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ABSTRACT Considering steel as one of the most widely utilized materials, the detection of defects on
its surface has always been a paramount area of research. Traditional target detection algorithms often
face challenges such as low detection accuracy, missed and false detections, insufficient feature extraction
capabilities, and inadequate feature fusion in tasks related to steel surface defect detection. To address
these issues, this study proposes an enhanced algorithm, YOLOv8n-SDEC, utilizing the open-source dataset
NEU-DET from Northeastern University as the sample dataset. Initially, the study improves the original
SPPF module to the SPPCSPC module, enabling the network to better emphasize the features of the target.
Furthermore, to augment the network’s feature extraction capability, a fusion with deformable convolution
is introduced, enhancing the extraction of features from defective targets. The traditional CIoU loss function
is substituted with the EIoU loss function in YOLOv8n aiming to minimize the discrepancies in height
and width between predicted boxes and ground truth boxes. This substitution is intended to hasten model
convergence and improve localization performance. Lastly, CARAFE is employed to replace the nearest
neighbor algorithm, reducing the loss of feature information due to upsampling operations. Experimental
outcomes reveal that the accuracy of the enhanced model reaches 76.7%, marking a 3.3% increase over
the traditional model. Compared to conventional steel surface defect detection algorithms, the algorithm
introduced in this study achieves more precise detection of steel surface defects.

INDEX TERMS YOLOv8n, steel defect detection, SPPCSPC, deformable conv, CARAFE, EIoU.

I. INTRODUCTION
As the most important material in the industrial field, steel
has various defects in its manufacturing and usage process,
such as Crazing and Inclusion, which not only have a serious
impact on the performance and reliability of steel, but can
also lead to equipment failures and safety accidents, making
exploring an accurate and efficient method for surface defect
detection an urgent need in current industrial development.

Major traditional methods for steel defect detection include
visual inspection, magnetic leakage detection, and eddy
current detection, among which visual inspection is prone
to causing visual fatigue for inspectors, magnetic leakage
detection is not effective for detecting closed cracks and
eddy current detection is greatly affected by the environment
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and has certain limitations while require manual and precise
instrument involvement, resulting in higher detection costs.

With the continuous development of computer vision [1],
[2], deep learning [3], artificial intelligence, and other tech-
nologies, recent years has witnessed steel defect detection
methods based on image processing and pattern recognition
gradually becoming a research hotspot. These methods,
which analyze the surface images or magnetic images of
steel to automatically identify and locate defects, excel in
fast detection speed and high accuracy, which can effectively
improve the quality control level of steel production lines.
Currently, there are two main types of deep learning
object detection algorithms, namely, the two-stage object
detection algorithm, with the RCNN series [4] as a typical
representative, and the one-stage object detection algorithm,
with the YOLO series [5], SSD (Single Shot MultiBox
Detector) [6], CenterNet [7], etc. as the main representatives.
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At present, many scholars have applied deep learning object
detection algorithms to steel surface defect detection. The
advantage of two-stage object detection algorithms now lies
in their high accuracy, but they require a large amount
of computation and have slower detection speeds. One-
stage object detection algorithm can simultaneously obtain
the location of the target during the classification process,
saving a lot of time compared to two-stage object detection
algorithms and making it more likely to meet real-time
detection requirements while requiring a large amount of
data to support and imposing certain requirements for
computational power. Liu et al. [8] proposed a multi-scale
context steel defect detection network based on Faster
R-CNN. The parallel convolution architecture composed
of dilated convolutions was used to capture multi-scale
context information. The feature enhancement and selection
module could both enhance the discriminability of features
and reduce information confusion. In reference [9], a new
surface defect detection network based on Mask R-CNN
was presented with a novel pyramid designed for multi-scale
fusion. A new evaluation metric CIoU (complete intersection
over union) was used in the region proposal network to
overcome the limitations of IOU (intersection over union)
in some special cases, effectively improving the detection
accuracy and enabling more accurate defect localization. The
two-stage object detection algorithm, although can achieve
high accuracy, has high computational complexity and slow
detection speed. Therefore, many scholars are making efforts
to achieve more efficient steel surface defect detection.
In reference [10], a defect recognition system based on
convolutional neural networks in the combination with image
classification and feature extraction was proposed to achieve
better detection accuracy. Moreover, in reference [11],
an efficient scale-aware defect detection network based on
YOLOv4 was revealed. This model focused on enhancing
shallow features that contain rich geometric information
to reduce information loss for small targets. Additionally,
it introduced a detection head with a dynamic receptive field
to alleviate the problem of mismatch between the detection
head’s receptive field and the target scale. In reference [12],
the EFD-YOLOv4 algorithm, which effectively expanded
the receptive field using residual connections, was put
forward, which, nevertheless, had a high time complexity.
In reference [13], the YOLOv5-CD algorithm, which incor-
porated the Coordinate Attention (CA) mechanism into the
backbone network and adopted decoupled head detectors to
effectively improve the accuracy of model detection, was
shown with dissatisfied real-time performance of model
detection. Besides, in reference [14], an improved YOLOv8n
algorithm by introducing the GhostNetv2 module, which
enhanced themodel’s expressive power, was constructed with
high time complexity. Reference [15] proposes an improved
YOLOv4-tiny method for real-time detection of surface
defects on strip steel, which is a lightweight target detector
based on convolutional neural networks, and although the

model size is small and the detection speed is fast, the mAP
value on the NEU-DET dataset is 73.29%, which is relatively
low in accuracy. Reference [16] proposes an improved model
based on YOLOv5s, although the model has a mAP value
of 76.6% on the NEU-DET dataset, which is improved
by 2.3% compared with the original model, but the FPS
has decreased by nearly half compared with the original
model, and the model detection speed has decreased more.
The steel defect detection environment is more complex,
in order to improve the accuracy and robustness of steel defect
detection, the reference [17] proposes an energy-based course
for gradually adjusting the model to mitigate pseudo-labeling
noise due to domain changes. It is used to solve the problem of
unsupervised domain adaptation for robust object detection.
Reference [18] proposes a large-scale dataset called the Iran
Autonomous Driving Dataset (IADD) is presented, aiming to
improve the generalization capability of the deep networks
outside of their training domains. Reference [19] proposes
a Multi-Teacher Knowledge Distillation (MTKD) based
approach for training robust semantic segmentation models.
Their method significantly improves the performance of
student models on different datasets by integrating the
knowledge of multiple expert teachers.

For the YOLOv8n algorithm in dealing with the shape of
the variable and irregular defective target there is insufficient
recognition. The original nearest, SPPF module can not
make full use of semantic information, feature fusion is not
sufficient. cIoU Loss regression accuracy and stability is
insufficient and other problems. The paper uses YOLOv8n
as the baseline model to improve it, and the research contents
and innovations of this paper are as follows:

1) Replaced the original spatial pyramid pooling – fast
(SPPF) structure of YOLOv8n with the spatial pyramid
pooling cross stage partial concat (SPPSPC) structure to
enhance the expressive power of the network and the
perception of defects at different scales.

2) Deformable ConvNets v2(DCNv2) is fused with the
penultimate, third, and fourth C2F modules of the Neck layer
to enhance the network’s ability to learn information about
defective targets.

3) In order to address that the nearest algorithm in the
Neck layer not fully utilized semantic information, the
Content-Aware ReAssembly of Features (CARAFE) [15]
module was used to replace the original nearest algorithm,
allowing the model to aggregate contextual information
within a larger perceptual area.

4) Replaced the original Complete-IoU (CIoU) loss
function with the Efficient-IoU (EIoU) [16] loss function to
improve the regression accuracy and stability of the network.

The structure of this research work is as follows:
Section II introduces the structure of the YOLOv8n
algorithm, Section III introduces the modules we referenced,
section IV introduces different experiments, and V section
summarizes the research methods proposed in this paper and
proposes suggestions for further research.
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II. YOLOv8 ALGORITHM INTRODUCTION
Release by Ultralytics in January 2023, the YOLOv8 model
has its structure similar to the YOLOv5 model also from
Ultralytics. To meet different scene requirements, YOLOv8
provides five models: YOLOv8n, YOLOv8s, YOLOv8m,
YOLOv8l, and YOLOv8x, based on the size of the network
model. The model weights increase in size in order, and in
this study, the YOLOv8n model was selected for training.
Considering the need for defect detection and the good
real-time performance and accuracy ofYOLOv8, theminimal
version of YOLOv8n was employed for improvement. The
YOLOv8n network structure mainly includes the input end,
backbone layer, Neck, and output end Head part.

Input: Used Mosaic data augmentation to execute oper-
ations such as splicing on images, whereas traditional
data enhancement is utilised to perform operations such
as scaling and rotation on images, thereby enabling the
model to be more effectively adapted to complex scenes in
real-world scenarios. Furthermore, this approach facilitates
improvements in the model’s robust performance, detection
speed and accuracy.

Backbone: Mainly composed of Conv module, C2f mod-
ule, and SPPF module. Compared to the YOLOv5 algorithm,
YOLOv8 improves the CSP Bottleneck with 3 convolu-
tions (C3)to CSP Bottleneck with 2 convolutions(C2f), the
structure of the C3 module and C2f module is shown in
Figure 1. Compared to the C3 module, the C2f module
adopts a multi-branch flow design, providing the model with
richer gradient information, enhancing the model’s feature
extraction capability, and improving the learning efficiency
of the network.

FIGURE 1. Schematic diagram of C3 module and C2 module.

Neck: The neck section adopts the Path Aggregation Net-
work and Feature Pyramid Networks (PAN-FPN) structure
to achieve feature fusion of multiple feature maps with
different sizes. The C2f module is also used as the main
feature extraction module in its structure. This mechanism
can effectively enhance the robustness and generalization
ability of the model.

Output terminal: The original coupled header structure
has been modified to the popular decoupled header struc-
ture, adopting an anchor-free design, which improves the

positional accuracy and model generalization ability, making
it more flexible.

III. YOLOv8n IMPROVEMENT
In the study, an improved algorithm YOLOv8n-SDEC for
surface defect detection of steel materials was proposed with
its framework shown in Figure 2.

FIGURE 2. YOLOv8n network architecture.

A. LOSS FUNCTION IMPROVEMENT
In the original YOLOv8n network, the CIoU loss function
is used to calculate the predicted bounding boxes. CIoU
penalizes the distance between the center points and the
aspect ratio. The calculation formula is as follows:

υ =
4
π2

(
arctan

wgt

hgt
− arctan
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In the formula: wgt and hgt represent the width and height of
the ground truth box, while w and h represent the width and
height of the predicted box. Meanwhile, ρ2

(
b, bgt

)
stands

for the Euclidean distance between the center points of the
predicted box and the ground truth box. IoU represents
the intersection over union between the predicted box and
the ground truth box. C represents the diagonal length
of the minimum bounding rectangle of the predicted box and
the ground truth box, α the weight, and υ the parameter that
measures the consistency of aspect ratio.

Although CIoU considers the overlap area between the
ground truth box and the predicted box, the distance between
their center points, and the aspect ratio, its aspect ratio is
a relative value, and the overall aspect ratio ignores the
differences between the predicted width and height values
and their respective ground truth values.
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EIoU was chosen as the bounding box loss function for
the improved model in the study. The penalty term of EIoU
separated the aspect ratio influence factor from CIoU, and
calculated the length and width of the target box and the
predicted box separately, which accelerated convergence and
improves regression accuracy. The calculation formula is
shown in equation (4), including three parts: overlap loss,
center distance loss, and height-width loss.

LEIoU = LIoU + Ldis + Lasp = 1 − IoU

+
ρ2

(
b, bgt

)
c2

+
ρ2

(
w,wgt

)
c2w

+
ρ2

(
h, hgt

)
c2h

(4)

In the formula: cw and ch represent the width and height of the
minimum bounding rectangle of the predicted bounding box
and the ground truth bounding box, and ρ is the Euclidean
distance between two points.

B. DEFORMABLE CONVOLUTION
The traditional convolution of YOLOv8n uses a fixed
convolution kernel size. The traditional convolution operation
divides the feature map into parts that are the same size
as the convolution kernel, and then performs convolution.
The position of each part is fixed, but this method cannot
better handle surface defects on steel with large geometric
shape changes. Inspired by deformable convolution [18],
DCNv2 was made compatible with the C2f module in this
study. Compared with the traditional convolution operation,
the deformable convolution can better adapt to different
image contents by learning the deformation parameters and
sampling near the current sampling point, so that the feeling
field is no longer limited to a single square, but closer to
the real shape of the object. Visual example is as shown in
Figure 3, where the left side a is normal convolution and the
right side b is deformable convolution.

FIGURE 3. Standard convolution and deformable convolution.

DCN actually adds an offset during the standard convo-
lution process, allowing deformable convolution to perform
different transformations on different targets while increasing
its receptive field. The operation process of deformable
convolution is shown in Figure 4, where the offsets are
obtained by applying separate convolution layers on the same

FIGURE 4. Deformable convolutional structure.

input feature map through training. The formula obtained by
deformable convolution is:

y (p0) =

K∑
k=1

wk · x (p0 + pk + 1pk) (5)

In the formula: x and y are the input and output feature maps,
K and k are the total number of sampling points and the
sampling position point, 1pk is the offset corresponding to
the kth position, p0 is the current position of the output feature
map,wk and pk are the projection weights of the kth sampling
point and the kth position of the predefined convolutional
network sampling. However, the receptive field of this
version of deformable convolution may cause the receptive
field to exceed the target range at the corresponding position.
Therefore, the deformable convolution DCNv2 compared
to DCN was proposed in the study. DCNv2 extended the
deformable convolution and enhanced its modeling ability.
Meanwhile, a feature simulation scheme was proposed to
guide network training. This method introduces weight terms
for punishment and sets the weight of uninterested positions
to 0. The formula is as follows:

y (p0) =

K∑
k=1

wk · x (p0 + pk + 1pk) · 1mk (6)

In the formula: 1mk is the modulation scalar for the k-th
position, which ranges from 0 to 1.

FIGURE 5. SPPCSPC structure.

C. IMPROVED SPATIAL PYRAMID POOLING
SPP (Spatial Pyramid Pooling, SPP), first proposed by
Amirkhani et al. [19], obtains different receptive fields by
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FIGURE 6. CARAFE module.

pooling the feature map at different scales, allowing the
algorithm to effectively avoid distortion caused by cropping
and scaling operations on image regions. The YOLOv7
algorithm proposes the SPPCSPC structure based on the SPP
structure, which draws on the idea of the Cross Stage Partial
Network (CSPNet) [20], combining the CSP module with the
SPP module. CSPNet introduces local connection operations
to partially connect low-level features with high-level fea-
tures, achieving cross-stage information transmission, which
improves the expressive power of network features, captures
richer image features, enhances feature representation and
receptive field, and improves network performance and
robustness. Therefore, the SPPCSPC module was applied in
this study instead of the original SPPF module in YOLOv8.

Dqwe The SPPCSPC structure is shown in Figure 5.
First, the features were divided into part1 and part2 and the
CSP structure was used here. Then, a regular convolution
operation was performed on part1, and part2 underwent 1×1,
3 × 3, and 1 × 1 convolution operations followed by SPP
spatial pyramid pooling operations. The feature maps were
first passed through MaxPool layers of size 5 × 5, 9 × 9,
and 13 × 13, respectively. Then, these feature maps were
concatenated in the channel direction. After that, a 1 × 1,
3×3 convolutionwas performed. Finally, the obtained feature
map was concatenated with the result of part1 and underwent
a 1 × 1 convolution operation.

D. UPSAMPLING METHOD IMPROVEMENT
In YOLOv8, the nearest upsampling method is used on
the Neck network. Although this method has a smaller
computational cost, it only uses the grayscale value of the
pixel closest to the sampling point as the grayscale value of
the current sampling point, without considering the influence
of other adjacent pixels. As a result, the quality of the
image after sampling will be severely degraded. Therefore,
a new upsampling operator CARAFE was employed in the
study, which, compared to traditional upsampling modules,
further expanded the receptive field of CARAFE, without
relying on sub-pixel neighborhoods to operate, but instead

integrated information within a larger receptive field, and
could dynamically generate adaptive kernels for specific
content, enabling better content awareness.

The basic structure is shown in Figure 6. For the input
feature map of X ∈ RC×H×W , the upsampling ratio is σ ,
which is an integer. CARAFE generated a new feature map
X ′ with a size ofC×σH×σW . This process includes feature
content prediction and feature recombination. In the feature
content prediction module, first, a 1 × 1 convolution was
used to compress the channels to reduce computation. Then,
a convolution layer with a kernel size of k1 was applied to
predict the upsampling kernel. The upsampling kernel size
was set to k2. In order to use different upsampling kernels
for each position of the output feature map, a tensor σH ×

σW × k22 with a shape of should be obtained, corresponding
to σH × σW upsampling kernels. Subsequently, softmax
was used to normalize the obtained upsampled kernel, so that
the sum of the convolutional kernel weights was 1. For each
position in the output feature map, the feature recombination
module mapped it back to the input feature map, extracted a
k2× k2 region centered around it, and took the dot product
with the predicted upsampling kernel at that point to obtain
the output value. Different channels at the same position
shared the same upsampling kernel.

IV. EXPERIMENT AND RESULTS ANALYSIS
A. DATASET
In the study, the effectiveness of the improved YOLOv8n
algorithm was validated using the steel surface defect dataset
(NEU-DET). The dataset is dedicated to the task of hot
rolled steel strip surface defect detection. The image type
is a high-resolution hot rolled steel strip surface image, and
the collection of steel surface defects is conducted in the
following way: two LED light sources are symmetrically
tilted and mounted on top of the steel surface. The steel to
be tested is placed in the centre axis of the two light sources,
which are mounted on top of an industrial camera. The
camera captures images of the surface defects on the steel,
which are then preprocessed to eliminate high-frequency
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TABLE 1. Types of defects and their characteristics.

noise and perform a grey scale transformation. The dataset
comprises six distinct grey-scale maps of steel surface
defects, each with a resolution of 200 × 200. A total of
300 sample images are available for each defect type. The six
types of defects are Crazing (Cr), Inclusion (In), Patches (Pa),
Pitted surface (Ps), Rolled-in Scale (Rs), and Scratches (Sc),
as shown in Figure 7. The total number of images in Table 1 is
1,800 and the dataset is randomly divided into 1440 training
sets and 360 test sets in an 8:2 ratio.

FIGURE 7. Defect category chart.

In order to enhance the detection efficacy, a combination of
Mosaic data enhancement and traditional data enhancement
is employed to augment the model’s generalisation capacity.
The principle of Mosaic data enhancement is illustrated in
Figure 8. Mosaic data enhancement involves the random
selection of four images from a batch. These images are then
randomly scaled, cropped, flipped, and subjected to colour
gamut changes. Additionally, rows of operations, such as
Figure 9 randomly splicing the images into a training sample
of a set side length, are performed. This process enriches the

dataset and effectively alleviates the problem of insufficient
image samples, while also strengthening the robustness of the
network.

FIGURE 8. Mosaic data enhancement schematic diagram.

FIGURE 9. Data augmentation.

B. EXPERIMENTAL ENVIRONMENT AND PARAMETER
SETTINGS
In the experiment, the Windows 11 operating system,
PyCharm was used as the compilation software, equipped
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with an AMD Ryzen758008-Core Processor, NVIDIA
GeForce RTX 3070 Ti graphics card, Python 3.8 as
the development language, and Pytorch-GPU version
1.13 as the deep learning framework, with CUDA version
12.2. Experimental parameter settings are detailed in
Table 2.

TABLE 2. Experimental parameter settings.

C. EVALUATING INDICATOR
Accuracy, recall rate, average accuracy of all categories,
detection speed, and parameter quantity were selected in the
study as the performance evaluation indicators for improving
the YOLOv8n model. The calculation formula is shown
below.

p =
TP

TP+FP
× 100% (7)

p =
TP

TP+FN
× 100% (8)

AP =

∫ 1

0
P (R) dR× 100% (9)

mAP =

∑n
i=1 APi
n

× 100% (10)

In the formula, TP refers to the number of true positive
samples predicted as positive; FP refers to the number
of negative samples predicted as positive; FN refers to
the number of true positive samples predicted as neg-
ative. And n represents the number of data categories
in the dataset, in this paper n=6; i is the number of
detections; AP is the average precision for a single cate-
gory; P(R) represents the curve formed by precision and
recall.
FPS was used to measure the processing speed of a model.

The larger the FPS value of the model, the faster the detection
speed. The calculation formula is shown in equation (11).
Parameters represent the number of parameters occupied by
the model, for ordinary convolutional layers, the calculation
formula is shown in equation (12).

FPS =
Framenum
ElapsedTime

(11)

Parameters = (K h × Kw × Cin) × Cout+Cout (12)

In the formula: Framenum and ElapsedTime represent the
total number of images detected and the total time the model
runs; Cin and Cout represent the number of input and output
feature map channels, and Kw and Kh represent the width and
height of the convolution kernel.

D. MODEL COMPARISON EXPERIMENTS
1) LOSS FUNCTION COMPARISON EXPERIMENT
To verify the performance of introducing the EIoU loss
function for defect detection, CIoU, DIoU (Distance-IoU)
[21], SIoU (Smoothed-IoU), and WIoU (Wise-IoU) were
selected. These commonly used border loss functions were
compared in experimental trials, and the results are shown in
Table 3. From the experimental results, it can be seen that
on the NEU-DET dataset, except for EIoU and WIoU, which
significantly improved the mAP value, the other IoU Losses
had no significant effect on the model. Among them, DIoU
did not consider the aspect ratio of the bounding box during
regression, so the mAP value of the model only improved
by 0.4%; SIoU only focused on the number of pixels in the
defect area and did not consider the shape information of the
defect, which may cause false detections when there was a
large difference in shape between the predicted result and the
true label, so the mAP value of the model only improved by
0.2%; EIoU and WIoU improved the average precision by
1.7% and 1.1% respectively, but WIoU had a slight decrease.

TABLE 3. Comparison of experimental results with different loss
functions.

Comparison of Experimental Results with Different Loss
Functions in detection speed compared to the original model,
while EIoU had no significant change in detection speed.
Therefore, EIoU, which has better overall performance, was
selected as the loss function in the study.

2) UPSAMPLING OPTIMIZATION
To address the issue of reduced quality of the upsampled
feature maps caused by using nearest neighbor in the
YOLOv8nNeck network, it was proposed in the study
to use the CARAFE module to achieve higher quality
upsampled feature maps. To verify the improvement effect,
the effects of CARAFE, Bilinear, and nearest were compared.
The experimental results are shown in Table 4, presenting
that both CARAFE and Bilinear methods had significantly
improved mAP values, with both methods improving by
0.5%. Among them, the Precision of the CARAFE operator
increased by 6%, while the Recall decreased by 2.1%. On the
other hand, the Precision of the Bilinear algorithm only
increased by 4.9%, while the Recall decreased by 2.5%. In the
meantime, the detection speed of both slightly decreased.

According to the experimental results, both the Bilinear
algorithm and the CARAFE operator have good performance,
with the same improvement in mAP value. However,
compared with the CARAFE operator, the Bilinear algorithm
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FIGURE 10. Comparison of accuracy before and after improvement.

TABLE 4. Comparison of pyramid pooling effects.

ignores the spatial relationship between features, while the
CARAFE operator can better capture the spatial relation-
ship between features. Therefore, the model introduced
with the CARAFE operator has higher accuracy. Due to
the recombination and weighting operations of features
involved in the CARAFE operator, the number of parameters
increased. Considering the characteristics of steel defect
recognition tasks, the detection speed of themodel introduced
with the CARAFE operator did not decreased significantly.
Therefore, the original nearest upsampling operator of
YOLOv8n was replaced with the CARAFE upsampling
operator.

3) COMPARISON OF PYRAMID POOLING EFFECTS
SPP is a technique used in CNN networks to handle images
of different sizes that can use pooling to fuse feature
maps of different scales, establish connections between
targets of different scales, and enhance the neural network’s
ability to detect targets of different scales. In order to
better detect defects in steel materials, it was proposed
to replace the original SPPF module with the SPPCSPC
module.

To test the detection effect, the effects of SPPF, ASPP
(Atrous Spatial Pyramid Pooling), SimSPPF (Simplified
SPPF), and BasicRFB (Basic Receptive Field Block) were

compared. The calculation results are shown in Table 5.
From the experimental results, the mAP values of the ASPP,
SimSPPF, BasicRFB, and SPPCSPC models all increased
varying degrees compared to the baseline model using
SPPF. The introduction of ASPP and SPPCSPC had the
most obvious improvement effect on the mAP value of the
model. Among them, the mAP value of the ASPP model
increased by 0.9%, Precision increased by 5.3%, and Recall
decreased by 2.4%; the mAP value of the SPPCSPC model
increased by 1.9%, Precision increased by 5.3%, and Recall
decreased by 1.8%. However, both ASPP and SPPCSPC
required the introduction of additional convolutional layers
and pooling layers, resulting in a 68.7% increase in the
parameter volume of the ASPP model and a 53.4% increase
in the SPPCSPC model. Therefore, SPPCSPC, which has the
highest increase in mAP value and the smallest increase in
model parameters, was chosen.

TABLE 5. Comparison of experimental results using different upsampling
methods.

E. DEFECT DETECTION EFFECT
This paper presents a comparison of the detection accuracies
of two YOLOv8n models, one of which has undergone
an improvement process. The results of this comparison
are shown in Figure 10. As can be seen from the figure,
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the average detection accuracy of the improved YOLOv8n
model is 76.7%, which is 3.3% higher than the benchmark
model. YOLOv8n-SDEC has improved detection accuracy
in Crazing, Patches, Pitted_surface, Rolled-in_scale, and
Scratches. The most pronounced improvement is observed
in Crazing, with an average detection accuracy increase of
9%. The average detection accuracy of the Patches class
is also elevated by 1.1%. The average detection accuracy
of the Pitted Surface class is improved by 0.6%, while
the average detection accuracy of the Rolled-in Scale class
has an average detection accuracy improvement of 5.8%.
The average detection accuracy of the Scratches class has
an average detection accuracy improvement of 2.8%. The
Crazing and Pitted Surface detection accuracies are the lowest
of all the categories, due to the fact that both of them
resemble the surface traces of the steel itself, and both
of them suffer from a high false positive rate of manual
detection. In summary, the improved model has higher
detection accuracy and is more accurate in localising and
identifying small-scale targets.

In order to intuitively evaluate the effect of this paper’s
improved algorithm, respectively, the YOLOv8n algorithm
and YOLOv8-SDEC for visual analysis, rotate the picture,
change the brightness and other processing methods, respec-
tively, with the YOLOv8n algorithm and YOLOv8- SDEC
to detect the same target object, as shown in Figure 11, due
to the defects of the background interference is strong, the
original model Due to the strong interference of defective
background, the original model has serious leakage and
misdetection, even Crazing and Rolled-in_scale cannot be
detected, and Scratches are all incorrectly recognised as other
categories. In this paper, YOLOv8-SDEC is added with the
modules of SPPSPC and CARAFE, which can provide a
richer representation of the features, and help to detect the
targets of smaller sizes, and the situation of leakage detection
is significantly improved. Inclusion and Scratches size varies,
adding Deformable Conv can adapt to the size change of
defects, improve detection accuracy, reduce the probability
of leakage and misdetection.

FIGURE 11. Graph of detection results.

FIGURE 12. Heatmap.

Separately make the unimproved YOLOv8n algorithm
and the improved algorithm for heat map visualisation and
analysis, as shown in Figure 12, the 2 algorithms respectively
detect the same target, the red area highlights the area that the
model pays more attention to, as can be seen in Figure 12,
the improved model, which pays more attention to the area
where the target is located, is able to more accurately extract
the features, and is more focused and accurate on the scope
of attention.

F. ABLATION EXPERIMENT
In order to verify the effectiveness of the improved module,
this paper conducted ablation experiments on NEU-DET.
A total of 5 groups of experiments were designed, where

√

indicates that the module has been added. The experimental
results are shown in Table 6, and Experiment 1 is the result
of the original model YOLOv8n. Experiment 2 increased
the receptive field without adding too many parameters,
resulting in a 1.9% increase in mAP and a 5.3% increase in
Precision. Experiment 3 added the C2f-DCNv2 module on
the basis of Experiment 2, which can preserve more defect
information during the feature fusion process. Although the
detection speed has slightly decreased, the mAP, Precision,
and Recall all increased, with increases of 0.2%, 0.8%, and
1.4% respectively. In Experiment 4, EIoUwas used instead of
the original CIoU based on Experiment 3. Without increasing
the parameter quantity and reducing the detection speed, the
mAP value increased by 0.5%, indicating that EIoU separated
the aspect ratio influence factor, calculated the differences in
height and width separately, and could improve regression
accuracy, thereby enhancing defect detection effectiveness.
Experiment 5 introduced the CARAFE operator based on
Experiment 4 to capture more detailed information and
prevent the loss of feature information for small and
occluded targets after multiple downsampling. The mAP
value increased by 0.7% and the Recall increased by 1.7%.
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TABLE 6. Results of ablation experiment.

Compared to the baseline model, the mAP increased by 3.3%.
Although there was a slight decrease in detection speed, it still
met the real-time requirements.

G. GENERALITY TEST
In order to verify the scalability and generality of the model,
we conduct YOLOv8 and YOLOv8-SDEC comparison tests
on the dataset GC10-DET [27], which includes 10 types of
surface defects: Punching, Welding Line, Crescent-shaped
Crack, Water Spot, Oil Stain, Wire Mark, Inclusion, Rolling
Pit, Crease, and Waist Fold; the training and validation sets
are divided according to the ratio of 8:2, and the experimental
environment and parameters are unchanged, the validation
results are shown in Table 7 As shown in the table, except
for a slight decrease in the detection speed of YOLOv8n-
SDEC, the precision, recall and map50 of YOLOv8n-SDEC
are optimal, and compared with the benchmark model, they
are improved by 2.1%, 5.6%, and 2.3% respectively, which
shows that the YOLOv8n-SDEC algorithm has a certain
degree of versatility.

TABLE 7. Comparison of performance testing on GC10-DET.

H. COMPARISON EXPERIMENT WITH MAINSTREAM
ALGORITHMS
In order to reflect the effectiveness of the improved method
in this paper, the improved algorithm is compared with
YOLOv5,YOLOv7,Faster-RCNN.Through Table 8, it can be
seen that the YOLOv8n- SDEC algorithm proposed in this
paper is only larger than YOLOv5 in terms of the number
of parameter in YOLOv8n-SDEC, but is much smaller than
YOLOv7 and Faster-RCNN, it has better performance in
mAP, Precision, Recall, FPS, 10.5% higher than YOLOv5
in Precision, 4.6% higher than YOLOv7 in Recall, 9.5%
higher than YOLOv7 in Map, and much higher than the other
algorithms in detection speed, which is capable of meeting
the defect detection precision and detection accuracy. meet

the requirements of detection accuracy and detection speed
for defect detection.

TABLE 8. Comparison results with mainstream algorithms.

I. COMPARISON EXPERIMENT WITH MAINSTREAM
ALGORITHMS
In comparison to existing steel surface inspection algorithms,
the algorithm proposed in this paper exhibits a certain
degree of superiority. The detection effect is illustrated in
Table 9.

TABLE 9. Horizontal comparison experiment.

Table 9 shows that the yolov8-SDEC model proposed in
this paper achieves a mAP value of 76.7%, which is higher
than the reference [16] It is improved by 0.1%. This is
an improvement of 0.1% compared to the reference [28]
improved by 1% compared to reference [16] and refer-
ence [28], the algorithm in this paper is optimised in terms
of detection accuracy, detection speed and model size. Taken
together, the model proposed in this paper performs better
than other mainstream algorithms in terms of comprehensive
performance.

V. CONCLUSION
This paper presents an enhanced model based on YOLOv8n
designed to tackle the challenges associated with the varied
types, forms, and complex backgrounds of surface defects in
steel. Initially, the original SPPF module was upgraded to
the SPPCSPC module. This modification allowed for more
effective pooling operations on featuremapswithin the neural
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network, facilitating the extraction of feature information
across different scales and improving the resolution of feature
maps, thereby boosting the object detection performance.
Furthermore, the model integrated the C2f with deformable
convolution modules to bolster the detection capabilities
for objects of complex shapes. In an effort to enhance the
regression accuracy and stability of the model, the EIoU loss
function was employed in lieu of the CIoU loss function used
in the baseline model. Additionally, the conventional nearest
neighbor upsampling operator was replaced by the CARAFE
upsampling operator to mitigate information loss during the
feature map upsampling process.

The experimental results show that the improved model
based on YOLOv8n proposed in this article has an increase
of 3.3% in mAP value compared to the baseline model,
although the detection speed decreased by almost 20% from
the baseline model, the detection speed was still able to
reach 303 frames per second, which is better than most
models and meets the terminal push requirements. Although
there is a slight increase in parameter count due to the use
of more complex convolution and matrix operations, the
parameter count of the model is still much smaller than that
of fast rcnn, YOLOv7, reference [16] and reference [28].The
number of parameters is only 12% of that of Faster
RCNN, while the detection speed reaches 15 times that of
Faster RCNN. This indicates that the model can maintain
reasonable computational efficiency in resource constrained
environments. Can meet the real-time requirements in the
steel production process.

Although the enhanced algorithm proposed in this paper
can effectively enhance the detection accuracy of steel
defects, there is still scope for improvement in the accuracy
of defects in the crack category and in the lightweighting
of the model. Furthermore, given that the steel surface
inspection system is susceptible to wear and tear and
environmental changes, such as physical wear and tear
on sensors such as cameras, Furthermore, changes in
temperature, humidity, and the angle of illumination and
detection may have a long-term impact on the system’s
performance. Consequently, subsequent work will focus on
implementing adaptive algorithms, regular maintenance and
calibration, robust algorithms, an expanded dataset, and a
simplified network structure to enhance the model.
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