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ABSTRACT The control and state estimation of Unmanned Aerial Vehicles (UAVs) provide significant
challenges due to their complex and nonlinear dynamics, as well as uncertainties arising from factors
such as sensor noise, wind gusts, and parameter fluctuations. Neural network-based methods tackle these
problems by accurately approximating unknown nonlinearities through training on input-output data. This
paper proposes an adaptive Multi-layer Neural Network (MLNN) Luenberger observer-based control for
altitude and attitude tracking of a quadrotor UAV. The MLNN observer, employing a modified back-
propagation algorithm, is used for the quadrotor’s state estimation. The adaptive nature of the proposed
observer helps mitigate the effects of parameters such as wind gusts, measurement noise, and parameter
variations. Subsequently, a sliding mode controller is designed based on the observed states to track the
reference trajectories. Lyapunov stability is ensured by using the modified back-propagation weight update
rule for the proposed MLNN observer. Simulation results demonstrate superior tracking performance of
the proposed observer compared to the Sliding Mode Observer (SMO) and a Single Hidden Layer Neural
Network (SHLNN) observer, even in the presence of the aforementioned parameters.

INDEX TERMS Back-propagation algorithm, multiple hidden layers perceptron (MLP), neural network
(NN) observer, sliding mode controller (SMC), sliding mode observer, UAVs.

I. INTRODUCTION
In recent years, unmanned air vehicles (UAVs) have gained
popularity in various fields such as military, civil, industrial,
and agricultural applications. These include environmental
protection, reliable navigation, exploration of hostile areas
that are dangerous for humans to enter, and many other
domestic applications [1], [2]. Autonomous navigation has
beenmade possible due to recent technological advancements
in mini drones at a reasonable cost [3]. The control of UAVs
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is a more challenging task as they experience undesirable
forces such as external aerodynamic effects i.e., wind gusts
and sensor noise can lead to instability or crash of the
vehicles. Therefore, these problems are essential and should
be considered for safe navigation.

Accurate information on all plant model states is necessary
for improved control and navigation. In control system
theory, controller design depends on state information derived
from the system’s output. While suitable sensors can be
used to acquire this information, their high cost, limited
availability, and accuracy difficulties make this impractical in
some circumstances. The alternative is to use state observers
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to estimate the system’s states. An effective state observer
minimizes errors between the actual and estimated states of
the system. Thus, there is a need for such observers that can
estimate the states of a UAV quadrotor in the presence of
wind gusts, sensor noise, and parameter variations. Several
conventional observers have been studied in recent years
for state estimation. In [4], a disturbance-based H-infinity
controller is proposed for a vertical takeoff and landing UAV,
and its performance is tested under different disturbance
effects. A fuzzy state observer has been proposed for
a multiple-input-multiple-output system (MIMO) [5]. The
main objective is to design an observer-based fuzzy feedback
controller for a MIMO helicopter model with unknown input
delays and control gain. A similar study [6] suggests a fuzzy
observer feedback control of a MIMO system. However,
designing, and tuning fuzzy sets and rules can be time-
consuming, given that fuzzy observers heavily rely on data
and expert knowledge to define these sets and rules. Optimal
Kalman filters [7], Extended Kalman filter (EKF) [8], and
Unscented Kalman filters (UKF) [9] have been used in the
literature for state estimation purposes in UAVs. However,
as they rely on the system’s dynamics, the nonlinearities in
the system’s dynamics affect their estimation performance,
leading to stability and convergence issues. Sliding mode
observer has been applied in state estimation due to its
robustness and disturbance rejection properties [10], [11],
[12], [13]. SMO for fault estimation has been discussed
in [14] and [15]. Although, sliding mode-based observers
are robust to external disturbances, they are sensitive to
sensor noise and parameter variations. Adaptive high-gain
observers are presented in [16] and [17]; however, they also
have drawbacks. First, they require complete knowledge
of the system’s dynamics, and second, they are highly
sensitive to noise. Another high-gain observer for robots
with elastic joints is discussed in [18], but it requires the
system model information, which is not always available.
Conventional observers face limitations in learning complex
nonlinear functions and uncertainties. They require a perfect
model of the system, which is not always available, and
cannot completely reject the effects of measurement noise
and parameter variations. To address such issues, neural
network-based techniques have been recently integrated with
conventional observers.

The neural network-based observer schemes have been
used in various applications because of their capability to
learn the highly nonlinear dynamics of plant models, which
are difficult to learn by conventional state estimators. Specif-
ically, they have gained importance in UAV applications [19],
[20], which require highly reliable control and state esti-
mation schemes. They can handle unknown uncertainties
in nonlinear systems. Robust control techniques based on
fuzzy logic and neural networks have been developed for
uncertain systems [6], [21]. In [22] an adaptive neural
network observer-based fuzzy model predictive controller is
proposed for a hypersonic vehicle (HV). The paper proposes

a neural network disturbance observer-based fuzzy controller
for an HV, which considers uncertainties in aerodynamic
coefficients and external disturbances. However, the observer
scheme does not consider or estimate the effects of noise and
parameter variations, which are significant aspects studied
in this paper. Secondly, the drawback of fuzzy rules is
the complex process of designing and tuning them for
optimal performance. In [23], a Radial Basic Function Neural
Network (RBFNN) based disturbance observer technique
is proposed to estimate unknown disturbances and model
uncertainties for the tracking control of multiple UAVs.
In [24], an RBFNN-based disturbance observer is proposed
for the attitude and altitude control of a UAV in the presence
of disturbances and model uncertainties. In both studies,
the efficiency of the disturbance observers was tested under
model uncertainty and various levels of environmental distur-
bances. Although disturbance observers are well-known for
estimating disturbances, they are not typically used for noise
estimation [25] as their designs and operational principles
are not suited for the high frequency and random nature of
noise. For enhancing the Kalman filter attitude estimation
capability, a neuro-fuzzy network was proposed in [26].
In [27], a sensor fault detection scheme is proposed using an
adaptive neural network-based observer in which the weights
are updated using an extended Kalman filter for a quadrotor
UAV in the presence of noise and disturbances. In a similar
work [28], an extended Kalman filter updates the weighting
parameters of a neural network-based observer for a nonlinear
aircraft model. However, using Kalman filter weight updates
in neural networks can have certain drawbacks as compared
to traditional Artificial Neural Network (ANN) weight
updates. Kalman filters can be sensitive to outliers and
noisy data, impacting the accuracy of weight updates, unlike
ANNs, which are more robust. Secondly, Kalman filters
are computationally intensive and complex to implement,
making them harder to manage than ANN weight update
algorithms.

Several ANN schemes have been studied in recent litera-
ture due to their robustness and effectiveness in learning non-
linearities. A neural network-based sliding mode observer
for a quadcopter is proposed in [29] to overcome the
effects of bounded disturbances. A neural network-based
intelligent attitude estimation sensor has been suggested for
the GPS navigation model [30]. In [31], a single hidden
layer (SHL) neural network-based observer is proposed for
the state estimation of a quadrotor UAV which is insensitive
to measurement noise. The observer uses a single hidden
layer neural network with a sigmoid activation function
to estimate a non-linear function in the quadrotor system.
To compensate for the effects of model uncertainties and
disturbances, the authors in [32] proposed a guidance and
control technique based on a neural network observer for a
missile. In [33], a multi-layer neural network-based observer
estimates the states of an induction motor. The technique
estimates the unknown uncertainty term in the model of
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the induction motor but does not consider the effects of
sensor noise. In [34], a disturbance observer is integrated
with a multi-layer exponential sliding mode controller to
accommodate the effects of disturbances and parameter
uncertainties in a UAV. In the study [35], a deep learning-
based Kalman filter for state estimation is proposed for
multi-rotor which is validated in the presence of noise
only. In [36], a single-layer neural network-based observer
for a UAV using a back-propagation weight update law
is used to eliminate disturbances effects. In [37], a back-
propagation-based disturbance rejection scheme has been
proposed for the attitude control of a quadrotor. The study
considered only one varying parameter, i.e., mass variation
during their simulation results. In the mentioned works [29],
[30], [31], [32], [33], [34], [35], [36], [37], quadrotor
control and state estimation have been carried out without
simultaneously considering wind disturbances, noise, and
parameter variations, which poses significant challenges in
practical applications. Furthermore, the stability analysis in
the earlier mentioned works is confined to a single layer,
while we have extended it to a multi-layer back-propagation
algorithm.

To overcome the above mentioned limitations, this
study introduces a multi-layer neural network Luenberger
observer-based controller design for a quadrotor UAV. The
state information estimated by the MLNN observer is
given to SMC to track the reference altitude and attitude
trajectories. The adaptive weights help to eliminate the effects
of measurement noise, wind gusts, and parameter variations.
The adoption of the multi-layer scheme is motivated by the
fact that multi-layer architecture requires a lesser number of
trainable parameters (neurons) than the single-layer imple-
mentation for achieving similar performance and accuracy.
Secondly, if the number of hidden layers becomes large,
MLP significantly outperforms single-layer neural networks
on data sets of very large size. The Lyapunov stability proof
of the proposed MLNN observer is also provided which is
an extension of the Lyapunov proof for a single-layer NN
proposed in [33]. A comparison of the proposed observer
is made with a single hidden layer neural network observer
proposed in [36] and a sliding mode observer [14] for the
quadrotor’s state estimation.

To the best of the author’s knowledge, the main contribu-
tions of the proposed approach are as follows:

• Design of a multi-layer neural network-based Luen-
berger observer with adaptive weights and bias terms
using a modified back-propagation algorithm with
gradient scaling.

• Comparison of the performance of the proposed MLNN
Luenberger observer with the SlidingMode and SHLNN
observer in the presence of parameter variations, exter-
nal disturbance, and sensor noise.

• Unlike the previous works [29], [30], [31], [32], [33],
[34], [35], [36], [37], the Lyapunov stability analysis
is extended to a multi-layer modified back-propagation

algorithm with gradient scaling, which according to the
author’s best knowledge is not available in the literature.

The rest of this paper is organized into five sections.
Section II presents the nonlinear mathematical model of the
quadrotor UAV. The problem statement and the proposed
observer-based control technique’s formulation are discussed
in Section III, while Section IV features the simulation results
of the nonlinear observers. Finally, the concluding remarks
and future work are discussed in Section V.

II. NONLINEAR MATHEMATICAL MODEL OF
QUADROTOR
The quadrotor has six degrees of freedom with only
four propellers, making it an under-actuated system. The
assumptions considered for the quadrotor model presented in
the paper are as follows [3]:

• The quadrotor has a rigid and symmetric structure, Next
point plant’s center of gravity is at the origin of the
body’s fixed frame,

• The rotors are rigid,
• The drag force, and upward thrust are proportional to the
square of the speeds of the rotors.

• The inertial matrix used is diagonal.

The rotations about the x, y, and z-axis are roll(φ), pitch(θ ),
and yaw(ψ) respectively, while p, q, and r denote the angular
velocity in the body frame.�(i = 1, 2, 3, 4) represents the ith

rotor speed. A quadrotor UAV has twelve states, namely, x,
y, and z positions, and their rates ẋ, ẏ and ż from the earth’s
frame of reference respectively. The remaining six include the
roll, pitch, and yaw angles denoted by φ, θ andψ respectively
along with their angular velocities φ̇, θ̇ and ψ̇ . The nonlinear
dynamical equations of the quadrotor are as follows [3]:



ẍ = (cosφsinθcosψ + sinφsinψ)
U1

m

ÿ = (cosφsinθsinψ − sinφcosψ)
U1

m
z̈ = −g+ (cosφcosθ )

U1

m

φ̈ = θ̇ ψ̇

(
Iy − Iz
Ix

)
−
Ir
Ix
θ̇�+

U2

Ix

θ̈ = φ̇ψ̇

(
Iz − Ix
Iy

)
−
Ir
Iy
φ̇�+

U3

Iy

ψ̈ = φ̇θ̇

(
Ix − Iy
Iz

)
+
U4

Iz

(1)

where U1,U2,U3 and U4 are the control inputs defined later
in (36). The parameters of the quadrotor are given in Table 1,
taken from [3], and the layout is shown in Figure 1. The
quadrotor UAV has the following states:

[x ẋ y ẏ z żφ φ̇ θ θ̇ ψ ψ̇]

= [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12] (2)
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FIGURE 1. Structure of a quadrotor UAV.

TABLE 1. Parameters of the quadrotor.

The state-space form representation of the dynamical model
of UAV presented in (2) is as follows:

ẋ1 = ẋ = x2

ẋ2 = ẍ = (cosx7sinx9cosx11 + sinx7sinx11)
U1

m
ẋ3 = ẏ = x4

ẋ4 = ÿ = (cosx7sinx9sinx11 − sinx7cosx11)
U1

m
ẋ5 = ż = x6

ẋ6 = z̈ = −g+ (cosx7cosx9)
U1

m
ẋ7 = φ̇ = x8

ẋ8 = φ̈ = x10x11

(
Iy − Iz
Ix

)
−
Ir
Ix
x10�+

U2

Ix
ẋ9 = θ̇ = x10

ẋ10 = θ̈ = x8x12

(
Iz − Ix
Iy

)
−
Ir
Iy
x8�+

U3

Iy
ẋ11 = ψ̇ = x12

ẋ12 = ψ̈ = x8x10

(
Ix − Iy
Iz

)
+
U4

Iz

(3)

III. PROBLEM STATEMENT
The nonlinear dynamics of quadrotor system described in (1)
can be written into a general form:

ẋM (t) = AMxM (t) + g(xM , uM )

yM (t) = CMxM (t) (4)

where xM (t) ∈ Rm, uM (t) ∈ Rn, and yM (t) ∈ Rr are the
states, input, and output vectors respectively. while AM ,BM ,
and CM represent the system, input, and output matrices,
respectively, and g(xM , uM ) is an unknown function to be
estimated by the MLNN observer. We have considered a
MLNN architecture having L layers, where z0 is the input
layer, z1,...L−1 are hidden layers, and zL is the output layer.
According to [36], any non-linear function can be written as
a combination of activation and ideal weight functions in the
following manner:

g(xM , uM ) = zL + ϵ(x) (5)

where zL represents the output layer of a multi-layer neural
network which can be written in terms of sigmoid activation
function [38] as:

zL = σ (wLzL−1 + bL)

where wL , bL represents the weights and bias terms of the
L th layer of the MLNN architecture, and σ (.) denotes the
sigmoid activation function applied in the hidden layers. zL
can be further defined as:

zL = wLzL−1

where,

zL−1 = σ 0(wL−1, . . .w1, bL−1, . . . b1, z0), z0 = [xM , uM ]

(6)

In (6), wi and bi represent the weights and bias terms of the
ith layer. By using (6), the equation (5) can be expressed as:

g(xM , uM )=wLσ 0(wL−1, . . .w1, bL−1, . . . b1, z0)+bL+ϵ(x)

(7)

where z0 is the input layer and ϵ(x) denotes the approximation
error of the neural network, ensuring ∥ϵ(x))∥ ≤ ϵN , where ϵN
is a positive number.

We identified two main problems in this study. The first
is state estimation in the presence of measurement noise,
disturbances, and parameter variations. The second is control
based on the estimated states. The upcoming section focuses
on the observer design, followed by a description of the
sliding mode control design.
Remarks: In this work, we considered the following states

available at the output

[x y zφ θ ψ] = [x1 x3 x5 x7 x9 x11 ] (8)

In this section, we considered a general state-space form (4)
to formulate a MLNN-based Luenberger observer. The state
vector for quadrotor attitude dynamics is

[φ, θ, ψ, p, q, r]T = [ x7 x8 x9 x10 x11 x12 ] (9)
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A. PROPOSED MLNN OBSERVER DESIGN
The proposed observer design utilizing the multi-layer neural
network for the system (4) is as follows [36]:

˙̂xM (t) = AM x̂p(t) + ĝ(x̂M , uM ) + FM
(
yM (t) − ŷM (t)

)
ŷM (t) = CM x̂M (t)

ĝ(x̂M , uM ) = ŵLσ 0
(
ŵL−1, · · · ŵ1, b̂L−1, · · · , b̂1, ẑ0

)
+ b̂L

(10)

here x̂M (t), ŷM (t), and FM ∈ Rr×m represent the
estimated states, outputs, and observer gains respectively,
while ĝ(x̂M , uM ) is the unknown function estimated by the
multi-layer neural network observer. ŵi and b̂i refer to the
neural network’s weights and bias terms, respectively. The
estimation errors for the state and output are:

eM (t) = xM (t) − x̂M (t);

eyM (t) = yM (t) − ŷM (t) (11)

The system’s error dynamics, following the addition
and subtraction of

[
ŵLσ 0

(
ŵL−1, · · · ŵ1, b̂L−1, · · · , b̂1, ẑ0

)]
become:

˙eM (t) =GMeM (t)+
[
ewLσ

0
(
ŵL−1, · · · ŵ1, b̂L−1, · · · b̂1, ẑ0

)]
+ebL +ℵ(t)

eyM (t) = CMeM (t). (12)

here ewL = wL − ŵL , ebL = bL − b̂L ,GM = AM −

FMCM and ℵ(t) = wL
[
σ 0 (wL−1, · · ·w1, bL−1, · · · b1, z0) −

σ 0
(
ŵL−1, · · · ŵ1, b̂L−1, · · · b̂1, ẑ0

) ]
+ ϵ(x) is disturbance

within bounds ensuring ∥ℵ∥ ≤ ℵ̄ where ℵ̄ is a positive con-
stant. In this study, we utilize a modified back-propagation
algorithm [36] to optimize the weights of the MLNN, aiming
to minimize the cost function as follows:

JM =
1
2
eTyM eyM (13)

By applying the chain rule, the partial derivative of (13) for
i = 1, . . . ,L − 1, is obtained as

∂JM
∂ŵi

= diag(
∂JM
∂ ẑi

)T
∂ ẑi
∂ŵi

(14)

where ∂JM
∂ ẑi

=
∂JM
∂eyM

∂eyM
∂eM

∂eM
∂ ẑL

∂ ẑL
∂ ẑL−1

∂ ẑL−1
∂ ẑL−2

. . .
∂ ẑi+1
∂ ẑi

, ∂JM
∂eyM

=

eTyM ,
∂eyM
∂eM

= CM and ∂eM
∂ ẑL

= G−1
M BM . As eyM (t) = CMeM (t),

substituting the expression of ∂JM
∂eyM

,
∂eyM
∂eM

, ∂eM
∂ ẑL

in (14):

∂JM
∂ŵi

= diag
(
eTMC

T
MCMG

−1
M BM

∂ ẑL
∂ ẑL−1

∂ ẑL−1

∂ ẑL−2

∂ ẑi+1

∂ ẑi

)T
∂ ẑi
∂ŵi
(15)

where

∂ ẑL
∂ ẑL−1

= ŵL

∂ ẑi+1

∂ ẑi
= diag

(
σ ′

(
ŵi+1ẑi + b̂i+1

))
ŵi+1

∂ ẑi
∂ŵi

= σ ′

(
ŵiẑi−1 + b̂i

)
ẑTi−1

This study introduced amodified back-propagation algorithm
proposed in [33] and [36], using the following weight update
equations:

˙̂wi =
−βi∏L−1

j=i+1 ∥ŵj + ξM∥

∂JM
∂ŵi

− KM∥eM∥ŵi

˙̂wL = −ηL
∂JM
∂ŵL

− KM∥eM∥ŵL

˙̂bi =
−γi∥b̂L∥∏L

j=i+1 ∥ŵj + ξM∥

∂JM
∂ b̂i

− KM∥eM∥b̂i

˙̂bL = −γL
∂JM
∂ b̂L

− KM∥eM∥b̂L (16)

where βi···L , γi···L denote the learning rates and KM are
positive terms. Consiering TML = −βLCT

MCMG
−1
M BM ,

RML = −γLBTMG
−1
M CT

MCM . By inserting (15) in (16),
we obtain:

˙̂wi =
−βi∏L−1

j=i+1 ∥ŵj + ξM∥
diag(

∂JM
∂ ẑi

T
)ά(wizi−1 + bi)zTi−1

− KM∥eM∥ŵi

˙̂bi =
−γi∥b̂L∥∏L

j=i+1 ∥ŵj + ξM∥
diag(

∂JM
∂ ẑi

T
)ά(wL−1zL−2 + bL−1)

− KM∥eM∥b̂i (17)

Using ξM to avoid singularities, we derive the update law for
the output layer as:

˙̂wL = diag(eTMTL)
T zTL−1 − KM∥eM∥ŵL (18)

and σ́ (wizi−1 + bi) is the derivative of σ (wizi−1 + bi) in (17).
Stability Analysis: For showing asymptotic stability, the

‘‘direct theorem of Lyapunov’’ is very frequently used
in the control literature. Lyapunov stability proof of the
proposed MLNN-based Luenberger observer is an extension
of Lyapunov proof for a single layer NN proposed in [33]
and [36] with modification in update equations of modified
backpropagation with gradient scaling. The following Lya-
punov function is proposed for the multilayer case:

g =
1
2
eTMPMeM +

L∑
i=1

1
2
tr(eTwiewi ) + +

L∑
i=1

1
2
eTbiebi (19)

where PM = PTM > 0 which satisfies,

GTMPM + PMGM = −QM (20)

0tr denotes the trace operator.
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for some positive definite matrix QM such that g > 0 ∀xM ̸=

0 and ġ(0) = 0. The time-derivative of (19) is obtained as

ġ=
1
2

˙eMTPMeM+
1
2
eTMPėM+

L∑
i=1

1
2
tr(eTwi ėwi )+

L∑
i=1

1
2
eTbi ėbi

(21)

where eM is observer error already defined in (12), ėwi
denotes the derivative of weight error defined as

ėwi =
βi∏L−1

j=i+1 ∥ŵj + ξM∥
diag(

∂JP
∂ ẑi

T
)σ́ (wizi−1 + bi)zTi−1

− KM∥eM∥ŵi
ėwL = −diag(eTTML )

T zTL−1 − KM∥eM∥ŵL (22)

and ėbi is the derivative of bias error defined as

ėbi =
βi∥b̂L∥∏L

j=i+1 ∥ŵj + ξM∥
diag(

∂JM
∂ ẑi

T
)σ́ (wL−1zL−2+bL−1)

− KM∥eM∥b̂i
ėbL = −RML eM + KM∥eM∥ŵL (23)

where ėwL = ẇL − ˆ̇wL and ėbL = ḃL −
ˆ̇bL . Putting the terms

σ ′(t), ėwi , ėbi and (20) in (21) we get:

ġ=
1
2
eTMQMeM+eTMPM [ewLσ

0(wL−1,. . .w1, bL−1,. . . b1, z0)

+σ ′(t) + ebL ]+
L−2∑
i=1

tr[eTwi
βi∏L−1

j=i+1 ∥ŵj +ξM∥
diag(

∂JM
∂ ẑi

T
)

× σ́ (wizi−1+bi)zTi−1−KM∥eM∥ŵi]+tr[eTwL−1
diag(

∂JM
∂ ẑL−1

T
)

× σ́ (wL−1zL−2+bL−1)zTL−2−KM∥eM∥ŵL−1]+tr[−eMT
wL

× diag(eTMTL)
T zTL−1 + KM∥eM∥ŵL] +

L−2∑
i=1

eTbi

× [
γi∥b̂L∥∏L

j=i+1 ∥ŵj + ξM∥
diag(

∂JM
∂ ẑi

T
)σ́ (wL−1zL−2 + bL−1)

− KM∥eM∥b̂i] + eTbL [−RLeM + KM∥eM∥b̂L] (24)

By assuming that
∥∥σ ′

∥∥ ≤ σM0 , ∥bi∥ ≤
∥∥bMi

∥∥ and ∥wi∥ ≤ wMi

for all i = 1 · · · L− 1,the subsequent inequality is as follows:

ġ ≤ −
1
2
ηminQM∥eM∥

2
+ ∥eM∥∥PM∥(∥eMwL∥σ

0
M + σ ′)

+ ∥eM∥∥PM∥∥ebL∥ +

L−1∑
i=1

∥eM∥
∥∥ewi∥∥ 2KMi

∥∥ŵL∥∥
+ KM ∥eM∥

L−1∑
i=1

(
wMi

∥∥ewi∥∥−
∥∥ewi∥∥2)

+|eM∥∥TML∥∥ewL∥ + KM∥eM∥(wML∥ewL∥−∥ewL∥
2)

+

L−1∑
i=1

∥eM∥
∥∥ebi∥∥ 2HMi

∥∥∥b̂L∥∥∥

+ KM ∥eM∥

L−1∑
i=1

(
bMi

∥∥ebi∥∥−
∥∥ebi∥∥2)

+ ∥eM∥∥ebL∥ + KM∥eM∥(bML∥ebL∥ − ∥ebL∥
2) (25)

Let TMi = −βiBTMG
−T
M CT

MCM , RMi = −γiBTMG
−T
M CT

M

CM for i = 1 . . . L − 1, KM2i
=

KMwML+
∥∥TML ∥∥+∥PM∥σM0

2
(
KM−K2

Mi
(L−1)

)
and KM3i

=
2KMiwML+KMwMi

2(KM−1) . Considering the terms which
involve ewi and ewL in (25) and introducing 2KMi =

∥TMi∥
∏L−1

j=1 σMi . After addition and subtraction of the terms
K 2
M2i

∥eM∥ and K 2
M3i

∥eM∥, we get the following simplified
expression:

∥eM∥ (
1

L − 1
∥PM∥ σ ′

+

(
KM
L − 1

− K 2
Mi

)
KM2i

+ (KM − 1))K 2
M3i

−

(
KM
L − 1

− K 2
Mi

)(
KM2i −

∥∥ewL∥∥2)
− (KM − 1)

(
KM3i

−
∥∥ewi∥∥2)−

(
KMi

∥∥ewL∥∥−
∥∥ewi∥∥2))

(26)

(a) Suppose KM
L−1 > K 2

Mi
, KM > 1 H⇒ KM > (L − 1)K 2

Mi
and KM > 1 for i = 1 · · · L − 1.
Let HM2i =

KMbML+1+∥PM∥

2
(
KM−H2

Mi

(
L−1))

and HM3i =
2HMibML+KMbMi

2(K−1)

Considering the terms which involve ebi and ebL in (25),
and assuming 2HMi =

∥∥RMi

∥∥∏L−1
j=i σmj . After addition and

subtraction of the termsH2
M2i

∥eM∥ andH2
M3i

∥eM ||, we get the
following simplified expression:

∥eM∥ (−
∥∥ebL∥∥2 ( KM

L − 1
− H2

Mi

)
+
∥∥ebL∥∥ (KMbML

L − 1

+
1

L − 1
+

∥PM∥

L − 1
) +

∥∥ebi∥∥ (KMbMi + 2HMi

(
bML

))
− (HMi

∥∥ebL∥∥−
∥∥ebi∥∥2) −

∥∥ebi∥∥2 (KM − 1))

= ∥eM∥ (
KM
L − 1

− H2
Mi
)H2

M2i
+ (KM − 1)H2

M3i

−

(
KM
L − 1

− H2
Mi

) (
HM2i −

∥∥ebL∥∥)2 − (KM − 1)

×
(
HM3i −

∥∥ebi∥∥)2 −

(
HMi

∥∥ebL∥∥−

∥∥∥eMbi

∥∥∥)2 (27)

b) Suppose KM
L−1 > H2

Mi
andKM > 1 H⇒ KM > (L−1)H2

Mi
and KM > 1 for i = 1 · · · L − 1
Presuming (a) and (b) are fulfilled:

ġ ≤ −
1
2
ηminQM ∥eM∥

2
+ ∥eM∥ ∥PM∥ σ ′

+

L−1∑
i=1

(
KM
L − 1

− K 2
Mi

)
K 2
M2i

+

L−1∑
i=1

(KM − 1)K 2
M3i

+

L−1∑
i=1

(
KM
L − 1

− H2
Mi

)
H2
M2i

−

L−1∑
i=1

(KM − 1)H2
M3i

(28)
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FIGURE 2. Overall controller and MLNN observer design.

To show that ġ is negative definite

∥eM∥ >

2

(
∥PM∥σ ′

+
∑L−1

i=1

(
KM
L−1−K2

Mi

)
K2
M2i

+
∑L−1

i=1 (KM−1)

K2
M3i

+
∑L−1

i=1

(
KM
L−1−H2

M2i

)
−
∑L−1

i=1 (KM−1)H2
M3i

)
ηmin(QM )

(29)

The aforementioned condition must be satisfied for ∥eM∥ to
ensure that g is negative definite. These equations indicate
that the error converges, confirming the stability of the
observer.

B. SLIDING MODE CONTROLLER DESIGN
Sliding mode theory is recognized in the literature for its
robustness in controller designs specifically for matched
disturbances [40], [41], [42]. This study proposes an MLNN
observer-based SMC. Therefore, the states estimated by
the MLNN observer are provided to the SMC to track
the reference altitude and attitude trajectories as shown in
Figure 2. The quadrotor model is split into three parts, each
with its controller, namely:

1. Altitude (z position) controller, 2. X-Y translational
controller, and 3. Attitude (angle) controller.

The SMC calculates four control inputs for controlling,
roll, pitch, yaw, and overall thrust. The input to the altitude
controller is the desired altitude, while the output is which
controls the overall UAV thrust. Similarly, the inputs to the
X-Y controller are the desired x and y positions (xd , yd ), while
the outputs are the desired roll and pitch angles (φd , θd ).
These are fed as input into the attitude controller which is
responsible for providing the two control inputs i.e., U2 and
U3. The SMC design is described in Figure 3.

1) CONTROL LAW SYNTHESIS
The SMC design process consists of two steps, firstly,
an appropriate sliding surface design and then, a switching
control law design that slides the trajectories to that surface.
The chosen sliding surface is defined as [44]:

sk = ėk + kdzk ek + kpzk

∫ t

0
ek (30)

Here kdzk , kpzk > 0 are selected gains and ek are error values,
which are given as: {

ek = xkd − x̂k
ek+1 = ėk

(31)

where k = [1, 3, 5, 7, 9, 11]. xkd , x̂k are the k th desired
and estimated state respectively and described in detail in
subsequent analysis. The SMC switching function is:

sk =


−1 if sk > 0
0 if sk = 0
1 if sk < 0

(32)

and

sign(sk ) =


1 if sk > 0
0 if sk = 0
−1 if sk < 0

(33)

To eliminate the chattering effect associated with the SMC,
the sign(sk ) function is replaced with a saturation function
using a boundary layermethodwhich is given in the following
equation:

sat(sk ) =

 sign(sk ) if |sk | ≥ pk
sk
pk

if |sk | < pk
(34)

Here pk is the boundary layer around sk [39], [45] used to
reduce the chattering problem. In this paper, the modified
sliding surfaces with integral terms are as follows [44]:

s1 = sx1 = ė1 + kdz1 e1 + kpz1

∫ t

0
e1

s3 = sx3 = ė3 + kdz3 e1 + kpz3

∫ t

0
e3

s5 = sx5 = ė5 + kdz5 e1 + kpz5

∫ t

0
e5

s7 = sx7 = ė7 + kdz7 e1 + kpz7

∫ t

0
e7

s9 = sx9 = ė9 + kdz9 e1 + kpz9

∫ t

0
e9

s11 = sx11 = ė11 + kdz11 e1 + kpz11

∫ t

0
e11

(35)

The sliding mode control laws are as follows [39]:

U1 =
m

cosx̂7cosx̂9
(g+ ẍ5d + kdz5 ė5

+ kpz5 e5 + ksz5 sat(s5))

U2 =
Ix
l
(−x̂10x̂12

Iy − Iz
Ix

+
Ir
Ix
x̂10�+ ẍ7d + kdz7 ė7

+ ksz7 sat(s7) + kpz7 e7)

U3 =
Iy
l
(−x̂8x̂12

Iz − Ix
Iy

+
Ir
Iy
x̂8�+ ẍ9d + kdz9 ė9

+ ksz9 sat(s9) + kpz9 e9)

U4 =
Iz
l
(−x̂8x̂10

Ix − Iy
Iz

+ ẍ11d + kdz11 ė11

+ ksz11sat(s11) + kpz11 e11)

(36)
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Here ẋ5d , ẋ7d , ẋ9d , ẋ11d are the derivatives of the desired state
trajectories x5, x7, x9, x11, respectively.

IV. NONLINEAR SIMULATION RESULTS
A. TRAINING DATA
The training data used for MLNN observer is generated using
the nonlinear quadrotor UAV model, as discussed in the
previous section. There are a total of 10 inputs to the neural
network: four control inputs,U1,U2,U3 andU4, and six state
errors e1, e3, e5, e7, e9, e11, while the outputs are the esti-
mated states shown in Figure 2. The neural network is trained
using input-output data to estimate states that closely match
the actual ones. The neural network comprises four hidden
layers, each with 10, 15, 20, and 15 neurons, respectively, all
having a sigmoid activation function. The initial weights and
bias terms of the network are initialized with small random
numbers, and these weights are trained and updated using
the back-propagation algorithm. After the training phase, the
next step is to use the trained neural network model, along
with the weights and biases obtained during training, in run-
time simulations to estimate the states online and assess the
effectiveness of the neural network observer.

In this section, a comprehensive comparison of the
proposed MLNN-based Luenberger observer is performed
with the SHLNN [36] and SMO [14] under parameter
variations, wind disturbances, and sensor noise.

Unit step reference commands are applied to the x and y
positions. The desired z position is a ramp input from 0 to
50 seconds with a maximum height of 15 meters. The desired
yaw angle is kept at zero. The desired trajectory of the
quadrotor is such that it takes off from its starting position
of (0,0,0) meters and after passing through the waypoint
of (15,1,1) meters, it returns to the final position of (5,0,0)
meters. The initial conditions for the x, y, and z states are
random. For simulating real flight conditions, wind gust
using the Dryden wind gust model [47] is summed up in the
non-linear plant equations. The disturbance effects are added
for state estimation in the simulation results. A noise block
having variance = 0.01, seed value = 1, and sample time =

0.1 is used. These values are added in the six available states.
To reflect the efficacy of the proposed MLNN observer,

the proposed scheme is tested under three cases of parameter
variations. These three cases of parameter variations are
discussed in Table 2 and the controller and observer gains are
given in Table 3.

B. ACTUATOR DYNAMICS
To incorporate the effects of friction caused by the actuator,
we introduced first-order actuator dynamics into the simula-
tion, alongwith the time delay inspired by the work [48], [49].
The equation for the first-order actuator taken from [49] is as
follows:

Act =
e−Ts

βs+ 1

where β is the friction coefficient and T= 0.25 sec.

C. RESULTS FOR NOMINAL PARAMETERS CASE WITH
MEASUREMENT NOISE AND DISTURBANCE EFFECTS
(CASE A)
Figure 4 displays the state estimation results of the proposed
MLNN-based Luenberger observer as compared to SMO
and SHLNN observer for nominal Case A. The states to
be estimated are x, y, z, φ(roll), θ (pitch), and ψ(yaw).
The SMO is sensitive to noise, showing quite oscillatory
behavior as compared to SHLNN and MLNN observers.
Disturbances and noise typically introduce non-linearities
into the data. In handling these non-linearities, multilayer
neural networks (MLNNs) exhibit a clear advantage over
single-layer networks, which are constrained to linear
mappings. Figure 4 highlights the improved performance of
the proposedMLNN observer in the presence of disturbances
and noise. In Figure 4(a), the SHLNN estimated x-position
trajectory deviates from the reference trajectory from 0 to
30 seconds. Similarly, in Figure 4(b), the SHLNN estimated
y-trajectory deviates from the reference trajectory between
25 to 40 seconds. The SHLNN results in Figures 4(d)
and 4(f) also display continuous deviations from the reference
trajectories. The estimation states of SMO show the highest
oscillations. While the MLNN observer effectively rejects
measurement noise and estimates the states close to the
reference states with minimal error as compared to SMO, and
SHLNN observer.

D. STATE ESTIMATION RESULTS WITH NOISE AND
DISTURBANCE DURING PARAMETER VARIATIONS (CASE B
AND C)
The parameters of UAVs such as mass (m), the moment
of inertias along the x, y and z-axis (Ix, Ix, Iz), drag
forces (b), and coefficient of thrust(d) might change due
to aerodynamic disturbances and uncertainties during flight.
This subsection discusses the effectiveness of the proposed
MLNN observer when the parameters vary from the nominal
Case A, specifically in Cases B and C, in the presence of noise
and disturbance effects. Figures 5 and 6 illustrate the state
estimation comparison between SMO, SHLNN, and MLNN
observers.

In Figure 5, the state estimation comparison under Case B
reveals that SMO trajectories exhibit considerable noise and
substantial errors between the actual and SMO trajectories.
The results obtained from the SHLNN observer are less noisy
compared to SMO; however, they diverge from reference
trajectories at certain time points, as observed in Figure 5(b, d,
and e). In contrast, the proposedMLNNobserver successfully
tracks the actual trajectories with less noisy results compared
to the other two observers.

In Figure 6, a state estimation comparison under Case C
parameter values is presented. SMO’s estimated trajectories
deviate further from the reference and actual trajectories
compared to Cases A and B. This behavior is attributed
to SMO’s limited adaptability to changing parameters. The
state estimation results of SHLNN observer exhibit less noisy
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FIGURE 3. The SMC controller design.

TABLE 2. Parametric variations.

FIGURE 4. Case A: Estimated positions and angular states of SMO, SHLNN, and MLNN observers.

and good estimation as compared to SMO. Figure 6(a, c,
d, f) shows continuous deviations, while in Figure 6(b),
SHLNN deviates from the reference y-position between 10 to
60 seconds.

The estimated SHLNN pitch trajectory is shown in
Figure 6(e), with the deviation from the reference pitch
occurring between 20 to 40 seconds. However, the MLNN
observer outperforms both SMO and SHLNN observers due
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FIGURE 5. Case B: Estimated positions and angular states of SMO, SHLNN, and MLNN observers.

FIGURE 6. Case C: Estimated positions and angular states of SMO, SHLNN, and MLNN observers.

to its adaptive nature by estimating trajectories closer to the
reference trajectories.

In summary, the state estimation results for all three
cases of parameter variations, as shown in Figures 4, 5,
and 6, demonstrate the superior performance of MLNN

observers compared to SMO and SHLNN observers in terms
of handling parameter variations, noise, and disturbances. For
a more detailed understanding, the numerical values of these
errors, in terms of Mean Square Error (MSE), are presented
in Table 4.
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FIGURE 7. Control input torques.

TABLE 3. Controller and observer gain values.

E. CONTROL INPUT RESULTS UNDER CASE C PARAMETER
VARIATION
To demonstrate the effectiveness of the control strategy,
control input results under worst-case parameter values C are
presented in Figure 7. The figure shows the control input
comparison when SMC receives estimated states information
from three observers namely, Multi-layer NN (MLNN),
Single Hidden Layer NN (SHLNN) and Sliding Mode
Observer (SMO).

Figure 7(a) presents the comparison results for the control
input U1 for the three observers. U1 for the Sliding Mode
Control with Multi-Layer Neural Network (SMC + MLNN)
observer demonstrates the least noise and divergence, gradu-
ally rising after 45 seconds to follow the altitude’s trajectory.
Meanwhile, U1 for both SMO and SHLNN observers with
SMC also experiences a rise after 45 seconds, but with
noticeable noise and divergence.

Similarly, Figure 7(b) illustrates the comparison of U2,
associated with the roll angle, for the three observers.
In all three cases, U2 increases at 20 and 40 seconds,
respectively. However, U2 for SHLNN and SMO exhibits
more noise compared to the MLNN observer, with the
latter being the most noisy. Figures 7(c) and (d) depict the
comparison results for U3 and U4, associated with pitch
and yaw angle respectively. U3 experiences a rise at 10 and
40 seconds. The comparison results indicate that MLNN +

SMC yields the least noisy results, as compared to SHLNN
and SMO.

The comprehensive analysis of control inputs in Figures 7
reveals that the MLNN observer consistently produces less
noisy results than both the SMO and SHLNN observers,
as desired.

In Table 4, a comparison of Mean Square Error (MSE)
is presented between SMO, SHLNN, and MLNN observers.
The MSE values for are measured in square meters (m2),
while for, and, the units are square radians (rad2). SMO
exhibits the highest MSE values for state estimation in all
three cases. In contrast, the SHLNN observer shows lower
MSE values than SMO. The MLNN observer demonstrates
the lowest MSE values, making it e preferred choice for state
estimation in this particular application.

The formula used for MSE for continuous-time signals is:

MSE =
1

t2 − t1

∫ t2

t1
(e(t))2dt

where e(t) is the error between ith actual and estimated state.
is the length of the signal. We used the mean() command in
Matlab, giving a square of error as input for finding the MSE
values.
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TABLE 4. Comparison between SMO, MLNN, and SHLNN observer techniques in terms of MSE.

V. CONCLUSION
The paper proposes an adaptive multi-layer neural network-
based Luenberger observer in which the weights are updated
using a modified back-propagation algorithm and compares
it with the SMO and SHLNN observer using a dynamical
non-linear model of a quadrotor UAV. We ensured the
Lyapunov stability of the proposed observer using a modified
back-propagation weight update rule, which, to the best
of the author’s knowledge, is not present in the literature.
To replicate the signal transmission delay and actuator
friction effects in the model, we added a first-order delay in
the actuator dynamics. The results of the proposed observer
technique are compared with those of the SMO and SHLNN
observer in the presence of wind disturbance, noise, and
parameter variations in terms of Mean Square Error (MSE)
values. The proposed observer produces less noisy estimation
results in the presence of all of these parameters as compared
to the other two observers.

FUTURE DIRECTIONS
Future work aims to implement the proposed observer-based
control scheme on a real quadrotor. Additionally, we intend
to design a Fault Detection and Isolation scheme (FDI) that
utilizes state estimation results from the proposed observer.
Updated information from the FDI could then be incorporated
into a Fault-Tolerant Control framework, which will be
tested on a real quadrotor to improve system control during
abnormal conditions.

In recent years output feedback control techniques has
gained importance due to shortcomings encountered when
full-state measurements are unavailable. The paper in [50]
presents an adaptive output feedback neural network-based
control method for underactuated and unactuated state
constraints without the need for exact model knowledge.
The study [51] suggests a control approach that utilizes
neuroadaptive methods to address challenges posed by
simultaneous output and velocity constraints on both actuated
and unactuated states. We intend to test our proposed
algorithm under such state-constraint conditions.
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