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ABSTRACT This study presents a preliminary investigation into robust vehicle mass estimation to enhance
braking distance calculations for autonomous emergency braking systems.While active research has focused
on headway distance estimation, primarily using computer vision systems such as cameras or light detection
and ranging, there remains considerable room for improvement in reliable autonomous emergency braking
systems. In this study, we propose a novel approach to vehicle mass estimation that leverages vehicle
longitudinal dynamics, considering that vehicle mass influences braking distance as well as vehicle velocity.
We employ an adaptive extended Kalman filter that combines the capabilities of the extended Kalman filter
with a fading factor. This algorithm aims to estimate the time-varying vehicle mass using measurements of
vehicle longitudinal velocity and driving torque inputs. Subsequently, the estimated vehicle mass serves as
the basis for calculating more accurate braking distances. The proposed vehicle mass estimation algorithm
is rigorously simulated using MATLAB/SIMULINK, and it undergoes an in-vehicle test.

INDEX TERMS Braking distance, vehicle longitudinal dynamics, vehicle mass, adaptive extended Kalman
filter, in-vehicle test.

I. INTRODUCTION
Road traffic accidents, predominantly crashes, are a sig-
nificant concern for drivers worldwide, with approximately
1.35 million people killed or disabled each year [1]. Gener-
ally, human drivers do not consistently pay close attention
to traffic conditions due to numerous distraction factors
(e.g., looking at the mirror, adjusting the volume of the audio
system, or using a cellular phone), or they may be unable to
react promptly due to weather conditions, sudden lighting,
or physical aging [2]. To address these issues, an autonomous
emergency braking (AEB) system was developed to mini-
mize the possibility of rear-end or turn collisions, assisting
drivers in avoiding car accidents and reducing unavoidable
dangerous situations [3]. These systems use state-of-the-
art technology, commonly employing light detection and
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ranging (LiDAR) devices, cameras, and radar to detect or
scan potential obstacles in emergency braking situations [4].
The AEB system measures the distance between the ego
vehicle and the lead vehicle moving in front of the ego
(host) vehicle and calculates their relative distance (head-
way). If the system concludes that the measured relative
distance exceeds the predetermined distance, the brake sys-
tem automatically engages to prevent a potential collision.
These AEB systems can also communicate with a vehicle’s
GPS and use its database of traffic signs and other data
to apply the brakes quickly. Most sensor-based AEB sys-
tems have their advantages and disadvantages. For example,
while radars are quite effective at calculating distance and
speed even in adverse weather, they are unable to track if
deceleration is greater than one. LiDARs, on the other hand,
are capable of precise object detection and can compensate
for the disadvantages of using radars, but they are usually
expensive.
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FIGURE 1. Schematic overview of the proposed sensor fusion-based mass estimation for electric vehicles, enhancing
braking distance calculation.

In recent years, numerous studies have focused on devel-
oping collision warning algorithms alongside advancements
in range sensors. These algorithms generally fall into two
categories: the safety time algorithm and the safety dis-
tance algorithm. The Mazda overriding algorithm introduces
a hypothetical worst-case scenario, computing the overrid-
ing distance as the minimum range [5]. The safety time
logic algorithm compares the collision time between two
vehicles with a safety time threshold to determine safety sta-
tus. Safety time algorithms primarily utilize time-to-collision
(TTC) to calculate the remaining time for two vehicles to
collide between a leading and following ego (host) vehicle,
as depicted in Figure 1 [6]. The Berkeley algorithm suggests
a conservative distance to provide a wide range of visual
feedback to the driver [7]. The Honda algorithm consid-
ers a hypothetical braking scenario [8], while the NHTSA
alert algorithm accounts for slightly more complex braking
scenarios [9].

However, neither the TTC-based safety time model nor
the safe distance model is sufficiently effective in adapting
to various braking situations during driving. This is because
the traffic and driving environment can be complex, time-
varying, and unpredictable. Therefore, the existing collision
warning (or avoidance) algorithm is not suitable for rigorous
real-world applications. Thus, it is imperative to design a
more effective collision warning algorithm that can consider
the driving environment. To address the shortcomings of the
previously mentioned methods, researchers have attempted
to propose new stopping distance-based algorithms. Calcu-
lating the safe stopping distance is one of the most effective
ways to assess the possibility of a rear-end accident. These
techniques for assessing rear-end collision risk are based
on the assumption that the leading vehicle’s tire friction
coefficient must be higher than that of the following host
vehicles [6]. Because more accurate braking distance calcu-
lation improves collision-warning solutions when stopping
at a given vehicle velocity, many researchers have attempted
to develop more rigorous collision-warning algorithms based
on non-parametric techniques. For example, artificial neural
network (ANN)-based technology is one of the most promis-
ing alternatives in rear-end collision warning systems [10].

The advantage of the ANN-based approach is its ability
to solve complex unobservable problems. Despite active
research concerning collision warning algorithms, primarily
focusing on effective stopping distance calculation, consider-
able room for improvement remains.

Real-time monitoring of vehicle states has recently gar-
nered increasing attention due to its critical role in controlling
future vehicles, including both autonomous and conventional
ones. In particular, vehicle mass is one of the essential
parameters in many automotive control systems, as its accu-
racy directly impacts control performance and robustness.
Real-time information on vehicle mass is also vital for
fleet management systems. Automotive control systems that
demand rigorous real-time vehicle mass information include
active safety systems such as the aforementioned collision
warning systems [11], active suspension control [12], and
electronic stability programs [13] etc. However, determin-
ing the actual vehicle mass poses a challenge due to its
time-varying nature, depending on factors such as payload,
such as the number of passengers, and the amount of fuel.
small-size passenger cars, in particular, exhibit a signifi-
cant ratio between payload and vehicle mass. Moreover,
directly measuring vehicle mass using typical mechanical
sensors is challenging for control purposes. Conventional
vehicle mass estimation methods, such as weighbridges, axle
weigh pads, or weigh-in-motion systems, are impractical for
non-stationary driving vehicles. Therefore, there is consider-
able interest in estimating vehicle mass in real time.

Most current techniques for estimating vehicle mass rely
on longitudinal and lateral vehicle dynamicmodels [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23]. Sensor fusion data
for estimating vehicle mass can be provided by the vehicle
controller area network (CAN) bus, resulting in cost-effective
implementation. Rigorous vehicle mass estimation requires
real-time information on vehicle variables such as longitudi-
nal acceleration, road grade, and driving torque. Additionally,
numerous studies have attempted to simultaneously esti-
mate road grade using state-of-the-art technology such as
a two-antenna global navigation satellite system (GNSS)
and road map [24]. However, longitudinal vehicle dynam-
ics suffer from various system information and unknown
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disturbance inputs known as road loads, such as gradient
due to gravitational force, aerodynamic drag, and rolling
resistance. Some research on vehicle mass estimation has
been proposed based on a vertical dynamic system [25].
Jordan et al. [26] proposed a vehicle mass estimator using
a multi-model filter based on the vertical dynamic system to
reduce the effort of a calibrated referenced dual Kalman filter
for estimating road irregularities and vehicle mass. Using
inertial measurement units (IMUs) can be an alternative
approach [27]. The accelerometer inside the IMU can then
be used to provide longitudinal vehicle acceleration instead
of relying on the time derivative of vehicle speed from the
CAN bus, resulting in inaccurate acceleration estimates.

In this study, vehicle mass estimation for enhanced braking
distance calculation in electric vehicles with AEB systems is
explored based on the fact that braking distance is affected
by vehicle mass [28]. Thus, we develop an indirect sen-
sor fusion-based vehicle mass estimation approach using an
adaptive extended Kalman filter (AEKF), which combines
the capabilities of the extended Kalman filter with a fad-
ing factor. This approach aims to enhance braking distance
calculation for AEB systems by considering the dependence
of braking distance on both vehicle mass, as depicted in
Figure 1. To our knowledge, there are no reports detailing
the possibility of achieving an improved collision warning
algorithm by considering vehicle mass. Therefore, the objec-
tive of this study is to propose a new mass estimation method
to enhance the braking distance calculation required for the
collision warning algorithm of AEB systems. The remainder
of this study is organized as follows: Section II outlines the
braking distance calculation, focusing on the effect of vehicle
mass on the braking distance of AEB systems. Section III
presents the detailed AEKF algorithm, and the proposed
algorithm is experimentally validated in in-vehicle tests in
Section IV.

II. BRAKING DISTANCE ANALYSIS
A. NEW BRAKING DISTANCE MODEL
To analyze the sensitivity of vehiclemass on braking distance,
we first formulate a new safe distance model for vehicles.
Thismodel assumes that both vehicles start from the same ini-
tial velocity and experience the same deceleration. Typically,
the conventional safe distance is modeled by the following
simple formula based on physics, specifically the mechanical
energy conservation law [2]:

s = vctd +

(
v2c
2µg

−
v2l
2µg

)
= vctd +

(
v2c
2ac

−
v2l
2al

)
(1)

where vc denotes the controlled (host, ego) vehicle velocity;
vl denotes the lead vehicle velocity; td is the delay time,
which consists of human delay plus judgment time (i.e., free
running), µ represents the tire friction coefficient, ac and al
denote the deceleration limit parameters, which are usually
assumed to be the same but can vary (e.g. 4.6 for dry road,
3.3 for wet road).

In this study, a new safe distance model was formulated by
considering only the braking distance (i.e., the second part
of Eq. (1)). As depicted in Figure 2, the net force applied to a
vehicle driving in the longitudinal direction can be governed
by

γmmv̇ = Fx − Fb − 0.5ρCdAf v2 − frmg cos θ − mg sin θ

(2)

where v is the vehicle longitudinal velocity,Fx denotes the tire
tractive force, Fb denotes the braking force, γm denotes the
mass factor for the equivalent mass considering the moment
of inertia, ρ denotes the density of air, Cd denotes the aero-
dynamic drag coefficient, Af denotes the vehicle frontal area,
fr represents the rolling resistance coefficient, m represents
the vehicle mass to be estimated in this study, and θ represents
the inclined angle. Assuming that the vehicle is driving on a
flat road (θ = 0) during braking (Fx = 0), Eq. (2) can be
simplified as

γmmv
dv
ds

= −Fb − 0.5ρCdAf v2 − frmg (3)

The braking distance s can then be calculated by integrating
the infinitesimal distance element ds derived from Eq. (3) as

s =

∫ v2

v1
ds =

γmm
ρCdAf

ln

(
1 +

ρCdAf v21
2(ηbµmg+ frmg

)
(4)

where Fb = ηbµmg, v1 denotes the initial velocity, v2
the final velocity (v2 = 0), and ηb the braking efficiency
(assumed) [29]. All vehicle parameters for the simulation
are listed in Table 1. Braking distances were simulated using
different vehicle masses (v1 = 30 m/s). The braking distance
increases as the vehicle mass increases, whereas it decreases
as the tire friction coefficient increases, as shown in Figure 3.

TABLE 1. Parameters for braking distance calculation.

FIGURE 2. Schematic illustration of longitudinal vehicle dynamics.
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FIGURE 3. Braking distance calculation with respect to different vehicle
masses (v1 = 30 m/s, v2 = 0).

B. NONLINEAR SIMULATION OF BRAKING DISTANCE
The braking distance of a passenger car equipped with
anti-skid braking system (ABS) was simulated to conser-
vatively evaluate the effect of vehicle mass on the braking
distance. The wheel dynamics is then required to consider the
slipping behavior of the wheel.

ω̇w = [Te − Tb − rwFx − Tw (ωw)] /Jw (5)

where ωw denotes the wheel velocity, Te denotes the engine
input torque, Tb denotes the braking torque, rw denotes the
wheel radius, and Tw (ωw) denotes a wheel-friction torque,
Jw is the inertia moment of the wheel. The tire tractive force
is defined as:

Fx = µ(λ)Fz (6)

where Fz is the normal force at each tire, µ is the tire
friction coefficient and a function of slip ratio λ = (x2 −

x1)/x1 for braking (so-called simple magic formula or
Pacejka model [2]). The wheel-friction torque is assumed
to be the combination of dry-friction and viscous-friction
models

Tw (ωw) = fwFz + bwωw (7)

The actuator dynamics is also considered by modeling as the
1st order system as follows;

Ṫb = −
(
1
/
τ
)
Tb + kFa (8)

where τ is the time constant, k is the actuator gain, Fa is
the actuation force. Then, the governing equation of motion
can be formulated by defining x1 = ωv, x2 = ωw,

x3 = Tb.

ẋ1 = [−(0.5ρCdAf )(rwx1)2 + NwFzµ(λ)]/(γmmrw)

ẋ2 = [−fwFz − bwx2 − Fzrwµ(λ) + T ]/Jw
ẋ3 = −

(
1
/
τ
)
x3 + kFa (9)

where T = Te − Tb, Nw is the total number of wheel. For the
ABS (λ > 0), a simple two-stage on-off ABS controller was
designed

e = λd − λ (10)

Fa =

{
Fa_max, e(t) > 0
Fa_min, e(t) < 0

}
(11)

where e is the error defined by the difference between the
desired slip ratio λd (= 0.2) and actual slip ratio λ.

The nonlinear simulation was performed by numerically
integrating Eq. (9) (Runge-Kutta 4th-order method). Wheel
velocity fluctuated with the frequency of 5 Hz due to
the on-off control and actuator dynamics, as shown in
Figure 4 (a), which shows a good agreement with in-vehicle
test results (5∼ 10 Hz). The slip ratio was regulated around
the desired slip ratio of 0.2, as shown in Figure 4 (c). The
braking distance can be calculated by integrating the area in
Figure 4 (b). Obviously, the braking distance increased as
increased the vehicle mass, and shows a good agreement with
simulated values using CarSim, as shown in Figure 4 (d). The
braking distance ranges from 50 m to 60 m when the vehicle
mass varies from 2500 kg to 2950 kg. As described in previous
Section, the braking distance difference of 10 m is significant
and will affect the accuracy of the AEB system and needs to
be compensated.

FIGURE 4. Simulation result of braking distance; (a) time history of two
velocities, (b) time history of vehicle velocity with varying vehicle masses,
(c) slip ratio history, and (d) simulated braking distance vs vehicle mass.

III. DESIGN OF VEHICLE MASS ESTIMATOR
A. LONGITUDINAL VEHICLE MODEL
Assuming that the braking force is inactive and the algorithm
operates solely during driving, the governing equation can be
further simplified as follows:

γmmv̇ = Fx − 0.5ρCdAf v2 − frmg (12)

Compared to conventional vehicles with internal com-
bustion engines combined with multi-stepped automatic
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transmissions, the tractive force of electric vehicles can be
determined by the kinematics of gear and wheels

Fx =
TmGη

R
(13)

where Tm denotes the motor output torque, G denotes the
reduction gear ratio (10.65), η denotes the mechanical effi-
ciency, and R denotes the effective radius of the wheel.
Introducing the additional assumption that the vehicle mass
is in a quasi-static state (ṁ ≈ 0), the governing equation can
be expressed as follows:

ẋ = f (x, u) =

[
ẋ1
ẋ2

]
=

[
Fx
m −

ρCdAf
2m v2 − gfr
0

]
(14)

x =
[
x1 x2

]
=
[
v m

]T
, y = v = x1 (15)

The reformulated system model is nonlinear, and the output
measurement is the longitudinal velocity of the vehicle.

B. AEKF
In this study, we utilize an extended Kalman filter (EKF) to
estimate the time-varying parameter of vehicle mass within
nonlinear longitudinal dynamics by linearizing a nonlinear
model at equilibrium points. Additionally, we propose an
adaptive EKF (AEKF) with a fading factor to enhance esti-
mation performance [30], [31]. The equations for AEKF
are identical to those of the conventional AEKF in equa-
tions, except for the modification involving the fading factor
(λ ≥ 1) in the error covariance equation. As a result, the latest
measured data is given greater weight in the state estima-
tion, thereby preventing divergence. As the proposed AEKF
algorithm operates in the discrete-time domain, we discretize
the continuous equation using the Euler method. This is
expressed as

ẋ =
x(k) − x(k − 1)

1t
→ x(k) = ẋ(k)1t + x(k − 1) (16)

where 1t is the time step and k and k − 1 represent the
time instants at t = k1t and t = (k − 1) 1t , respectively.
Substituting Eq. (14) into Eq. (16), Eq. (15) is defined as
follows: {

xk = fk−1(xk−1, uk−1)
yk = h(xk )

(17)

The general linear discrete-time system model required to
design the KF is given by

xk+1 = Axk + Buk + wk
yk = Hxk + vk (18)

where wk is a multivariate Gaussian distribution system
noise variable with covariance matrix, and vk is a multivari-
ate Gaussian distribution measurement noise variable with
covariance matrix. In this study, no input was applied to
the measurement model, and the application of the EKF

was based on the nonlinear model. The general discrete-time
equation is as follows:{

xk = fk−1(xk−1, uk−1) + wk−1

yk = h(xk ) + vk
(19)

The extended Kalman filter assumes the differentiability of
the state-change function instead of the linearity of themodel.

Ak−1 =
∂fk−1

∂x

∣∣∣∣
x̂k−1

,Bk−1 =
∂fk−1

∂u

∣∣∣∣
x̂k−1

,Hk =
∂hk
∂x

∣∣∣∣
x̂ k|k−1

(20)

The nonlinear system model was linearized using a Jacobian
matrix calculated based on the previous estimate. Matrices
A and H of the rotating-shaft system model were linearized
using Eq. (20) and are expressed as follows:

Ak−1 =

 1 −
ρCdAf x1

x2
1t −

(
Fx
x22

+
ρCdAf x21

2x22

)
1t

0 1


Hk =

[
1 0

]
(21)

C. FADING FACTOR UPDATE
To optimally select the fading factor to minimize gk , we intro-
duced the adaptive rule called p-adaptation [32].

λl+1
k = λlk + ϕ

∂glλ,k

∂λlk
∀l = 0, 1, 2, · · · , (22)

where the subscript k represents the time series, the super-
script l represents the number of iterations in a time instant,
and ϕ is the step length (i.e., learning rate) for the gradi-
ent descent method. The constant fading factor is optimally
updated to identify and track a time-varying parameter. At the
p-th iteration, if the fading factor converges, the iteration is
terminated, and the optimal fading factor is determined by

λk = max
{
1, λpk

}
(23)

However, this iterative numerical method can fail to obtain
an explicit formula for the optimal calculation of λk , and
its real-time implementation is challenging. Consequently,
a one-step AEKF algorithm was employed to reduce the
computational burden in this study [27]. Assuming that Qk ,
Rk , and P0 are positive definite, and that the measurement
matrix Hk is full rank, the fading factor can be reformulated
as

λk = max {1, trace [Nk ] /trace[Mk ]} (24)

where

Mk = HkAk,k−1P
+

k−1A
T
k,k+1H

T
k , and (25)

Nk = C0,k − HkQk−1HT
k − Rk . (26)

The fading factor can then be adaptively determined when
the difference between the Nk (present state) and Mk (past
state) becomes larger (i. e., sudden state variation) using the
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three consecutive recursive equations with initial conditions
G1, 0 = 0 and G2, 0 = 0.

C0,k = G1,k
/
G2,k (27)

G1,k = G1,k−1

/
λk−1 + zkzTk (28)

G2,k = G2,k−1
/
λk−1 + 1 (29)

The mathematical proof and details of this algorithm are
presented in [27]. Under the established conditions, the esti-
mation error of vehicle mass is bounded, provided that the
initial error and noise terms remain within acceptable limits.
Consequently, the stability of the mass estimation algorithm
is proved [33]. The overall estimation process using the
AEKF algorithm with a fading factor update is illustrated in
Figure 5.

FIGURE 5. The overall estimation process using the AEKF algorithm.

D. SIMULATION RESULTS
Based on the proposed algorithm, a vehicle-driving scenario
was simulated using MATLAB®. The system model param-
eters are listed in Table 1. In this study, the step response to a
sudden upward step input was used to evaluate the response
time of the proposed estimator. The initial state value and
error covariance for the estimation are as follows:

x0 = [ 0 2000 ], P0 = diag([ 10000 10000 ]) (30)

The system noise covariance matrix Q and measurement
noise covariance R were tuned in various cases as follows,
and the optimal estimates were derived:

Q = diag
[
10−8 10−8

]
, R = 0.00001 (31)

To evaluate the basic estimation performance of the AEKF,
the root-mean-squared error (RMSE) at the kth time instant

was calculated for a more rigorous analysis.

RMSE(k) =

√√√√1
k

k∑
i=1

(p(i) − p̂(i))2 (32)

where p(i) and p̂(i) represent the true and estimated values,
respectively. The steady-state mean of the RMSE (MRMSE)
was then calculated to exclude the effects of transient behav-
ior. Typical estimation results are illustrated in Figure 6. The
AEKF (initial mass of 2470 kg) accurately tracked the vehicle
mass variation from 2540 kg (two passengers) to 2680 kg
(three passengers). As shown in Figure 6 (a), the conventional
EKF cannot track the time-varying vehicle mass.

FIGURE 6. Simulation result of vehicle mass estimation; (a) responses of
time-varying vehicle mass to slew rate limited input (mass increase),
(b) time evolution of the fading factor (inset, detail around mass change),
(c) estimation error (AEKF) and (d) convergence history of error
covariance.

Although the sensor signals were contaminated by random
Gaussian noise, the proposed AEKF successfully tracked the
time-varying vehicle mass. The estimation performance of
the proposed AEKF model was evaluated under parametric
uncertainties, such as the system noise covariance matrix Q.
The nominal value of the system noise covariance matrix Q
(10−8

· I2×2) is perturbed by 10−9
· I2×2 and 10−7

· I2×2,
respectively. The estimation results varied from the nominal
values under various parametric uncertainties, as depicted in
Figure 7. When reducing Q (10−9

· I2×2) below its nominal
value, the response time is almost no difference compared
to the result of the nominal value, but the overshoot notably
increases. Accordingly, the magnitude of the fading factor
peaked compared to the nominal at the mass change point.
Conversely, increasing Q (10−7

· I2×2) beyond the nominal
value reduces overshoot, while the response time signifi-
cantly increases to the extent that it is difficult to estimate.
As illustrated by the estimation results in Figure 7, the
importance of appropriately setting the system matrix can be
observed in evaluating the performance of the algorithm.
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FIGURE 7. Simulation result of vehicle mass estimation with different
system noise covariance matrix Q; (a) responses of time-varying vehicle
mass to slew rate limited input (mass increase), (b) time evolution of the
fading factor (inset, detail around mass change), (c) estimation error
(with different Q), and (d) convergence history of error covariance.

IV. EXPERIMENTAL VALIDATION
A. IN-VEHICLE TEST
The in-vehicle test system was designed to validate the
proposed algorithm. It comprises a ground electric vehicle
(model: SUV, curbweight: 2230 kg), data acquisition devices,
a computer with vehicle network processors (model: NXP
S32G, and a display for monitoring, as shown in Figure 8b.
Two measurement signals for KF-UI (drive motor output
torque and longitudinal velocity) were collected via the con-
troller area network flexible data rate (CANFD) bus protocol.
To facilitate this communication protocol, a compact CAN
FD interface device (model: Kvaser) was used, connect-
ing the host PC to the high/low channels of the CAN FD
bus. Non-uniformly sampled signals were resampled with
uniform sampling time (0.005 s). All algorithms in Python
were executed on a Linux platform in real time. During the
in-vehicle test, the algorithm was activated only when regen-
erative braking is off and the vehicle is accelerating. Variable

FIGURE 8. Schematic representation of the in-vehicle test: (a) interior
space, (b) equipment, and (c) test bed vehicle overview.

vehicle mass was made possible by sequentially changing the
number of passengers at stopping and represented by four
scenarios: CASE A (four passengers + payload), CASE B
(four passengers), CASE C (three passengers), and CASE D
(two passengers), respectively.

B. SYSTEM IDENTIFICATION
In this study, the recursive least squares estimator (RLSE)
was adopted to identify unknown parameters of the vehi-
cle longitudinal model. As the performance of a vehicle
mass estimator largely depends on the accuracy of the
model parameters, an offline system identification process is
required. To design the RLSE, a longitudinal vehicle model
(Eq. (12) is reformulated in matrix form as

yk = hTk θk + vk (33)

where

yk = FxhTk =
[
v̇ v2 1

]
, and θk =

[
m̂ Ĉd F̂r

]T
(34)

The system is represented by a linear model in the form
of Eq. (33), where yk denotes the output vector and
hTk represents the measurement matrix, which are known val-
ues that can be obtained by processing sensor signals. Also,
θk denotes the unknown parameter vector to be estimated.
vk is measurement noise. Fr represents the rolling resistance
force, which expressed as frmg in Eq. (12). The numerical
values for yk and hTk can be measured directly using the
CAN data acquired from the driving vehicle. The RLSE was
designed as follows [34]:

1) Initial estimates

θ̂0 = E [θ ] (35)

P0 = E
[(

θ − θ̂0

) (
θ − θ̂0

)T]
(36)

2) Kalman-gain calculation

Kk+1 = Pkhk+1

(
hTk+1Pkhk+1 + w−1

k+1

)−1
(37)

3) Parameter update

θ̂k+1 = θ̂k + Kk+1

(
yk+1 − hTk+1θ̂k

)
(38)

4) Covariance update

Pk+1 =

(
I − Kk+1hTk+1

)
Pk (39)

In the first step, the estimated parameter and its covariance are
initialized to arbitrary values as they are usually unknown.
The estimated parameter vector θk is then calculated by
Eqs. (37), (38), and (39), updating at each time step in
a recursive manner, where wk signifies system noise. The
four measured in-vehicle data identified system parameters
are illustrated in Figure 9 and Figure 10, respectively. The
three parameters were successfully estimated, converging
over time to a certain finite steady state, as summarized in
Table 2. The profile of the tractive force in Figure 10 (d) was
calculated by substituting identified parameters into Eq. (33),
and nearly coincides with the vehicle longitudinal accelera-
tion in Figure 9 (b).
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TABLE 2. Identified system parameters.

FIGURE 9. Measured in-vehicle data (acceleration 0→ 30 m/s
(100 km/h)) (a) vehicle longitudinal velocity (b) vehicle longitudinal
acceleration (c) rear motor torque, and (d) front motor torque.

FIGURE 10. System identification results (0→ 30 m/s (100 km/h))
(a) vehicle mass, (b) aerodynamic drag coefficient, and (c) rolling
resistance force, (d) comparison of calculated and measured tractive
force.

C. RESULTS AND DISCUSSION
Upon comparing the vehicle mass estimation, including
transient responses, it becomes evident that the proposed
estimation algorithm effectively captures the steady-state
vehicle mass response caused by four scenarios, as depicted
Figure 11 (a). From the transient responses to sudden mass

TABLE 3. Comparison of MRMSE.

variation (similar to a step input), the algorithm can quickly
track the variable vehicle mass (i.e., within 2 s). The proposed
vehicle mass detection method tracks four cases of mass
variation (CASE A, B, C, and D) with relatively large initial
estimation error (initial mass estimate: 1200 kg). For a more
rigorous analysis, MRMSE for steady state response between
3 to 6 seconds is calculated using Eq. (32) and presented in
Table 3. Through the calculated MRMSE values, it can be
confirmed that the final estimated mass values (CASE A:
2880 kg, CASE B: 2811 kg, CASE C: 2722 kg, CASE D:
2652 kg) for all case scenarios exhibit a high level of accu-
racy, with errors within 2 % compared to the actual values.
In particular, compared to the conventional EKF where the
covariance matrix P is not updated using the fading factor,
a notable difference in convergence speed from initial esti-
mation value to steady state can be observed (i.e., 2.66 s).
The fading factor history of the vehicle mass estimation of
the AEKF algorithm is shown in Figure 11 (b). The fading
factor is adaptively updated to better suit the initial tracking
of the vehicle mass estimation.

The robustness of the proposed estimation model under
noise uncertainty is analyzed by introducing perturbation of
sensor noises and system parameters. Since sensor infor-
mation is inherently contaminated by electrical noises, the
effect of electrical noise on the estimation performance was
examined. White Gaussian random noise was added to all
sensor data. For example, the probability density function of
motor torque and vehicle velocity including white Gaussian
random noise is shown in Figure 12. Because the random
noise (error) distribution can be fitted to a normal Gaussian
distribution with the variance (σ 2

= 0.15, Motor torque,
σ 2

= 0.1, Vehicle velocity), as shown in Figure 12 (b) and d,
it was confirmed to be white Gaussian random noise. The
experimental results show good robustness against Gaussian
random noise, as shown in Figure 13. The robustness of
the proposed algorithm in terms of the fading factor is fur-
ther demonstrated by comparing its history as depicted in
Figure 11 (b) and Figure 13 (b). It can be observed that the
fading factor is updated more frequently with larger values,
compensating for uncertainty in the model resulting in fast
adaptation to noise. Consequently, the estimation error shows
no significant change, as listed in Table 3. The convergence
speed of the proposed algorithm can be further improved
by replacing the initial mass estimation value of 1200 kg
with a more reasonable vehicle mass value (e.g., 2500 kg).
Based on the sensitivity analysis of vehicle mass and braking
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FIGURE 11. Comparison of vehicle mass estimation responses
corresponding to four CASES (inset: zoomed of A, B).

FIGURE 12. Gaussian random noises for robustness analysis: (a) motor
torque noise (more contaminated), (b) its histogram, (c) vehicle velocity
noise (less contaminated), (d) its histogram.

distance in Section II, it is noted that there is an increased
sensitivity between braking distance and mass, especially on
low-friction roads where the maximum braking distance can
vary by up to 147 meters. Therefore, it is important to accu-
rately estimate mass variations which can vary up to 300 kg

FIGURE 13. Comparison of vehicle mass estimation responses
corresponding to four CASES (inset: zoomed of A, B).

due to additional passengers and luggage within the vehicle.
Consequently, accurate mass estimation from the proposed
AEKF algorithm is anticipated to have a significant impact
when integrated into future AEB algorithms.

However, there is still a need to enhance the robustness
of the proposed algorithm against uncertainties. In particular,
the tractive force is highly sensitive to various road condi-
tions. The kinematics between torque and tractive force in
Eq. (13) can only be available under the assumption of no-slip
conditions. This assumption may affect the estimation per-
formance under dynamic driving conditions such as slipping.
Such issues can be addressed either by utilizing an additional
wheel dynamic model in the algorithm or by only activating
algorithm when no slipping. Initial conditions also impact the
convergence rate of AEKF. Although initial conditions can
be reasonably approximated (e.g., by using the vehicle’s curb
weight), the convergence rate can significantly vary in the
general EKF. In contrast, the proposed AEKF can robustly
estimate the vehicle mass by utilizing a fading factor, thereby
addressing model uncertainties.

V. CONCLUSION
In this study, we have successfully developed a new vehicle
mass estimation method based on adaptive extended Kalman
filtering of vehicle longitudinal dynamics. The main contri-
butions are summarized as follows:
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• Firstly, to the best of our knowledge, we report for the
first time that it is possible to enhance braking dis-
tance calculations for autonomous emergency braking
systems by estimating vehicle mass using measurements
of vehicle longitudinal velocity and driving torque inputs
of electric vehicles. Subsequently, the estimated vehicle
mass serves as the basis for calculating more accurate
braking distances. In addition, our proposed vehicle
mass estimation method has an advantage over conven-
tional methods owing to its simplicity and robustness.

• Secondly, the proposed method exhibits high potential
for advancing the accuracy of AEB systems by consid-
ering the real variable vehicle mass.

• Lastly, another advantage of AEKF for electric vehi-
cles is that only two pieces of sensor information
(drive motor output torque and longitudinal velocity) are
required via the CAN FD bus for our approach, whereas
the estimation of output torque is extremely complicated
in conventional vehicles (i.e., those based on internal
combustion engines).

However, there is still a need to enhance the robustness of
the proposed algorithm against noise and parametric uncer-
tainties. For future research, we will address these ongoing
issues. Our focus will be on advancing the algorithm for AEB
systems to calculate more accurate braking distances, thereby
enhancing the reliability and robustness of the AEB system.
Additionally, we plan to apply our new approach to various
vehicular electronics applications in autonomous vehicles by
substituting constant vehicle mass with variable vehicle mass.
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