
IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY SECTION

Received 24 April 2024, accepted 28 June 2024, date of publication 10 July 2024, date of current version 23 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3426362

Learning From Oversampling: A Systematic
Exploitation of Oversampling to Address
Data Scarcity Issues in Deep Learning-
Based Magnetic Resonance
Image Reconstruction
IBSA KUMARA JALATA , (Member, IEEE), REESHAD KHAN , (Student Member, IEEE),
AND UKASH NAKARMI , (Member, IEEE)
Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR 72701, USA

Corresponding author: Ukash Nakarmi (unakarmi@uark.edu)

ABSTRACT Data acquisitions in Magnetic Resonance Imaging (MRI) are inherently slow due to sequential
acquisition protocol. Image reconstruction from under-sampled data is posed as an inverse problem in
traditional model-based learning paradigms. Recent data-centric learning frameworks such as deep learning
(DL) frameworks are data hungry, and demand a large, labeled training data sets. To address the lack of large
training datasets, in MRI reconstructions, researchers approach the problem in two ways: (1) unsupervised
method where the model is trained without the presence of fully sampled data. (2) using a method that
efficiently use the limited dataset for training purpose. In this paper, we first systematically investigate
advantages and limitations of current oversampling methods. Then, we also propose a novel oversampling
method and a DL framework that systematically exploits the oversampling technique in the learning process
as well as also increase the size of training data set. Essentially, we pose the training data oversampling as
a one-to-many mapping function and introduce a new loss function based on similarity metric that can be
integrated into a DL framework. Our proposed method not only addresses the training data scarcity in MR
image reconstruction and improves reconstruction, but also makes the learned model more robust to different
under-sampling techniques

INDEX TERMS Over sampling, unrolled network, supervised learning.

I. INTRODUCTION
Magnetic Resonance Imaging (MRI) is a popular tool in
clinical settings due to its non-ionizing properties and high-
quality tissue contrast, without exposing the patient to
radiation. Despite its benefits, low spin polarization during
sequential data acquisition results in slow scans [5], [6],
discomfort for patients, reduced efficiency, and increased
costs. To overcome these limitations, accelerated MRI data
acquisition uses undersampled data and solves an inverse
problem to obtain images from the k-space data. Therefore,
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the primary goal of the MRI reconstruction community is
to reconstruct high-resolution images from undersampled
k-space measurements. The two mainstream methods for
achieving this goal are MR image reconstruction, which
focuses on removing aliasing artifacts caused by under-
sampling, and super-resolution (SR), which enhances image
resolution.

To accelerate MRI acquisition, many reconstruction meth-
ods involve undersampling data in the k-space, which can
violate the Nyquist sampling theorem and lead to aliasing
artifacts in the image domain. To address this challenges,
images can be reconstructed using an optimization process
that incorporates assumptions about the underlying data,
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such as sparcity, and smoothness. Recent research has demon-
strated that utilizing spatial redundancy through parallel
imaging hardware [24] can significantly improve image
reconstruction. However, choosing the appropriate regular-
ization function for a specific problem can be challenging,
leading researchers to adopt compressed sensing theory
for MRI reconstruction by applying sparsifying transforms.
Some studies have also explored combining parallel imaging
and CS-MRI to maximize the acceleration of acquisition [6].

Due to the recent increase in computing power, neural
network models have become increasingly popular for
applications that heavily rely on data. One such application
is MRI acceleration, where there is a growing interest in deep
learning (DL) to replace the classical approach that yields
poor reconstruction results and is not robust when exposed
to noisy perturbations during testing. DL frameworks have
demonstrated superior reconstruction quality and speed by
treating the MR acceleration and reconstruction problem as
a supervised learning task of finding a mapping function f (·)
using a neural network that maps undersampled MR images
to fully sampled ground truth images. However, despite the
better results, the DL models lack generalization ability and
produce poor quality images for data not seen during training.
Furthermore, there is a scarcity of fully sampled data in
MRI applications, making it impossible to use supervised DL
models. Other studies [36], [37], [38] tackle the data scarcity
problem using transfer learning. They train models with
publicly available RGB data or medical imaging and transfer
the acquired knowledge to a different model. However, this
approach is effective in certain scenarios but falls short in
MRI reconstruction due to insufficient captured knowledge
for fully reconstructing MR images.

Asmentioned above, without the presence of fully sampled
data it is challenging to reconstruct high quality MR images.
To address this challenges, researchers have proposed
unsupervised models that do not require fully sampled data.
These models capture the MRI prior using generative models
and improve generalization against deviations in the imaging
operator by jointly using imaging prior with MRI prior
during inference on test data. For instance [1] proposes
an approach for unsupervised MR imaging reconstruction
using adversarial training. The method combines a generator
network and a discriminator network to reconstruct the input
image without requiring paired training data. The generator
network is trained to generate MR images that can fool
the discriminator network, while the discriminator network
is trained to distinguish between the generated images and
the real images. While the reconstructed MR images show
better quality than the undersampled input, The quality of the
images are poor for higher inputs imagewith higher reduction
factor.

The second approach to address the data hungry DL
frameworks is to use the limited data efficiently using data
oversampling. Data oversampling is a technique used in deep
learning to generate more training data by creating additional
samples of the existing data. This is done typically by

applying various transformations to the original data. Unlike
in a normal image dataset where these transformations
includes rotating, resizing, cropping, translation, blurring to
replicate existing samples, we generate data by undersam-
pling the input k-space data with different reduction factors.
Oversampling can improve model performance by providing
more training samples and enhance the generalization perfor-
mance of a model by reducing the impact of overfitting. It is
also cost-effective, as it is cheaper than collecting new data or
manually labeling existing data. However, oversampling has
some limitations. For example, it can lead to overfitting if the
new sampled data is too similar to the existing data, causing
the model to memorize the training data rather than capturing
new patterns in the data. Additionally, oversampling can
introduce bias into the data if the new generated data has a
different distribution from the original data.

In general, our research focuses on overcoming the
obstacles caused by insufficient training data in MRI
reconstruction. The current MRI reconstruction methods
heavily biased towards the type of undersampling utilized.
To address this issue, we propose a novel data oversampling
approach that can effectively learn discriminative features
by oversampling the k-space input with varying reduction
factors. The proposed method utilizes a loss function in
conjunction with the l1 loss to capture the similarity and
dissimilarity between two inputs. Furthermore, we perform
a comparison between the proposed method and an unrolled
DL framework as the number of samples increases.

In this paper, we have structured our discussion as
follows: Section II discusses the related work. Section III
provides an overview of the background of unrolled network
and describes our proposed method in detail. Section IV
showcases experimental results, comparing our approach to
other resampling techniques. Finally, Section V summarizes
the findings and proposes areas for further study.

II. RELATED WORK
Generally, MRI reconstruction methods fall into two pri-
mary categories: model-based approaches and data-driven
approaches. Model-based methods utilize techniques such as
sparsifying transformations, dictionaries, and sparse coding.
Conversely, data-driven approaches leverage sophisticated
neural networks to capture essential features for learning
purposes.

Classical MRI reconstruction methods employ sparsifying
transforms, such as Total Variation (TV) [3], Fourier trans-
form, and Wavelets [4], to utilize signal sparsity. However,
during the reconstruction process, these sparsity-based CS-
MRI techniques typically require computationally expensive
nonlinear minimization, leading to significant computa-
tional overhead. To address this issue, researchers proposed
low-rank matrix completion, nuclear norm techniques, and
numerical algorithms, and implemented parallel computing
hardware to accelerate computation time [24]. Alternatively,
dictionary learning-based methods [2] exploit the sparsity of
the MRI input signal in a transformed domain. The learned
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dictionary transforms the signal into a sparse representation,
while the undersampled measurements are used to constrain
the reconstruction process.

Deep learning-based methods for MRI reconstruction have
advantages over traditional algorithms, as they can leverage
the inherent characteristics of images contained in a large
amount of training data, rather than relying primarily prior
information. One popular method is the physics-guided deep
learning reconstruction approach, which incorporates the
physics of the data acquisition system into the neural network
using an unrolling algorithm [8]. This method has gained
interest due to its robustness and improved reconstruction
quality. The use of data-consistency [8] is a popular method
in MRI that employs a dual block structure. This consists of a
mapping block that utilizes Convolutional Neural Networks
(CNN) and a data consistency block to ensure that the
reconstructed image is consistent with the measured data
during testing, with the CNNs taking care of de-aliasing.
Alternatively, in [7] developed a different approach by
training a feed-forward mapping and using its output as
a regularization term during testing, in conjunction with
the data consistency block. The goal of this technique was
to minimize any significant deviations between the final
reconstruction and the mapping output. Other successful
supervised deep learning approaches for MRI reconstruction
include recurrent CNNs [25], [26], residual CNNs [21],
variational networks, and generative adversarial networks
(GANs) [26], [27], [29], [33]. While supervised models
have improved reconstruction quality and are state-of-the-art,
acquiring large datasets can be challenging.

Unsupervised MRI reconstruction has been gaining
attention as a promising approach to reconstruct high-quality
MRI images without relying on large amounts of labeled
data. Recent advancements have proposed various techniques
to reduce the need for supervision. Some studies [30], [31]
have focused on minimizing the requirement for explicit
supervision in raw data by using models trained on
unpaired input and output datasets or from undersampled
measurements. On the other hand, these models still rely on
implicit supervision that pertains to the imaging operator,
and are exclusively trained for a specific k-space sampling
density. This uniformity is assumed to be consistent between
both the training and testing datasets. To further eliminate
other forms of supervision, a different set of studies have
developed unsupervised models that separate the MRI prior
from the imaging operator using generative adversarial
networks. The deep learning community is fascinated by
the ability to generate a target data distribution from a
random one using generative adversarial networks (GANs).
In f-GANs [32], it is demonstrated that a general class
of f-GANs can be derived by minimizing the statistical
distance in terms of f-divergence. Earlier GANs can be
considered a special case of [32] when the Jensen-Shannon
divergence is used as the statistical distance measurement.
Wasserstein GANs (W-GANs) [33], on the other hand, use
the Wasserstein-1 metric to measure the statistical distance.

Drawing inspiration from these observations, a cycle-
consistent GAN (cycleGAN) [28] that imposes one-to-one
correspondence to address mode-collapsing behavior was
found to be similarly obtained when the statistical distances
in both the measurement and image spaces can be simultane-
ously minimized. In [1], the author utilizes the Wasserstein-1
metric for an unsupervisedMRI application that only requires
the undersampled k-space data from the receiver coils and
optimizes a network for image reconstruction.

III. METHOD
This section will cover the reconstruction of magnetic
resonance imaging using under-sampled k-space data. Subse-
quently, we will introduce a novel loss function that captures
important features from images that have been under-sampled
with varying reduction factors. In the field of MRI, where
there is limited training data for data-hungry deep learning
frameworks, oversampling is often utilized as a method to
address this issue.

A. DEEP IMAGE PRIOR
The data acquisition process in accelerated Magnetic
Resonance Imaging (MRI) can be represented as:

y = φ(x) (1)

where y is the vectorized undersampled k-space measurement
and y ∈ R1×M . The forward operator, φ, represents
partial Fourier operation and includes coil sensitivities and
vectorization. x ∈ R1×N represents the unobserved desired
image. The problem of reconstructing the ideal image from
a limited number of measurements, i.e., M ≪ N , results
in an ill-posed system. To overcome this ill-posedness and
reconstruct x from y, the classical reconstruction frameworks
formulate it as a constrained optimization problem [1], [14]:

x∗
= argminx ||y− φ(x)||2 + λR(x), (2)

where ||y − φ(x)||2 ensures data consistency with measured
data and R(·) is a regularization term which enforces
image priors. λ is a constant term used to balance the data
consistency and the regularization term. The optimization
problem, expressed in Equation 2, involves minimizing the
difference between the measured data and the reconstructed
image, subject to a regularization term that enforces image
priors. The classical model-based approach uses common
image priors such as dictionary [2], total variation (TV) [3],
2D wavelet [4], low-rank [5], sparse [6] to enforce the data
regularization. In contrast, the supervised deep learning (DL)
framework uses a convolutional neural network (CNN) to
learn the image priors. The DL framework minimizes a loss
function, such as l1 norm or mean squared error, between
the estimated fully sampled image, produced by the forward
network, and the actual fully sampled image. Equation 3
represents this supervised deep learning model approach,
where the goal is to minimize the difference between the
measured data, the reconstructed image, and the estimated
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FIGURE 1. Overview of the pipeline of our approach. Our approach involves creating an input image using inverse FFT on undersampled k-space data,
feeding it into two identical networks (with a stop gradient for the bottom network), and minimizing the similarity between their outputs using L2
loss. The image fed into the above network is undersampled by factors of 2 and 4, while the image fed into the target network is undersampled by
factors of 6 and 9.

FIGURE 2. To train undersampled MR images retrospectively using MRI,
the conventional approach (a) is to undersample the ground truth
k-space with various reduction factors, such as reduction factors 2 and 4,
and then minimize the l1 loss between each of the undersampled images
and the fully sampled image. (b) Our method involves computing a
similarity loss between the input data to mitigate any biases.

fully sampled image.

argminx,θ ||y− φ(x)||2 + λ||x − fθ (xu|θ )||22 (3)

where fθ is the forward network parameterised by θ , which
takes an undersampled image and produces an estimation x̂
of fully sampled desired image x, such that x̂ = fθ (xu|θ ).
The first term in equation 3 enforces the data consistency
and acquisition system priors such as coil sensitivities and
acquisition model [9].

B. LEARNING PROCEDURE
The focus of our work is on tackling the issue of limited
dataset size leading to inaccurate reconstruction values

FIGURE 3. Unrolled network from Fig.1. The network consists of an
update block, which uses the MRI model to enforce data consistency with
the physically measured k-space samples. Then, a residual structure block
is used to denoise the input image to produce the output image. Except
the last layer, the convolutional is followed by a Rectified Linear Unit.

during generalization, particularly in the context of MRI
reconstruction. Conventionally, in order to train a model,
a custom approach is employed which involves using
undersampled data derived from fully sampled data with
varying reduction factors. While this approach aids the model
in capturing diverse input formations, it suffers from a strong
bias towards undersampled data. To overcome this challenge,
we leverage the many-to-one relationship between aliased
images and a ground truth through our method.

Figure 1 demonstrates the proposed framework consisting
of two networks that receive k-space input, which is
under-sampled with varying reduction factors. The top
network’s weights are updated in each iteration based on
the total loss, whereas the bottom network’s weights are
updated using a slow-moving average of the top network.
This technique, first introduced in the unsupervised approach
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FIGURE 4. Representative reconstruction spatial results and error map comparison for reduction factor 4 and 6. For each reduction
factor, the top row shows the reconstruction output from contemporary methods and the proposed approach. The bottom row shows
the reconstruction errors amplified by 5x.

described in the [18], enables the network to learn more dis-
criminative features through slow-moving average updating
than with traditional methods. In addition the method [18] is
proposed for classification purpose unlike our method. In our
framework, the bottom network shares the same architecture
as the top network, but employs a distinct set of weights γ and
is responsible for providing regression targets to train the top
network. The parameter γ is computed using an exponential
moving average of the top network parameters θ . After each
training step, the following update is performed with a target
decay rate α ∈ [0, 1] to keep the target network’s weights
updated.

γ = αγ + (1 − α)θ (4)

For the top and bottom network we fed a k-space data from
the same source. However, the inputs for the top network are
undersampledwith reduction factors of 2 and 4, and the inputs

for bottom network are undersampled with reduction factors
of 6 and 9. The loss obtained by the online network is shown
as below:

L2′ = 2 − 2 <
p

||p||2
,

z
||z||2

> (5)

where p and z are the normalized output vectors from top
and bottom networks. To maintain symmetry, the inputs are
randomly picked to be fed to both top and bottom networks.
The loss obtained in this scenario is the sum of both losses,
L2 = L2′ (pθ , zγ ) + L2′ (p′

θ , z
′
γ ).

The proposed approach utilizes the projected representa-
tion of the lower network as the target for its predictions,
which is obtained by taking an exponential moving average
of the weights of the upper network. This results in the
weights of the lower network representing a delayed and
more consistent version of the weights of the upper network.
The frequency at which the lower network is updated is
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FIGURE 5. PSNR/NRMSE value of the model trained on reduction factor 2 and 4 test on reduction factor 2(top figure), and reduction factor
4(bottom figure). The models are trained on various sizes of the training dataset and then tested on the same dataset for comparison
purposes.

determined by the decay rate (α), which ranges between
0 and 1. If the α is set to 1, the lower network is never
updated, and its value remains constant from its initialization.
If the α is set to 0, the lower network is updated instantly
at each step to match the upper network. It is crucial to
strike a balance between updating the lower network too
frequently and updating it too slowly. If the lower network
is updated instantaneously (α = 0), the training becomes
unstable, leading to poor performance. Conversely, if the
lower network is never updated (α = 1), the training remains
stable but precludes iterative improvement.

To leverage the benefits of both supervised and the
proposed self-supervised loss, we added l1 loss (L1) on the
upper network. During training the upper parameter θ is
updated based on the combination of the proposed loss and
l1 loss. This combination of a supervised unrolled model and
self-supervised approach resolves the issue of small sample
size frequently encountered in self-supervised algorithms.

L = L1 + L2 (6)

IV. EXPERIMENTS AND RESULTS
In this section, we present the results of our proposed
framework on the Knee dataset. We demonstrate how our
method performs as the size of the data increases.

A. DATASETS
We utilized fully-sampled 3T knee images from [23]. Each
subject’s data is a 320 × 320x256 complex-valued volume

of knee images, split into 320 × 256 axial slices. The data
is collected by performing MRI exams on 22 consecutive
subjects (11 males and 11 females) using a 3T whole
body scanner [23]. A fully sampled sagittal 3D FSE CUBE
sequence with proton density weighting is acquired with fat
saturation and saved the raw k-space data. Each subject’s
knee is positioned in an 8-channel HD knee coil and placed it
vertically straight anterior to posterior within+/− 10 degrees
to isocenter.

We generated undersampled k-space data as input using
Poisson-disc masks from BART [16]. Coil sensitivity maps
were created using the SENSE [9] method.

B. IMPLEMENTATION DETAILS
First, we trained our proposed method on a set of knee
scans, and compare the reconstruction performance with zero
reconstruction and supervised methods. For each knee scan,
we utilized a 20 × 20 fully sampled calibration region in the
center of k-space. To determine image quality, we evaluated
the peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM), and average normalized root-mean-square
error (NRMSE), between the reconstructed image and the
fully sampled ground truth on test datasets. The Resnet block
of our unrolled deep learning framework has 128 feature
maps, 4 residual blocks, and 4 iterations, as depicted in
Figure 3.
Subsequently, we evaluated the reconstruction perfor-

mance of our approach on the knee scans set as a function
of the acceleration factor of the training datasets. Figure 4
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FIGURE 6. PSNR/NRMSE value of the model trained on reduction factor 2, 4, 6, 9 test on reduction factor 2(top figure), and reduction
factor 9(bottom figure).

FIGURE 7. Comparison of the proposed method with contemporary supervised approach.

shows the qualitative results of our method and the supervised
approach. From Figure 5,6 and 7, we can conclude that
our proposed method outperforms the existing l1 supervised
methods.

All networks were trained with Adam optimization with
a learning rate of 0.001 and batch size of 8. Our work is
implemented in Pytorch, the experiments are conducted using
NVIDIA GeForce RTX 3090 with 24GB RAM.

C. RESULT
Our experiment revealed that the effectiveness of models
depends on the input training set. Specifically, a model that
is trained using k-space data undersampled with a reduction
factor of 2 performs well when tested with input data

undersampled at the same reduction factor, but performs
poorly when tested with input data undersampled at a higher
reduction factor, such as 4. Conversely, a model trained on
k-space input undersampled with reduction factor 4 produces
better results when tested on data undersampled with the
same reduction factor. These experiments suggest that models
trained without considering higher reduction factors in the
input data produce inferior results.

Our proposed model overcomes the above challenge
through the use of two networks and a self-supervised loss
function to train on inputs with varying reduction factors.
This approach enables us to exploit the variability and
similarity of the data during training, resulting in superior
outcomes compared to traditional deep learning approaches.
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Figure 4 displays representative images depicting the
ground truth, undersampled images, and the reconstruction
outcomes obtained using both the L1 supervised method
and our proposed approach. The reconstruction error map,
amplified by five times for visualization clarity illustrates that
our proposed method shows lower errors compared to the L1
supervised method.

V. DISCUSSION
In this paper, we have showed that the proposed method is
capable of generating high quality images from undersam-
pled data the presence of limited fully sampled data. Com-
paring to CS reconstruction and unsupervised methods [1]
our method shows superior results on the given dataset.
Among the supervised method we have tested in this work,
our method performs better than the supervised GAN [33]
for the dataset with reduction factor 2-9. From Fig.5 and Fig.6
the performance metric results is not linear with data size,
the results saturated at the data size of 4000.

VI. CONCLUSION
The objective of this research is to examine the advantages
and limitations of current oversampling methods in a sys-
tematic manner, and introduce a new oversampling method
and DL framework that effectively utilizes the oversampling
technique in the learning process while simultaneously
increasing the size of the training dataset. To achieve this,
we propose a one-to-many mapping function for training
data oversampling and introduce a novel loss function that
is based on a similarity metric and can be integrated into a
DL framework. The proposed method not only addresses the
scarcity of training data in MR image reconstruction, thereby
improving the reconstruction process, but also enhances the
model’s robustness to different under-sampling techniques.
This is a pioneering effort in the field, and the experiments
conducted on the Knee dataset demonstrate our method’s
superior performance when compared to existing methods.
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