

1) The PBRB-I model combines transmission line mech-
anisms and expert knowledge. The mechanisms provide
a scientific theoretical foundation, ensuring the reliability
of the model. The rule-based modeling approach makes it
easy to understand. Through clear rules, users can easily
comprehend the diagnostic logic of the model.

2) The reasoning process of the PBRB-I model is
transparent. In practical applications, this transparency helps
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FIGURE 8. Performance comparison under different iterations.

verify the rationality and accuracy of the process, thereby
ensuring the reliability of the final results.

3) The PBRB-I model is interpretable, clearly explaining
how inputs are mapped to outputs. The belief distributions
generated by the PBRB-I model during diagnosis align with
real-world situations, making the model more reliable and
practical in actual applications.

V. CONCLUSION
A transmission line fault diagnosis model based on the
PBRB-I is proposed in this paper, which solves four prob-
lems: the treatment of uncertain information, the transparency
of the modeling process, the protection of interpretability
in the optimization process and the ability to deal with
ignorance. First, the original data are preprocessed by
feature selection to reduce the complexity of the model.
Second, the power set identification framework is employed
to solve the problem of local ignorance, and the initial
model is constructed according to expert knowledge. Third,
because interpretability is often ignored in the optimization,
an improved P-CMA-ES algorithm with interpretable con-
straints is designed.

The PBRB-I model retains the advantages of the BRB
model while better describing local ignorance in transmission
line fault diagnosis, effectively handling uncertain informa-
tion. This comprehensive diagnostic approach can signifi-
cantly improve the accuracy and reliability of the diagnosis.
Additionally, by utilizing the improved P-CMA-ES opti-
mization algorithm with interpretable constraints designed
in this study, the initial BRB model has been optimized,
further improving the model’s accuracy without compromis-
ing its interpretability. Interpretability allows the steps of
fault diagnosis to be clearly understood and tracked. For
critical equipment like transmission lines, transparency in

the diagnostic process is crucial, helping technicians and
decision-makers understand and trust the diagnostic results.

Numerous factors affect the faults of large equipment
such as transmission lines, and considering more attribute
inputs aids in comprehensive fault analysis and diagnosis.
Therefore, it is worthwhile to consider incorporating more
attribute inputs. Thus, comprehensively considering more
fault attributes has significant research value. Interpretability
is of great significance to the healthy management of
transmission lines, and how to keep the interpretability of
the PBRB-I model in structural optimization deserves further
study.
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