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ABSTRACT Artificial Intelligence, including machine learning and deep convolutional neural networks
(DCNNs), relies on complex algorithms and neural networks to process and analyze data. DCNNs for visual
recognition often require access to high-performance hardware, such as GPUs and cloud-based computing
resources, to perform tasks efficiently. Visual recognition requires DCNNs with numerous layers. Fully
connected layers in DCNNs are often the most computationally intensive. These layers connect every neuron
in one layer to every neuron in the next layer, resulting in a large number of parameters to compute.
To mitigate redundancy and make DCNNs more efficient, this article implements and demonstrates the
concept to identifying and removing redundant or low-impact connections from fully connected layers using
convolution neural network with hierarchical modular organization. The modularity of the DCNNs is built
based on the cluster hierarchy of the similar image. These clusters are created based on a novel similarity
metric, which measures how closely related images are to each other. The architecture uses multiple smaller
DCNNs, referred to as modules, designed to progressively classify images into super clusters according to
their similarity. Experimental results using popular image datasets show that the proposed DCNNs model to
optimized number of operations by 49% to 99% and keeps its performance comparable.

INDEX TERMS Visual recognition, mean softmax likelihood similarity, sigmoidal membership function,
hierarchical modular deep convolution neural network.

I. INTRODUCTION
Artificial Intelligence (AI) tasks such as natural language
processing, visual recognition, and autonomous decision-
making require substantial computational power beside its
superior performance. The need for AI, especially Deep
Convolution Neural Networks (DCNNs), in image process-
ing is substantial and has rapidly grown in today’s era.
Convolutional Neural Networks (CNNs) have demonstrated
remarkable capabilities in visual recognition and under-
standing, making them indispensable in a wide range of
applications. DCNNs techniques have brought about an
advance impact in the field of artificial intelligence (AI) and
show remarkable success in visual recognition (computer
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vision) domains. In computer vision, DCNNs trained on
large-scale image datasets have achieved high accuracy [1].
However, the exceptional performance of DCNNs comes
with the considerable cost of computational complexity.

Most DCNNs, such as VGG architecture [2] and
ResNet [3] architecture, typically adopt monolithic struc-
tures. In this type of architecture, as illustrated in Fig. 1
(a), a single DCNN is responsible to recognize and process
features related to all classes, making decisions across various
tasks. This design requires a significant number of neurons
and layers in the DCNN. However, during the processing of
each image, only a portion of these neurons show significant
activation, resulting in fundamental redundancies. These
redundancies contribute significantly to the DCNN’s effi-
ciency. In Fig. 1 (b), by reducing the irregular and entangled
path of the DCNNs, we try to reduce the computational
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FIGURE 1. Types of DCNN architectures where (a) DCNNs are usually
over-parameterized; and (b) HMDCNN-Trees architecture removes the
irregular and entangled in DCNNs to reduce the model size and
computational cost.

cost without losing its performance significantly. To address
this issue and enhance visual recognition, we propose the
Hierarchical Modular Deep Convolution Neural Network
Tree (HMDCNN-Tree) architecture.

The HMDCNN-Tree architecture aims to address these
challenges by reducing redundant operations inherent in
monolithic DCNNs. Traditional evolutionary algorithms used
in DCNNs often result in irregular and entangled structures.
HMDCNNs offer an energy-accuracy trade-off by processing
inputs along a single path from the root to a leaf, thus aiming
to reduce the model size and computation cost compared to
traditional DCNNs. The HMDCNN-Tree constructs several
small DCNNs (referred to as modules) designed to classify
between clusters of similar classes, known as ‘‘super-
clusters’’.

Initially, the root module processes the image. The parent
module’s fully connected (FC) layer classifies among its
children, as denoted by the dotted lines in Fig. 2. The solid
lines illustrate how the output of the convolutional layer in a
parent module is utilized as input to its corresponding child
module. The child module avoids duplicating operations per-
formed by the parent, minimizing redundancies. Through the
reuse of feature maps, the HMDCNN-Tree operates similarly
to a DCNN with numerous layers distributed across small
modules. This approach is effective in reducing redundant
operations and maintaining a low error classification rate.
The procedure is iterated from the root to the child module,
resulting in leaf modules (output) that may be positioned
at different distances from the root. The tree may not be
balanced; for instance, in Fig. 2, the leaf (output) distance of
super-cluster 1 from the root is longer than the super-cluster
2.

There are a few challenges when using the HMDCNN-
Tree. The first task involves finding the visual similarity that
may exist between the classes. To detect visual similarities
and quantify confusion between classes, we utilize Mean
Softmax Likelihood, which uses the output of a DCNN.
The second challenge is to devise a systematic method for
selecting hyperparameters for each DCNN module and then
constructing the tree based on visual similarity to achieve a

balance between low error and efficient inference speed. The
third challenge is that every module in the HMDCNN-Tree
requires training sequentially, with the parent being trained
first. The parent’s feature maps can be used as inputs for
the child, resulting in fewer redundancies. After training, the
HMDCNN-Treemodulesmust be used for hierarchical image
classification, which is the fourth challenge.

The proposed architecture begins by identifying visual
similarities among varied classes over a novel similarity
metric. In our work, we apply the Mean Softmax Likelihood
(MSL) techniques to find the visual similarity between
classes within a dataset [1]. Images within the same class
of similarity are grouped into ‘‘super-clusters,’’ and these
super-clusters are further organized into larger super-clusters,
forming a hierarchical tree structure. The HMDCNN-Tree
architecture operates multiple smaller DCNNs, which we
called as ‘‘modules’’, in order to classify various of each
super-clusters. A super-cluster is chosen by a module upon
receiving an image, and another module then conducts
classification within the subclasses of that selected super-
cluster. Moreover, the modules associated with other super-
clusters remain inactive during the inference process for that
particular image. This selective activation ensures that only
a subset of modules is utilized during inference, effectively
avoiding redundant operations.

We present and validate using a metric image similarity
in this article, Mean Softmax Likelihood (MSL), which is
utilized to identify and group similar classes. TheMSLmetric
facilitates the creation of super-clusters of varying sizes
within an HMDCNN-Tree. This similarity metric involves
computing the mean output (softmax) of a DCNN for
a specific class X , based on input images belonging to
another class Y . The softmax output of the DCNN presents
to quantify the confusion between classes, with a high
softmax output for class X (when inputs are from class Y )
indicating frequent confusion between the visually similar
classes. Additionally, our experiments aim to determine
the performance differences of MSL compared to other
monolithic architectures in terms of accuracy across popular
image datasets.

This article provides the following contributions:
• Introducing the HMDCNN-tree, a hierarchical tree
structure composed of interconnected nodes, where
nodes with children are termed super-clusters. Each
node, except leaf nodes, contains a module trained to
classify inputs into its children, preventing unnecessary
activations and enhancing visual recognition efficiency.

• Utilizing the concept of fuzzy sets and sigmoid mem-
bership function (sgmf), the creation of modules in the
HMDCNN-tree is based on visual similarities between
new and old classes, allowing for dynamic adaptation
without relying on fixed optimal thresholds.

• The trade-off between accuracy and DCNN architecture
size is addressed by using themetric change in efficiency
gain (1EG) and fixed optimal threshold values, enabling
the selection of optimal configurations for each module
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FIGURE 2. The HMDCNN-Tree architecture.

and significantly reducing DCNN size without losing its
performance across popular image datasets.

II. BACKGROUND AND RELATED WORK
A. TRADITIONAL DCNN ON VISUAL RECOGNITION
Visual recognition is integral to various image processing
tasks across applications such as image enhancement [28],
hyperspectral image classification [29], [30], image segmen-
tation [31], and object detection [32]. Traditionally, visual
recognition relied on two-stage methods: feature extraction
followed by classification using handcrafted features and
classifiers. Thesemethods, though effective for specific tasks,
struggled with generalization and robustness due to their
inability to capture complex semantic information.

The introduction of deep learning, particularly Deep
Convolutional Neural Networks (DCNNs) [1], revolutionized
visual recognition by integrating feature extraction and
classification into end-to-end trainable models. DCNNs,
comprising layers like convolutional (Conv) and fully

TABLE 1. Cifar-10 test accuracy by machine learning and DCNNs
techniques.

connected (FC), excel in learning hierarchical features [10].
These networks produce activation maps that highlight
image features crucial for recognition tasks. However, their
computational demands limit deployment on edge devices.
Table 1 contrasts the computational efficiency of DCNNs
with traditional machine learning (ML) techniques like
Decision Trees [13], Naive Bayes’ classifiers [12], and
clustering algorithms [12] on the CIFAR-10 dataset [11].
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DCNNs like ResNet and CondenseNet [3] significantly
outperform traditional methods due to their ability to learn
complex representations.

AlexNet [4], which won the 2012 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC), marked a
pivotal moment in DCNNs’ success. Subsequent architec-
tures like VGG nets [2] and GoogleNet [5] introduced
deeper networks and innovative module structures (e.g.,
Inception) that improved performance and efficiency [6], [7],
[8]. However, deeper networks introduced challenges like
gradient vanishing, addressed by ResNet [3] through residual
learning. EfficientNet [9], with its scalable depth, width,
and resolution, further optimized model efficiency without
compromising accuracy.

B. MODULARITY IN CONVOLUTION NEURAL NETWORKS
In the realm of convolution neural networks, modularity
refers to the characteristic of a network that allows it to
be broken down into several subnetworks according to
connectivity patterns. It can be contended that the transition
toward functional modularity in the brain and biological
neural networks represents a significant advancement in
neuroscience, similar to the impact of the neuron doctrine.

Modularizing neural networks can be achieved through
various techniques that operate at different levels of abstrac-
tion. These techniques are applied to specific levels to intro-
ducemodularity into the network topology.M.Amer’s (2019)
provides a taxonomy of these techniques, categorized by
the abstraction level they utilize to achieve modularity. Each
technique is analyzed, detailing its fundamental rationale,
advantages, and disadvantages (as shown in Table 2), and
showcasing prominent use cases from the literature [15].
The primary levels at which these modularization techniques
operate are complementary. A modular neural network
(MNN) is created using a sequence of techniques known
as a modularization chain. It consists of various levels of
the neural network environment, each contributing to the
development of the modular neural network. Therefore, each
modularization chain is associated with a specific type of
MNN.

A modularization chain begins with the optional step of
partitioning the ‘‘domain’’ and it can be optional. After
that, choose a modular ‘‘topological’’ structure for the
model. Then, choose the ‘‘integration’’ and ‘‘formation’’
techniques for constructing the model and integrating its
various modules. For instance, when developing an MNN for
EMNIST dataset for classification, a typical modularization
chain would proceed as follows [15]:
1) ‘‘Domain’’: We may choose to augment the dataset

by applying a specific image processing function to
create a copy of each image, extracting particular
information. Subsequently, we consider both the original
and processed images as distinct subdomains.

2) ‘‘Topology’’: We may select for a multi-path topology,
where one path of the network takes the original image
as input, while the others take the processed ones.

TABLE 2. The advantages and disadvantages of techniques in MNN.

3) ‘‘Formation’’: We may apply an evolutionary algorithm
to construct the multi-path topology, with a constraint
requiring exactly two paths. Alternatively, manual
formation requires expertise in design and involves a
process of trial and error.

4) ‘‘Integration’’: We may integrate the outputs of each
path into the final system output, either through the
evolutionary process itself or through a post-formation
learning (or fine-tuning) algorithm.

We can conclude the modularization chain technique that
used in Hierarchical Modular Deep Convolution Neural
Networks (HMDCNN) Tree as: learned domain, multi path
topology and manual formation without using integration.
Hierarchical MNNs use multiple small DCNNs in the form
of a tree, as seen in Fig. 2. Each small DCNN specializes
in an intermediate classification between groups of similar
classes. In each level of the hierarchy, a small DCNN uses
the activation map of its parent and makes an intermediate
classification into progressively smaller groups, until a leaf
DCNN provides the final output.

95520 VOLUME 12, 2024



A. C. Sitepu, C.-M. Liu: Optimized Visual Recognition Through a DCNN

TABLE 3. Notation.

III. DESIGN CONCEPT
The construction of the HMDCNN-Tree requires selecting
the suitable size for each DCNNmodule and then calculating
the MSL for class clustering. The construction of the
HMDCNN-Tree begins with a top-down manner that starts
from the root. This section will explain the idea of creating
super-cluster based on the input similarity and also the design
concept of the HMDCNN-Tree.

A. IMAGE METRIC SIMILARITY: MEAN SOFTMAX
LIKELIHOOD (MSL)
A DCNN ends with the softmax layer. In a classification
problem, this layer assigns a probability to each class. The
softmax function, which stands σ , is calculated using the
element-wise method outlined in [17]:

σ (z⃗)i =
exp(zi)∑n
j=1 exp(zj)

(1)

Here, z⃗ is defined as an input vector z⃗ = (z1, z2, . . . , zn),
comprising raw outputs from a DCNN. Each input represents
the value of its corresponding class. As a result, the number of
elements n in z⃗ corresponds to the total number of classes at
the node. Consider the i-th entry in the softmax output vector
σ (z⃗) as the probability of the test input belonging to class i.
In Equation (1),

∑n
j=1 exp(zj) is the sum of the exponential of

all elements in the input vector.
Let’s consider an image labeled as class A. The term σ (z⃗)A

represents the softmax value indicating the probability of the
image belonging to class A. For comparison, the DCNN also
calculates σ (z⃗)B, representing the softmax value for the image
belonging to class B. If σ (z⃗)A > σ (z⃗)B, then the image is
correctly classified as A. However, there are instances when
the value of σ (z⃗)B is greater than σ (z⃗)A, leading to incorrect
classification.

Mean Softmax Likelihood (MSL) is a method used to
quantify the similarity between classes. From Equation (1),
MSL function is defined as:

L(A)B =

∑|A|
i=0 σ (A⃗)B
|A|

(2)

The equation (2) describes how the MSL is computed: the
vector A⃗ represents an input vector of raw outputs from

a DCNN, where A⃗ = (A0,A1, . . . ,A|A|), and it has been
misclassified as class B. |A| is the total number of input
images labeled as class A in the node. σ (A⃗)B represents all the
softmax values of instances from classA that aremisclassified
as class B.

Let’s consider a hypothetical example using samples from
the CIFAR-10 dataset. For example, σ (truck)automobile refers
to the softmax output for the class ‘‘truck’’ when the input
image is misclassified as the class ‘‘automobile’’. The MSL
output for class A is represented by Equation (2) when the
inputs are actually from class B. If the value of L(A)B is high,
it suggests that the classifier is uncertain or confused about
the distinction between the two classes, A and B.

However, creating clusters of visually similar classes is
not easily achieved with a fixed threshold. For instance,
establishing the value at 1

47 , which represents the softmax
value obtained from the trained DCNN, taking 47 classes
as the denominator, implies that a class with an MSL of
0.01 will not be selected, whereas a class with an MSL of
0.02 will always be included. Using the fuzzy sets technique,
it is possible to overcome the limitation of needing a fixed
threshold [18]. The sigmoidal membership function (sgmf)
assesses the degree of membership for each class, with the
output of the membership function indicating the likelihood
of a specific class’s presence in a super-cluster. With a as
the slope parameter and b as the center parameter, which
determines the point of maximum membership in the context
of fuzzy logic, the sgmf can be defined as:

µ(o) =
1

1+ exp (−a(o− b))
(3)

The symbol µ(o) denotes the membership function,
representing the degree to which an element o belongs to a
fuzzy set. The probability of clustering two categories into a
single super-cluster is obtained from the output of the symbol
µ. Consider M as the total number of image classes within a
node. For instance, in the EMNIST dataset, at the root M is
47.

p(A ∼ B) = µ(L(A)B)

=
1

1+ exp
(
−10M × (L(A)B − 1

M )
) (4)

This article adopts a = 10M and b = 1
M in Equation (3) to

standardize the function across datasets with varying sizes.
This technique is justified because it allows us to create
superclusters of visually similar classes without requiring an
optimal threshold. By extending equations (2) and (3), the
probability of clustering two classes A and B can be denoted
as p(A ∼ B).
Fig. 3 provides an example illustrating how the MSL

identifies similar classes without relying on a threshold. The
DCNN getting confused between the classes can be detected
by a high softmax output. When the input image is a truck
in Fig. 3, the MSL value for the automobile class is high,
indicating their similarity. The automobile class has a high
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FIGURE 3. Visual similarity measurement using MSL at the root module on CIFAR-10 dataset.

probability (0.99991) of being clustered with the truck class,
as given by Equation (4). Frog class, for instance, has a very
low (0.000015) chance of being clustered with truck class
based on their visual dissimilarity.

Algorithm 1 Building and Configuring HMDCNN-Tree
inputs: Image or output feature map from the parent module
output: Trained HMDCNN-Tree structure T
initialization:
T ← Untrained root DCNN ▷Set containing the
tree structure
algorithm:
C← set of all classes at the root
while (∃ a node in T containing an untrained DCNN)
1) lconv← 1 ▷ number of conv layers
2) do
• lconv′← lconv− 1
• Initialize a DCNN Dlconv
• Train Dlconv to classify all classes of C
• if lconv > 1 then calculate:

1EGlconv,lconv′ =
VAlconv−VAlconv′
MSlconv−MSlconv′

• lconv← lconv+ 1
while (lconv′ == 2||1EGlconv,lconv′ > τ )

3) DCNNconfig ← Dlconv′ ▷ Select previous
DCNN configuration for module

4) SOFTMAX ← Softmax output of DCNNconfig∀c ∈ C
▷ Softmax output matrix

5) CLUSTER ← φ ▷Track new children’s
clusters

6) for each c ∈ C ▷Use the MSL
• Find set H, such that H ⊂ C :
prob(c ∼ h) = µ(SOFTMAX[c,h]),∀h,c ∈ H

• Add untrained DCNN corresponding to H into T
• CLUSTER ← CLUSTER ∪ H ▷Add similar
classes to the children’s set

7) Train DCNNconfig to classify between elements of
CLUSTER

8) T ← T ∪ trained DCNNconfig
9) C← set of all classes at next node

return T

B. ALGORITHM SELECTING THE SIZE OF CONVOLUTION
NEURAL NETWORKS AND HYPER-PARAMETERS
Algorithm 1 has step (1) through (3) explain how to select
the size of the DCNN. It is essential to decide on the
configuration and the number of convolution layers for each
DCNN. Let lconv represent the number of convolution layers,
and define lconv′ = lconv − 1 as the number of previous
convolution layers in the DCNN models. In this article,
a metric called the ‘‘change in efficiency gain’’ (1EG) is
used. This metric measures the improvement in efficiency as
we move from one model size to another. Mathematically,
it is defined as 1EGlconv,lconv′ =

VAlconv−VAlconv′
MSlconv−MSlconv′

, where VA
denotes the validation accuracy achieved when classified the
image, andMS denotes the DCNN’s model size.
For each node of the HMDCNN-Tree, the validation

accuracy is computed before clustering the children into
a super-cluster. The accuracy obtained for classifying all
classes in the dataset is used to calculate the 1EG for
the root module of an HMDCNN-Tree. In the case of any
other module within the HMDCNN-Tree, 1EG is calculated
during classifying among all of its children classes, which is
a smaller number of classes. Hence, each module may have a
different DCNN size.

By using 1EG, we can identify efficient DCNN config-
urations that are capable of distinguishing classes with low
error. This method can achieve a small loss of accuracy when
compared to large monolithic DCNNs. The reason lies in the
fact that small DCNNs only need to classify among a few
clusters of visually similar classes rather than all classes in
the dataset.

Enhancing the depth of a DCNN is widely recognized
to be frequently more effective than increasing its width
in order to achieve improved accuracy [9]. The result is
that DCNNconfig starts with only one convolutional layer
(lconv) and incrementally adds one layer at a time. Until the
validation accuracy (VA) saturates, each DCNN configuration
is trained, and then (1EG) is calculated.

The choice of τ is a crucial hyperparameter in the
construction of the HMDCNN-Tree. Choosing a higher τ

leads to the creation of taller HMDCNN-Trees, featuring
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numerous small DCNNmodules, each with a limited number
of layers. However, these small modules may face challenges
effectively distinguishing between classes, leading to the
creation of a limited number of super-clusters under each
parent and the formation of tall HMDCNN-Trees.

On the contrary, opting for a smaller τ produces short and
wide hierarchies featuring large DCNNs, with each module
comprising numerous convolutional layers. In such hierar-
chies, the DCNNs exhibit similarities to monolithic DCNNs,
potentially harboring redundant components. Therefore,
selecting an appropriate value for τ becomes crucial to
mitigate these potential drawbacks.

C. DETECTING SUPER-CLUSTERS AND CONSTRUCTING A
HIERARCHY
In this section, we clarify the procedures outlined in steps
(4) through (7) of Algorithm 1, focusing on the identification
of super-clusters and the construction of the hierarchy. The
hierarchy begins with the creation of the root. Once the size
of the DCNNmodule is determined, theMSL is used to assess
the similarity among all classes of the dataset, establishing the
initial level of super-clusters (children of the root module).
This process recurs for every root child, which serves as
a super-cluster. Here, the module’s DCNN size is chosen,
MSL is used to identify class similarities and construct super-
clusters, and the module is subsequently trained to classify
among the newly formed children super-clusters.

The softmax output matrix for the trained DCNN is
acquired in step (4). Subsequently, in step (6), the MSL
serves as the similarity metric to cluster classes. If new
child super-clusters are formed, step (7) involves retraining
the module to classify between these newly created super-
clusters. An illustrative example of how the HMDCNN-
Tree is constructed can be found in Fig. 4. This process
iterates until all modules associated with super-clusters are
appropriately trained.

IV. EXPERIMENTAL RESULTS
In the experiments, we evaluate the results, effectiveness of
the proposed method and compare it with monolithic DCNN.

A. DATASET USED
In our experiments, we utilize several image datasets,
including CIFAR-10 [19], SVHN [20], and EMNIST [21].
These datasets contain centered and fixed-size images, each
containing only one object. As shown in Table 4, CIFAR
datasets consist of color images with 3 color channel and
dimensions of 32 pixels in height (H) and 32 × 3 pixels
in width (W), with CIFAR-10 containing images from
10 different classes. Respectively, the training set and test
set consist of 50,000 and 10,000 images. We adhere to the
standard practice of creating a validation set by utilizing
5,000 images from the training set. The SVHN dataset
includes 73,257 images, each having 3 color channels (C =
3), and a size of 32 pixels in width (W) by 32 pixels in height
(H) in the training set. Additionally, there are 531,131 images

TABLE 4. Dataset specifications for the experiments.

available for further training. When presenting the results
of the SVHN dataset, we adhere to the common approach
of using the entire training data without applying any data
augmentation. The SVHN dataset containing 6,000 images is
used to validate the training results. The EMNIST dataset is
an extension of the well-known MNIST dataset. Among the
six configurations of the EMNIST dataset, we specifically
utilize the EMNIST-Balanced configuration. This dataset
includes 131,600 images, each having 1 color channels (C =
1), and a size of 28× 28 pixels, distributed across 47 classes.

B. EXPERIMENTAL SETUP
After constructing and training the HMDCNN-Tree for each
dataset, the classification accuracy is assessed using the
respective test set. The utilization of the test set aims to
mitigate the impact of overfitting. The memory requirements
and number of operations, million multiply-accumulate
(MMac), are determined using the torchsummary and
thop PyTorch libraries, respectively. Training for all
modules of the HMDCNN-Tree is conducted using the
ADAM learning rule. A uniform batch size of 200 is
employed across all datasets with a total of 150 epochs. The
initial learning rate is set at 0.01 and is reduced by a factor of
10 at 50% and 75% of the total number of epochs.

As each module consist of a compact DCNN, the
number of parameter is significantly reduced compared to
large DCNNs, effectively mitigating the risk of overfitting.
Small DCNNs exhibit high accuracy without the need for
major hyperparameter tuning. In our workflow, we leverage
the computing power of either Google Colab or Kaggle
GPU runtime environments for the purpose of training
the HMDCNN-Tree and obtaining a well-trained model.
The utilization of these platforms allows us to harness
the advantages of their powerful Graphics Processing Unit
(GPU) resources, which significantly accelerates the training
process compared to conventional CPU-based computations.
Google Colab and Kaggle provide convenient and accessible
cloud-based environments that facilitate the training of
complex DCNN models by offering GPU support as part
of their runtime options. This strategic combination of
Colab and Kaggle resources ensures efficient model training,
enabling us to achieve optimal performance and accuracy in
our DCNN tasks. The source code of our works are available
in GitHub.1

1https://github.com/adeclintonsitepu/HMDCNN-Tree

VOLUME 12, 2024 95523



A. C. Sitepu, C.-M. Liu: Optimized Visual Recognition Through a DCNN

FIGURE 4. An example of constructing and training the HMDCNN-Tree on the CIFAR-10 dataset.

FIGURE 5. Selected images from the different datasets used in the
experiments.

C. DCNN CONFIGURATION AND ARCHITECTURE
ANALYSIS
The initial setup commences with a single convolutional layer
and incrementally raises the number of layers by one in each
iteration. Training continues for each DCNN configuration
until the validation accuracy (VA) reaches a saturation
point, following which 1EGlconv,lconv′ is calculated. The
hyperparameter τ = 0.1 is used for evaluating1EGlconv,lconv′
between two consecutive DCNNmodels. If 1EGlconv,lconv′ is
lower than this specified threshold (marked with an underline
in Table 5), the accuracy improvement for a deeper DCNN
is minimal. We fix the depth of the DCNN based on the
count of lconv′ layers. As an illustration, consider the CIFAR-
10 dataset in Table 5, where the module has a single layer,
resulting in a model size of 87.0 KB and an accuracy of
57%. When one more layer is added, the model size rises to
108.5 KB, and the VA reaches 62%. Consequently,1EG21 =

62−57
108.5−87.0 = 0.233. At current calculation, which five layers
are used (lconv = 5), so 1EG54 =

90−89.5
349.1−230.4 = 0.004.

As 1EG54 < τ = 0.1, the improvement in accuracy is
minimal compared to the growth in model size. Therefore,
a DCNN with four layers (lconv′ = 4) is applied at the
root module for the CIFAR-10 dataset. For every module in

TABLE 5. Calculation for DCNN configuration at the root for each dataset.

the HMDCNN-Tree, the DCNN configuration is determined,
leading to diverse DCNN sizes across modules.

D. THE CLUSTERS AND HMDCNN-TREE RESULT
The HMDCNN-Tree for CIFAR-10 starts with three super-
clusters as shown in Fig. 7. The DCNN configuration at
the root is trained to classify input images using Fig. 6
configuration. In super-cluster 1, the initial classes of CIFAR-
10 are clustered into Automobile and Truck, super-cluster
2, the initial classes of CIFAR-10 are clustered into Ship,
Airplane, and super-cluster 3, the initial classes of CIFAR-
10 are clustered into Bird, Dog, Cat, Frog, Deer and Horse.

The size of the DCNN is individually calculated for
every module in the HMDCNN-Tree, resulting in varied
sizes among modules. The DCNN architecture for each
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FIGURE 6. The configuration of the architecture within each module of the HMDCNN-Tree for the CIFAR-10 dataset.

FIGURE 7. The HMDCNN-Tree architecture achieved for the CIFAR-10
dataset.

module of the HMDCNN-Tree in the CIFAR-10 dataset is
showed in Fig 6. The 1EG metric with a threshold of τ =

0.1 is used to derive these architectures. The root module
receives input images sized 32 × 32 × 3, with 32 pixels
in height and width and three color channels (R, G, B).
The architecture here consists of four convolutional layers
and one max-pooling layer, which together form the feature

map. The decision between the children is determined at the
conclusion of the fully connected (FC) layer, offering six
possibilities: two super-clusters and four individual classes.
Based on the output of the root module, the child module
is determined, using the feature map of dimensions 16 ×
16 × 32. Due to the small size of each DCNN, many
hyperparameters, channel count, kernel size, weight decay,
batch normalization, and layer width, can remain consistent
without the need for extensive fine-tuning to achieve high
accuracy.

It should be noted that the child node receives input from
the output of the parent node, which is a feature map value.
This guarantees that the computations carried out by the
parent are not duplicated in the child. Moreover, through
the reuse of the feature map, the child module functions as
a specialized extension of the parent. Consequently, every
pathway in the HMDCNN-Tree operates as if it were an
independent DCNN equipped with multiple layers. This
clarifieswhy the lowermodules in theHMDCNN-Tree utilize
small DCNNs, even as they classify between classes with
visual similarities.

E. TRAINING
Training for each module in the HMDCNN-Tree follows the
traditional back-propagation algorithm, starting with the root
module. The training of child modules within the HMDCNN-
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FIGURE 8. The HMDCNN-Tree architecture achieved for the SVHN dataset.

FIGURE 9. Image classification with the HMDCNN-Tree.

Tree includes the utilization of feature maps derived from
correctly classified images by the parent module, ensuring
relevance to lower modules and their respective sub-trees.
Additionally, it guarantees that the training errors in a
higher-level module don’t impact the training of its lower-
level descendants. We explore two approaches to train the
HMDCNN-Tree. The method involves the calculation of
loss at the leaf nodes, followed by the application of back-
propagation through all nodes of the tree to minimize
this loss. In the work by Roy and Todorovic [22], back-
propagation is used individually in each module. We choose
this approach due to the independence of modules at a
given depth (sibling modules). By adopting this approach,
we can train modules simultaneously, leading to a reduction
in the overall training time. With fewer parameters, small
DCNNs are less possible to overfitting, allowing them to
attain high accuracy with minimal hyperparameter tuning.
The computational cost associated with training small
DCNNs is lower, given their considerably reduced number
of parameters. This guarantees that the HMDCNN-Tree is
constructed and trained quickly.

F. CLASSIFYING IMAGES USING THE HMDCNN-TREE
In the image classification procedure with the HMDCNN-
Tree, as illustrated in Figure 9, the root module is the first
to handle the image, making a selection from among its
children. The selected child module receives the feature map
from the root as input, and this procedure is iterated until
reaching a leaf in the HMDCNN-Tree. The leaves within
the HMDCNN-Tree represent the initial classes present in
the dataset. At each step, each module chooses only a single
child, resulting in substantial pruning of the HMDCNN-Tree,
and consequently, a significant reduction in the number of
operations.

TABLE 6. Investigating variations in test error and number of operations
across various datasets and techniques.

Let’s examine the results depicted in Fig. 8. The root
module performs classification among super cluster-1 and
super cluster-2. After making a classification, the output
feature map of the root, which includes partially processed
data, is then transmitted to one of the children. The activation
of the module, which classifies 3, 5, 6, and 8, occurs
when super cluster-2 is selected. The repetition of this
procedure occurs sequentially at all levels of the tree until
it reaches a leaf module. Optimized accuracy is achieved
in the HMDCNN-Tree because the input for the child
module comes from the output feature map of the parent
module.

The HMDCNN-Tree ensures that, at any given time,
only a singular module is loaded into memory. Once the
module has used its purpose, the memory is freed up for
use by its corresponding child module. This decreases the
overall memory utilization on the device while executing
the HMDCNN-Tree. Furthermore, because only some of the
modules is used during inference, the total memory loading
is considerably decreased compared to monolithic DCNN
architectures.

G. COMPARISONS WITH TRADITIONAL EVOLUTIONARY
DCNNs
In our evaluation, we examine how the HMDCNN-Tree
architecture compared to several monolithic DCNN archi-
tectures. In Table 6, a comparison between the HMDCNN-
Tree and existing monolithic DCNNs is presented, covering
various metrics. In terms of memory usage or computational
operations, the HMDCNN-Tree outperforms the other mod-
els. These improvements in performance are achieved with
minimal impact on the test error. The VGG [2] and ResNet [3]
DCNNs, are composed of 16 and 54 layers, respectively.
We also evaluate DenseNet [23], which integrates group con-
volutions to improve parameter efficiency, in our comparison.
We also compare HMDCNN with Wide ResNet-16,4 [26].
In the context of Wide ResNet, the notation Wide ResNet-
x, y is the architecture which has x number of layers with y.
Here, the growth rate serves as a hyperparameter determining
the size of each layer in the Wide ResNet. In the case of
the EMNIST dataset, we utilize Supervised SNN [27] for
comparative analysis. Additionally, we conduct comparisons
with EDEN [25].
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As shown in Table 6, the HMDCNN-Tree exhibits the
smallest number of operation. In comparison to VGG-16
on CIFAR-10, the HMDCNN-Tree requires a model that is
99.90% smaller (1 − 28

28910 = 0.9990). Likewise, when
HMDCNN-Tree is compared with DenseNet on SVHN,
a decrease of 49.15 in MMac (million multiply-accumulate
operations) is observed (1 − 30

59 = 0.4915). Lower MMac
can be considered more efficient. MMac is a measure of
computational efficiency, and a lower value indicates that
fewer multiply-accumulate operations are required, which
can lead to faster inference and reduced computational
cost. Reduced memory accesses, faster inference, and lower
energy consumption are associated with smaller MMac.

The HMDCNN-Tree demonstrates the lowest error, with
error rate at 7.8%, on the EMNIST dataset. Additionally,
its accuracy compares favorably with state-of-the-art results
for SVHN and CIFAR-10 datasets, despite employing fewer
MMac operations.

V. CONCLUSION
This article introduces a novel approach to improve the
processing throughput of DCNNs on low-resource platforms.
Unlike traditional evolutionary algorithms, our approach par-
titions hierarchical DCNNs into sets of layers with balanced
loads and decreased communication costs. We observed that
building the tree and running the training stage required more
effort because the code is split depending on the number
of clusters created from each cluster. Unlike monolithic
DCNNs, where the architecture undergoes training in a single
code program, training our architecture necessitates separate
code programs due to the different sizes of DCNN modules.
Our method offers the best trade-off between accuracy and
the complexity of the architecture when compared against
a monolithic DCNN. The structure of the HMDCNN-Tree
incorporates multiple small DCNNs, denoted as modules,
organized in a tree-like fashion, collaborating to classify an
image. In contrast to traditional monolithic DCNN archi-
tectures, the HMDCNN-Tree architecture strategically uses
modules, minimizing redundant computation and memory
access. This allows the HMDCNN-Tree to function with
markedly reduced memory demands and fewer operations,
with only minimal impact on classification accuracy.

However, our current experiments focused on datasets
with classes that have distinct visible features, making them
relatively easy to separate. This simplification was necessary
to establish the baseline effectiveness of our proposed
architecture. We acknowledge that in real-world applications,
classes often have similar features, which poses a more
significant challenge for classification algorithms. To address
the limitations identified in this research, we plan to extend
our research to include classes with similar features. This
involves implementing data augmentation to enhance the
dataset, ensuring a more balanced analysis and improving the
robustness of our model when dealing with visually similar
classes. Additionally, the HMDCNN-Tree architecture will
be adapted to handle the increased complexity associated

with similar-looking classes. This adaptation may involve
developing new modules or enhancing existing ones to
better capture subtle differences between classes. Another
strategy includes conducting extensive experiments focused
on evaluating the performance of the HMDCNN-Tree on
these more challenging datasets.
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