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ABSTRACT Effective disease management and mitigation strategies for fish diseases depend on timely and
accurate diagnosis. In recent years, artificial intelligence methods—classification algorithms in particular—
have become effective instruments for automating fish disease diagnosis. This paper presents two types
of ensemble models: i) the baseline averaged ensemble (AE) model and ii) the novel Performance
Metric-InfusedWeighted Ensemble (PMIWE) model. By leveraging pre-trained models and novel ensemble
techniques, we achieve a testing accuracy of 97.53%, corresponding precision, recall, and F1-score of 97%.
We also bring about enhanced interpretability and trustworthiness using the Grad-CAM (Gradient-weighted
Class Activation Mapping) explainable artificial intelligence (XAI) technique.

INDEX TERMS Deep learning, transfer learning, ensemble model, fish diseases, aquaculture, Grad-CAM.

I. INTRODUCTION
Aquaculture, or fish farming, has evolved from a mostly
small-scale, non-commercial, and family-oriented activity
into the large-scale commercial and industrial production of
high-value species that are exported at national, regional,
and international levels [1]. It is developing, expanding, and
intensifying in almost all regions of the world [2]. Sustainable
food production is essential as the global population grows to
10 billion by 2050 and animal protein demand rises 52%.

By efficiently expanding fish sources, aquaculture helps
to meet the expanding demand for fish. Its performance
depends on its ability to organize environmental sustainabil-
ity, social responsibility, food safety, and animal care. The
observed trend of growth shows the increasing importance
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of aquaculture for meeting the worldwide demand for
fish. In 2020, the worldwide harvest of fish amounted to
179 million tones, with aquaculture producing 88 million
tones, which is equivalent to 47% of the overall production.
The significant production resulted in a revenue of US$265
billion, reflecting its global economic significance [1].

Fish farming is undoubtedly a substantial sector in
Bangladesh, where rural freshwater aquaculture constitutes
the majority of fish production [3]. In the field of aqua-
culture and fisheries, Bangladesh has achieved considerable
recognition. The FAO’s State of World Fisheries and
Aquaculture 2022 Report [4] ranks Bangladesh third for
inland fish capture production and fifth for aquaculture
production globally, and 3.50 percent of the country’s
GDP comes from aquaculture. The profitability of the
aquaculture industry depends greatly on the use of strong
management techniques based on an in-depth knowledge of
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fish physiology and environmental dynamics in aquaculture
environments.

However, the sector faces challenges arising from the
emergence of diseases caused by infections, germs, parasites,
and insufficient nutritional products, leading to reduced pro-
ductivity. To minimize the impact of diseases in aquaculture
sectors, it is essential to identify symptoms of disease quickly.
The conventional approaches of detection, such as removing
fish flesh and testing the water for contaminants (pH, BOD,
dissolved oxygen levels, nitrate level), can be quite laborious,
costly, and even harmful at times, and those are referred to as
indirect methods [2].

However, new possibilities have arisen because of devel-
opments in computer technology and image processing. Cap-
turing and processing a wide variety of images has become
possible, including those taken with cameras, microscopes,
spectral analyzers, ultrasounds, and fluorescence detectors.
Segmentation, feature extraction, and further processes will
easily help to identify features like shape, texture, and
color, which will ultimately lead to the detection of fish
diseases. More efficient and accurate disease diagnosis in
fish populations is made possible by the current technology,
which is less expensive and takes less time [5].

The latest developments in computer vision and artificial
intelligence greatly facilitate the development of intelligent
aquaculture systems for the early detection of fish diseases.
Different methods of identifying fish diseases have already
been used. These methods include detecting abnormal
behaviour [6], predicting the quality of the water [6], and
measuring dissolved oxygen [7], [8], [9], [10], [11], [12].

The physical characteristics of fish, such as body texture,
eye color, head appearance, fins, scales, gills, and tail, are
used by computer vision-based direct approaches to fish
disease detection to identify the illness. Unfortunately, these
studies are still relatively few. Furthermore, most of the
existing studies only cover certain classes of diseases.

Machine learning and deep learning models have been
applied to identify fish diseases, but oftentimes, it is not
easy to interpret the model’s decisions, especially for deep
learning. With the high accuracy of deep learning models,
interpretability techniques have started to apply in this field.
Fish disease recognition faces numerous challenges due to the
complex underwater environment, which includes brightness
imbalances, abrupt changes in fish position, movement of
aquatic plants, fish texture and shape, seabed structure, poor
image quality, and a lack of diversity in the dataset [2].

There is very limited prior research on Bangladeshi aqua-
culture using artificial intelligence techniques. In Bangladesh,
where fish farming is a substantial sector, only one notable
study has been conducted. Sikder et al. [4] used 350 images
to achieve an accuracy of 97.90%. However, they did not
address the need for dataset expansion or augmentation, lim-
iting its effectiveness in practical applications. Furthermore,
they faced biased results with an overfitted model, and there
was a lack of explanation of the results.

Studies in other geographical regions have also used
relatively small datasets, which can lead to overfitting and
limited generalization. For example, Huang and Khabusi [2]
used 649 images to classify six classes of fish diseases with
an accuracy of 94.28% without employing extensive data
augmentation, resulting in models that may not perform well
on unseen data. Mia et al. [13] used 485 photos to classify
three types of fish infections and achieved an accuracy of
88.87% using a Random Forest Classifier. Additionally, some
studies focused on specific regions or disease types, limiting
their applicability to broader contexts.

To address the above limitations, we aim to build a
computer vision-based ensemble deep learning model to
detect diseases in freshwater fish in Bangladesh using their
still images as inputs. Our design objective is to build a
model that is well-generalized and reliable by employing
a dataset-diversifying strategy. In order to be useful in
practical applications, the model also needs to have a low
computational cost and be trustworthy to its end users.

In this paper, the novelty is our proposed Performance
Metric-Infused Weighted Ensemble (PMIWE) model. While
deep learning-based ensemble models have been the subject
of numerous studies in various fields, our suggested model
is unique because it uses a different weight calculation
mechanism. In the PMIWE scheme, we used the hyperbolic
tangent (tanh) function to dynamically determine the base
learner weights rather than calculating them simplistically.
This novel approach improves the ensemble model’s over-
all efficacy and robustness by ensuring that the weights
accurately reflect each base learner’s performance based
on the multiple metrics. The tanh function is a great
option for dynamically modifying weights based on multiple
performance metrics because of its smooth gradient and
capacity to handle a broad range of input values. This leads
to improved accuracy and robustness in classifying diseases
affecting Bengali freshwater fish and a more responsive
and adaptive ensemble model that can better integrate the
strengths of various architectures. Furthermore, the research
applied Explainable artificial intelligence (XAI) techniques
to increase trustworthiness.

A. RESEARCH OBJECTIVES
Our research objectives are elaborated in an itemized form
below.

• Dataset expansion and diversity:Our research aims to
work on the diverse dataset of various fish species, dis-
eases, environmental conditions, and image attributes.
With the need for more diversity in the dataset, we have
found that maximum work has been done on limited
samples, so increasing the dataset is one of the major
aims of our research.

• Model generalization and reliability: Handle cases
where models work well on training data but have
trouble generalizing to new data. This is known asmodel
generalization. Reducing overfitting and underfitting
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with high testing accuracy can make the model more
robust and generalized.

• Efficiency Optimization: To reduce the time and com-
putational resources needed for model implementation
and training, we look into lightweight architectures
and optimization techniques. Since most deep learning
architectures are prone to high computational complex-
ity, we have attempted to reduce it while maintaining
high accuracy so that deployment can be simple and less
expensive.

• Trustworthiness: Investigating strategies to understand
classification choices and to enhance the model’s
credibility is also a part of our research. Implementing
the XAI techniques is our research aim to make the
model trustworthy and analyze the biases.

B. CONTRIBUTIONS
In pursuing the research objectives mentioned above, our
significant research contributions are listed below.

• We used offline data augmentation techniques to
increase the small dataset, making it larger and more
diverse, with a particular focus on fish diseases in
Bangladesh. Since fish diseases are highly region-
specific, such as environmental conditions, our research
significantly impacts Bangladeshi aquaculture.

• As our base learners, we have employed the transfer
learning models. Instead of using them in their vanilla
forms, we have meticulously customized them to lower
the models’ sizes and computational expenses.

• We have proposed a novel ensemble model, namely,
the Performance Metric-Infused Weighted Ensemble
(PMIWE). Several research works used CNN as base
learners to create the deep learning ensemble. But
virtually all of them are based on the conventional
ensemble strategies of bagging, boosting, and stacking.
Here, we employed a novel strategy of forming a
weighted ensemble based on multiple performance
evaluation metrics of the base learners using the tanh
function. Ultimately, the suggested model decreases
computational cost while increasing accuracy. After
evaluating our model according to a number of criteria,
we discovered that it is not biased or overfitted.

• We used Grad-CAM (Gradient-weighted Class Activa-
tionMapping) tomake sure ourmodels were dependable
and trustworthy. This method highlights regions of
interest in input images that are most important to
the model’s decision-making process, thereby providing
visual explanations of model predictions. We improve
our models’ interpretability by adding Grad-CAM.

The overview of the research is presented graphically in
Figure 1.

II. RELATED WORK
A. MACHINE/DEEP LEARNING METHODS FOR FISH
DISEASE DETECTION
Recent research has shown the importance of unsuper-
vised learning methods, particularly clustering, in dealing

with spotted diseases that cause fish mortality. Clustering
objects in images helps fish disease detection, according to
Lyubchenko et al. [14], who use public datasets to automate
disease diagnosis.

Barik et al. [15] conducted another study to identify and
classify aquatic animal spot disease using unsupervisedmeth-
ods. Their study on image processing methods, including
unsupervised clustering like K-means, shows how segmenta-
tion may separate areas affected by white spot disease. These
results highlight the importance of segmentation in disease
diagnosis and help reduce spot disease-related fish mortality
in aquaculture.

Similarly, Sikder et al. [4] used unsupervised learning
and binary image classification to identify freshwater
fish diseases in ecologically vital Bangladeshi areas. The
combination of K- and C-means fuzzy logic clustering
with Multi-Support Vector Machines (M-SVMs) shows that
clustering can extract features and improve classification
accuracy, ensuring a method for precise and automated
fish disease detection. These results show that clustering
approaches may improve fish disease diagnostics and empha-
size the need for further studies to improve detection and
classification accuracy.

Ahmed et al. [16] have developed a dataset of infected
and disinfected salmon fish focusing on early detection of
fish diseases, particularly in salmon. They performed several
image preprocessing techniques like histogram equalization,
RGB conversion, segmentation, etc. They used the SVM
algorithm for classification after performing image pre-
processing. To make input images more adaptable, they
used k-means segmentation, cubic spline interpolation, and
adaptive histogram equalization. The SVM model classified
fish diseases with 91.42% and 94.12% accuracy on the new
dataset, with and without performing the augmentation.

Instead of detecting the fish diseases from images or
classifying the diseases between several classes for identi-
fication, Nayan et al. [17] analyzed the water quality to find
the diseases among fishes. They used the Gradient Boosting
Model (GBM) in their research. On the other hand, instead
of one, Mia et al. [13] explored the implementation of sev-
eral classification algorithms, including Logistic Regression
(LR), GB, SVM, Random Forest (RF), and KNN, for analyz-
ing two features sets, a co-occurrence matrix and statistical
characteristics. The results of the evaluations demonstrated
that RF has a significant accuracy rate of 88.87% when
comparing the performance of classifiers across different
matrix configurations. Although the accuracy achieved is
impressive, there are opportunities for improvement in future
studies that include the expansion of datasets and the
inclusion of a wider range of fish illnesses.

Malik et al. [18] have proposed an innovative approach
to detect Epizootic Ulcerative Syndrome (EUS), caused
by Aphanomyces invadans that look like ulcers. Their
approach involved image segmentation followed by edge
detection and morphological techniques for enhancement.
Their experiment showed that FAST-PCA-NN outperformed
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FIGURE 1. Overview of fish diseases classification using ensemble deep learning.

other combinations on real images from an EUS-infected fish.
Using theML algorithmwith multiple feature descriptors and
Principal Component Analysis (PCA) improves the accuracy
of fish disease diagnosis.

For the identification of EUS, Kumar and Sahoo [19] came
up with a new way to get the Region of Interest (ROI) from
images of diseased fish by using feature descriptions like
FAST and HOG. Applying PCA to reduce the number of
dimensions leads to significant changes in accuracy, with
FAST-PCA-NN doing 20.2% better than HOG-PCA-NN.
It shows how feature descriptions and neural networks can
help improve the accuracy and speed of identifying EUS-
infected fish.

Fish disease identification was improved using hybrid
classification models consisting of artificial neural networks
(ANN) and classification trees (CT), which are essential
for effective fish tracking and meeting global production
needs [20]. This research presents a hybrid model to address
underwater image difficulties during fish identification.
It integrates CT for feature selection and ANN for classifi-
cation, outperforming individual techniques, and the hybrid
model achieved an excellent training accuracy of 93.6%.
However, overfitting was observed in their model from their
testing accuracy of 78.0%.

In general, the methods based on conventional image
feature/descriptor extraction (such as [4], [13], [14], [15],
[16], [17], [18], [19], [20]) are not able to offer a high level
of accuracy as compared to deep learning methods.

Recently, Huang and Khabusi [2] have developed an
innovative approach using multi-layer attention fusion for

classifying images by combining Convolutional Neural
Networks (CNN) with the O-SLEM (Optimized Sparse
Localized Energy Model) classifier, which has signifi-
cantly improved the accuracy. This model performs pre-
cise preprocessing, segmentation, and feature extraction
using a well-chosen dataset of 5,165 images, enhanced
from 649 originals from the internet, natural habitats, and
aquariums. Its 94.3% accuracy comes from 3:1:1 training,
validation, and test sets. This shows its significant archi-
tecture and capacity to automatically identify fish diseases
from underwater images, boosting computer vision and
recognition of objects in an affected underwater environment.
One of the major advancements of the research is working
with many diseases. However, being based on CNN and
attention mechanism, the downside of the method is that it
consumes a lot of computational power and requires much
care in choosing the parameters of the model.

Fish diseases have raised death rates in aquaculture, and
the need for early identification is necessary to take precau-
tionary steps. Addressing these challenges,Waleed et al. [21]
outlined a novel strategy for automatically diagnosing three
fish diseases: EUS, Ichthyophthirius (Ich), and Columnaris.
Their novel strategy consists of pre-processing and Gaus-
sian distribution segmentation in the YCbCr colorspace to
evaluate how various color spaces affect CNN performance.
According to their research, fish diseases can be detected
in aquaculture with 95.86% to 99.04% accuracy using
pre-trained CNN architectures, which include AlexNet,
ResNet18, ResNet-50, and ResNet101. This profound study
tackles the inadequacies of existing diagnostic approaches
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and shows how artificial intelligence and computer vision
might revolutionize aquaculture.

Another study [22] demonstrated that the application of
pre-trained CNN models improved the detection of fish
diseases, specifically. By implementing Object Segmentation
Inference with the MobileNetV2 transfer learning model, the
research achieves an impressive 84% precision rate when
differentiating EUS, a critical factor in the early identification
of such microorganisms in fish aquaculture.

In general, CNN and the CNN-based transfer learning
models (such as AlexNet or ResNet) can improve the model
accuracy with relatively small datasets by using pre-trained
models, although they tend to outperform in tasks that are
very similar but need further optimization when it comes to
training time and resources. CNN and its variants guarantee a
high level of accuracy if used with extensive datasets and can
function optimally when exposed to distinct data structures.
However, they are more reliable in cases of balanced and
appropriately annotated data sources. Each deep learning
method presented above ( [2], [21], [22]) has some strengths
and weaknesses depending on the type and size of the
dataset. Several factors should be considered to enhance the
performance of the model.

At any rate, there is an evident shortage of research using
artificial intelligence (AI) techniques in the field of fish
disease detection, which emphasizes the urgent need for more
investigation and creativity. The shortcomings and gaps that
have been found are listed here:

• Numerous studies made use of publicly available
datasets or datasets that were country- or disease-
specific. To overcome this constraint, more extensive
and varied datasets covering a greater variety of fish
species, illnesses, environmental factors, and image
characteristics must be gathered. By doing this, it would
be possible to guarantee that models are trained on
a more representative set of data, improving their
performance and generalization in real-world situations.
We have only discovered one study in Bangladeshi
freshwater since fish diseases are dependent on geo-
graphic location and water quality. However, they did
not take any steps to expand the dataset, such as data
augmentation, in place of the limited dataset.

• We discovered a few problems where the model worked
well on training data but had trouble generalizing to
new data. High testing accuracy without overfitting
or underfitting problems was noted in some studies.
Still, even though they frequently achieve high accuracy,
Deep learning models can be very complex and difficult
to interpret. Developing techniques to decipher model
predictions and comprehend the underlying characteris-
tics influencing classification decisions is necessary to
overcome this constraint. Model interpretability could
be improved by employing strategies like attention
mechanisms, feature visualization, or model explanation
techniques, increasing the models’ reliability and suit-
ability for practical applications.

• Certain models might require a significant investment
in computing power and time to train and implement,
particularly when working with sizable datasets or
intricate architectures. This constraint must be overcome
by investigating lightweight architectures, optimizing
models for efficiency, or utilizing methods like model
compression and transfer learning.

B. ENSEMBLE DEEP LEARNING METHODS
To our knowledge, there is no prior work on the use of
ensemble deep learning in the field of fish disease detection.
However, a number of research works have been conducted
to investigate the efficacy of deep learning ensemble models
in various fields such as medical imaging [23], [24],
[25], [26], [27], [28]. While some studies used average
ensemble models [24], [25], others looked into the option of
stacking ensemble methods [23]. The decision between these
approaches is frequently based on the study’s unique aims as
well as the complexities of the dataset under consideration.

In this investigation, we employed a novel weighted
ensemble model based on multiple performance metrics.
Compared with the average and stacking ensemble models,
the weighted ensemble models have the superiority of
assigning different weights for base models according to
their performance, which makes them more flexible and has
the potential to improve the model’s performance. Usually,
if implemented through cross-validation or other procedures,
more precise models can make a substantial contribution to
the final prediction since these weights can be adjusted to
achieve greater efficiency compared to average ensembles
where all the models have equal weight. Weighted ensembles
avoid the pitfalls of stacking ensemble models, such as
increased complexity and susceptibility to overfitting due
to training a meta-model on predictions from base models,
which makes them a more straightforward yet effective
choice for ensemble learning in many scenarios.

On the other hand, some prior research contributed
to weighted ensemble models [26], [27], [28] where the
determination of model weights deviates from simplistic
calculation methods observed in prior research. In our study,
we introduce a novel approach to weight calculation named
the hyperbolic tangent (tanh) function based on multiple
performance metrics. This innovative mechanism offers
a distinct advantage over traditional simplistic weighting
methods by enriching the ensemble model’s predictive
capabilities. Our research extends the frontier of ensemble
learning in image classification by presenting a promising
avenue for further exploration and advancement.

III. DATASET AND PREPROCESSING
A. DATASET DESCRIPTION
The Fish Dataset was collected from the Kaggle website on
‘‘Fresh Water Fish Disease Dataset,’’ which was uploaded in
2022 (https://www.kaggle.com/datasets/utpolkantidas/fresh-
water-fish-disease-dataset).

VOLUME 12, 2024 96415



A. A. Maruf et al.: Classification of Freshwater Fish Diseases in Bangladesh

This image data was collected from Tangor Haor and
Kaptai Lake, comprising a total of 133 images, categorized
into seven distinct classes, namely, (i) Argulus (23 images),
(ii) Broken Antennae and Rostrum (7 images), (iii) EUS
(Epizootic Ulcerative Syndrome) (23 images), (iv) Healthy
Fish (31 images), (v) Red Spot (31 images), (vi) Tail and Fin
Rot (9 images), and (vii) Bacterial Gill Rot (6 images).

The purpose of the dataset is to facilitate research and
analysis related to fish health and diseases. The description
of the diseases and diseases included in the dataset are shown
in Table 1.

B. DATA AUGMENTATION
Models that need more data to reflect the population will
be more likely to overfit accurately. This means that other
techniques—aside from merely gathering more data—are
needed to stop overfitting and promote generalization toward
the practical use of the model. It can take a lot of effort
and time to obtain high-quality annotated training data.
‘‘Augmentation’’ is an image data preprocessing technique
that changes annotated data already in existence in order to
give the neural network new information [34]. An example
of this would be to flip an image and its ground truth from
left to right.

Offline augmentation is the application of such manip-
ulations prior to the commencement of the training [35].
In this way, the operator keeps authority over the dataset.
The operator can examine the masks and augmented images
beforehand to make sure the augmentations make sense.
This method’s much greater storage space requirement is
one drawback. It is not possible to store every possible
combination of various augmentations for a single image.
An alternative, less haphazard approach is used in the offline
augmentation process to minimize the number of images
saved while preserving a high degree of variety [36].
The pipeline is composed of two augmenters: a geometric

augmenter that includes various operations such as elastic
distortion, flip (height, width), grid distortion, grid shuffle,
optical distortion, random crop, resize, rotation, squeeze
(height, width), tilt (left, right, backward), and a pixel
augmenter that includes multiple radiometric operations
such as blur, brightness, channel shuffle, color to HSV
(Hue, Saturation, and Value), contrast manipulation, fog,
histogram normalization, noise, rain, random erasing, RGB
shift, shadow, sharpen, snow, to grey, to sepia.

The following is how the algorithm is created: The
geometric augmenter is programmed to produce ngeo = ⌈

1
2 ·

ntotal⌉ geometrically transformed versions of the input image
after a maximum number of augmentations per image (ntotal)
is specified. Then, for each generated geometric image, the
pixel augmenter generates npix = ntotal − ngeo versions in
addition to npix versions of the input image. Since there are
significantly more images produced as a result than in the
set ntotal, only ntotal randomly chosen images are kept. The
ultimate distribution, with respect to the set ntotal, between
only geometrically altered images and pixel-transformed

images for a single input sample. It is computed using:

Pgeo =
ngeo

ngeo × npix + npix
(1)

Ppix = 1 − Pgeo (2)

In summary, performing the augmentation approach
greatly increased our dataset while maintaining the image
quality.

IV. PROPOSED METHOD
A. TRANSFER LEARNING MODELS
In the fish disease detection research, we first used
transfer learning (a.k.a. pre-trained) models, namely ResNet-
50 [37], DenseNet-121 [38], InceptionV3 [39], and Effi-
cientNetB3 [40]. Pre-trained models are useful for various
tasks because they have learned to identify common features
in images, like edges, lines, and textures. The pre-trained
models can be improved to identify more precise features
and reach high accuracy on the new task using fewer training
images by fine-tuning them on a fresh dataset of images.

The pre-trained models, DenseNet-121, ResNet-50, Incep-
tionV3, and EfficientNetB3, were chosen for our study due
to their strong architectures and excellent results in various
computer vision tasks [41], [42], [43]. DenseNet-121 and
ResNet-50 are renowned for their high accuracy and effective
feature learning capabilities, making them ideal for capturing
intricate details in fish disease images. InceptionV3 offers
a balanced approach with its efficient architecture, adept
at handling varying image scales and resolutions. Efficient-
NetB3, with its compound scaling method, provides state-of-
the-art accuracy with minimal computational overhead. Our
main intention was to increase accuracy while maintaining
low computational cost. To achieve this, we applied a
variety of architectures in our ensemble model, select-
ing models known for their efficiency and computational
affordability.

1) RESNET-50
ResNet-50 [37] has 50 layers, making it comparatively deep.
It presented the idea of residual learning, which avoids the
vanishing gradient problem by using shortcut connections.
The first layer employs 7× 7 convolutions, while the residual
blocks use 3 × 3 convolutions. The residual block, which
enables the network to skip layers and enable the training of
very deep networks, is the main innovation of ResNet.The
primary goal of Inception v3 is to reduce processing power
consumption by altering the earlier Inception architectures.
Factorized convolutions: by lowering the number of network
parameters, they help to decrease computational efficiency.
It also monitors the effectiveness of the network. Training
proceeds faster when smaller convolutions replace larger
convolutions with smaller convolutions. If two 3 × 3 filters
are used in place of a 5 × 5 convolution, the number of
parameters is reduced to 18 (3 × 3 + 3 × 3) from the 25
in the case of a 5 × 5 filter. One possible substitution for a
3× 3 convolution would be a 1 × 3 convolution, followed by
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TABLE 1. Overview of the diseases included in the dataset.

a 3× 1 convolution. A 2× 2 convolution would require a few
more parameters than the suggested asymmetric convolution
in place of a 3 × 3 convolution. A tiny CNN called
an auxiliary classifier is placed in between layers during
training, and the loss it experiences is added to the loss of
the main network.

2) DENSENET-121
DenseNet is a special type of CNN architecture introduced
by Huang et al. [44], consisting of dense blocks with multiple

bottleneck layers connected in a feed-forward manner to
minimize the issue of vanishing gradients, which makes the
training process easier. In the DenseNet architecture, each
block is made up of several convolution layers that are
then combined through a concatenation process, integrating
the input from all previous layers within the block. This
network consists of multiple layers, each consisting of a
composite function denoted by Ht (.), which is a combination
of operations like leaky rectified linear units named ReLU,
Batch Normalisation, pooling, and convolution layers.
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Here, the number of layers in this network is denoted by
L. Then, the number of connections for this architecture is
calculated using L(L + 1)/2, whereas in other CNNs, the
number of connections is the number of layers. Implementing
a nonlinear transformation H to the previous layer’s output
xl−1, the obtained output for xl is Hl(xl−1).
For the connection with previous layers through concate-

nation, the output obtained for l th layer that denotes the
concatenation of the extracted features from the input of the
previous layer is:

xl = Ht ([x0, x1, x2, x3, x4, . . . , xl−1])

where 0, 1, 2, 3, 4 and l − 1 denotes the number of the
previous layers and x0, x1, x2, x3, x4 are the individual
extracted features from each of the previous input layer.

Again, each function Hℓ generates k feature maps.
Consequently, the ℓth layer has k0 + k × (ℓ− 1) input feature
maps, where k0 represents the number of channels in the input
layer,k is denoted for growth rate of the network. Each layer
provides k feature mappings to the global state. The growth
rate determines the amount of new information that each layer
adds to the global state from where every information can be
accessed.

DenseNet-121 is a variant of DenseNet with 4 dense blocks
and 3 transition layers. DenseNet-121 [38] has 121 layers, but
because each layer is densely connected to every other layer,
it has fewer parameters than ResNet. 3 × 3 convolutional
filters are used. Because each layer has direct access to the
gradients from successive layers, DenseNet’s architecture
promotes feature reuse and lessens the issue of disappearing
gradients.

3) INCEPTIONV3
An auxiliary classifier serves as a regularizer in Incep-
tionV3 [39]. InceptionV3 aims to scale up networks effi-
ciently by applying factorized convolutions, aggressive reg-
ularisation, and enhancements in the Inception architecture
that deviated from traditional methods to improve network
accuracy through its unique principles of avoiding rep-
resentational bottlenecks and processing high-dimensional
representations with ease [45], [46]. It employs low-
dimensional embeddings for spatial aggregation without
sacrificing representative capacity, as well as simultaneously
increasing the network’s width and depth to achieve optimal
performance within a given computational budget. The
InceptionV3 network’s overall layout consists of a series
of layers beginning with a 3 × 3.2 conv2d layer with
ReLU activation and batch normalization for an input size
of 229 × 229 × 3, followed by similar conv2d levels with
patch size, stride, and input size adjustments. It includes
three different InceptionModules being applied in succession
(3 times Inception Module 1, 5 times Inception Module 2,
and 2 times Inception Module 3), each with a max pooling
layer, a linear logits layer, and a softmax classifier to
handle inputs and output for classifications, encapsulating

the architecture’s comprehensive design tailored for robust
performance enhancements.

4) EFFICIENTNETB3
One member of the EfficientNet family that is partic-
ularly useful for transfer learning tasks—such as fish
disease detection is EfficientNetB3 [40]. With its scalable
architecture, EfficientNetB3 provides an attractive solution
for a range of computer vision applications by skillfully
balancing model size, accuracy, and computational effi-
ciency. EfficientNetB3 maintains competitive performance
by efficiently using computational resources through the
use of techniques like depth, width, and resolution scal-
ing. Its reliance on effective building blocks, such as
MBConv, mitigates issues such as vanishing gradients by
encouraging feature reuse and gradient flow, much like
DenseNet. EfficientNetB3 reduces computational overhead
while capturing spatial features effectively through the use
of 3×3 convolutional filters. EfficientNetB3, which takes its
cues frommodels such as InceptionV3, incorporates auxiliary
classifiers into its training to enhance regularization and
generalization. It is useful in our research because it excels
in achieving high accuracy with minimal training data and
focuses on reducing computational costs through factorized
convolutions.

5) CUSTOMIZING TRANSFER LEARNING MODELS
The architecture makes use of transfer learning with
ImageNet-pre-trained models, a popular deep learning tech-
nique in which models that have been pre-trained on
sizable datasets such as ImageNet are used as a basis
for additional tasks [47]. By doing this, the network
can apply the pre-trained model’s knowledge of a wide
range of features, improving generalization to new tasks
with smaller datasets. When loading the pre-trained model,
setting ‘‘include_top=False’’ means that the fully connected
layers—or ‘‘top’’ layers—are not included in the pre-trained
model. This enables us to add and modify layers that are
appropriate for the classification of fish diseases. We started
with the base model and added the Global Average Pooling
Layer (GAP) to the modified transfer learning model. The
architecture then includes a GAP layer, which calculates
the mean value of each feature map over all of its spatial
dimensions. By combining all of the feature maps into a
single one, global pooling allows for the easy comprehension
of all pertinent data by a single dense classification layer as
opposed to several layers. It can be used for both 1D and 3D
input and is commonly implemented as either max pooling
(GlobalMaxPooling2D) or average pooling (GAP2D). GAP
is a pooling operation that can be used for transfer learning
and is intended to replace the fully connected and flattened
layers.GAP can be expressed as:

GAP(xab) =
1

h× y

h∑
a=1

y∑
b=1

xab (3)
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In this case, the activation of a neuron in the a-th row and
b-th column of the feature map is represented by xab, and
the feature map’s height and width are indicated by h
and y, respectively. The GAP layer improves computational
efficiency and lessens overfitting by shrinking the spatial
dimensions of the feature maps while keeping relevant
features.

Dropout(x) =

{
x with probability 1−p
0 with probability p

(4)

FIGURE 2. Before and after applying the dropout.

Then, a dropout layer is added, having a dropout rate of 0.2.
During training, the Dropout layer arbitrarily sets a portion of
the input units to zero, preventing the network from becoming
overly dependent on any one set of features and thereby
reducing overfitting. As shown in Figure 2, ‘‘dropout’’
describes the process of removing a neural network’s input
and hidden layer nodes. A new network architecture is
created out of the parent network by temporarily removing
all forward and backward connections with a dropped node.
There is a p dropout probability for the nodes.
The model picks up statistical noise in the overfitting

issue. More specifically, given all the units (neurons), the
primary goal of training is to reduce the loss of function.
As a result, overfitting can cause a unit to adjust to correct
the errors made by the other units. Because of the inability of
these complex co-adaptations to generalize to the unknown
dataset, they result in complex co-adaptations, which in
turn cause the overfitting issue. Because a unit’s presence
is highly unpredictable in every iteration, dropout prevents
these units from correcting the mistakes made by other
units, preventing co-adaptation. Thus, it forces the layers to
adopt a probabilistic approach and assume some degree of
responsibility for the input by arbitrarily dropping a few units
(nodes).When the dropout layer was first implemented, a unit
(node or neuron) in a layer was chosenwith a keep probability
(1-drop probability) during training. As a result, the training
batch is given a thinner architecture, which varies with each
training run. The following equations apply to the standard
neural network during forward propagation:

z(l+1)
i = w(l+1)

i yl + b(l+1)
i (5)

y(l+1)
i = f (z(l+1)

i (6)

Here, z represents the output vector from layer (l + 1)
prior to activation, y represents the output vector from layer l,

w represents the layer’s weight, and b represents the layer’s
bias. Any activation function can be represented by f , as in
f (x) =

1
1+exp(−x) .

r (l)j ∼ Bernoulli(p), (7)

y(l)i = r (l)j · y(l)i , (8)

z(l+1)
i = w(l+1)

i y(l)i + b(l+1)
i , (9)

y(l+1)
i = f (z(l+1)

i ) (10)

The dense (fully-connected) layer is added at the end.
After computing a weighted sum of its inputs, the dense
layer activates the softmax, which turns the raw scores into
probabilities. It is calculated as follows:

Dense(x) = softmax(Wx + b) (11)

In this case, the input vector is denoted by x, the weight
matrix byW , the bias vector by b, and the softmax activation
function by softmax. Thanks to the final classification layer,
which generates probabilities for the seven classes, the model
can classify input images into the appropriate categories. The
architecture makes the best use of transfer learning, tailoring
it with GAP andDropout layers to enhance generalization and
prevent overfitting before classifying using the dense layer.

Using the ‘‘include_top=False’’ option, which removes
the fully connected top layers of the pre-trained models,
we altered the transfer learning models in our study to
minimize their size and computational costs. Drastically
lowering the number of trainable parameters improved the
models’ efficiency while preserving their potent feature
extraction capabilities. We further minimize computational
demands while maintaining high performance by swapping
out these dense layers with lighter, custom classification
layers for our particular task. This optimized method
guarantees effective use of the available computing power,
leading to shorter training times and lower inference latency.
As a result, our computationally efficient models remain
effective in classifying diseases affecting Bengali freshwater
fish and are more suitable for implementation in resource-
constrained environments.

This optimized computational efficiency for DenseNet-
121 by reducing the trainable parameters to 3,058,759
out of a total of 7,044,679 parameters. With 7,286,905
trainable parameters out of 10,794,294 in its configuration,
EfficientNetB3 was designed to be highly efficient. With
1,949,703 trainable parameters reduced from 21,817,127
in InceptionV3, the model became lighter and required
less computing power. With the customization, ResNet-50
produced just 14,343 trainable parameters out of 23,602,055,
indicating that the model is rapid and efficient. By substitut-
ing lighter, task-specific classification heads for the excluded
top layers, we ensured that each model remained highly
practical and computationally feasible for distinguishing
diseases in Bengali freshwater fish.

Table 2 shows the computational details of pre-trained
models.
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TABLE 2. Customized pre-trained models architecture and details. (Note: the training time is measured on the Google Colab Pro+ platform using
Tensorflow/Keras as described in Section V-A.)

B. PROPOSED ENSEMBLE TECHNIQUE
We moved toward the transfer learning base ensemble
after deploying the pre-trained models one at a time.
The pre-trained model ensemble has shown to be more
effective recently than the individual models [48], [49].
Ensemble models in deep learning are developed by com-
bining predictions from multiple individual models, using
different predicting algorithms or training datasets in order
to obtain ideal final predictions and to reduce generalization
errors [50].
Ensemble learning combined with pre-trained models has

shown remarkable effectiveness, especially in tasks such
as image classification, natural language processing [51],
and time series forecasting [52]. It reduces variance, makes
predictions more stable, and takes advantage of the valuable
features extracted by pre-trained models trained on large
datasets. The combined effort not only outperforms the latest
models but also tackles the issue of overfitting by utilizing a
diverse ensemble and the inherent adaptability of pre-trained
models to smaller datasets.

One significant advantage is the capacity to use the
information stored within pre-trained models, which is
especially useful in scenarios with limited training data.
These models provide advanced features that perform well
at capturing complex relationships and are customized to
enhance overall performance. Ensemble models are known
for their ability to resist noise and variations, making them
more robust. As we mentioned earlier, we have used 4 pre-
trained models. The ensemble model was a combination of
these four models.

In our research to classify fish diseases into seven distinct
classes, we applied two types of ensemble models, namely,
(i) the baseline averaged ensemble (AE) and (ii) the novel
Performance Metric-Infused Weighted Ensemble (PMIWE).
Each model is described here briefly.

1) BASELINE ENSEMBLE MODEL: AVERAGED
ENSEMBLE (AE)
The baseline proposed ensemble model of our work is
the averaged ensemble (AE) model. This model is a
non-weighted ensemble model that combines our pre-trained
models independently and calculates the average of the
probability scores and the performance of the base learners
in a relatively straightforward manner. When compared to a
weighted ensemble, this one does not frequently require the
initialization of weights, and predictions are not dependent
on weights. This is because each model makes an equal

amount of contribution to the detection process. Individual
pre-trained models have significant pros and cons, like low
bias and high variance, which may lead to overfitting and
accuracy-related issues. As this proposed approach combines
various models having advantages and limitations, it reduces
bias and variances, which ultimately helps in generalization
across different datasets. Due to the integration of all models,
it is less prone to overfitting, which ultimately improves
accuracy.

Let us assume that n is the number of models, and the input
samples are P1,P2,P3, . . . ,Pn. The general equation for the
averaged ensemble model is:

Pensemble =
1
n

n∑
i=1

pi (12)

where pi is the prediction of the i-th individual model, and
Pensemble is the ensembled prediction.

We used softmax scores obtained by these individual
models and combined and averaged them to predict the
highest outcome classes. The general equation for softmax(zi)
is:

softmax(zi) =
ezi∑k
j=1 e

zj
(13)

where ezi is the exponential function for the individual input
sample, k is the number of classes, and S(zi) is the function
for the output vector.

So, the calculated ensemble output is:

Pmn =
esoftmax(Omn)∑k

k=1 e
Omk

(14)

Here, Pmn is the probability outcome of the n-th unit on the
m-th base learner, Omn is the output of the n-th unit of the m-
th base learner, and k is the number of classes (k = 7 in our
case).

2) NOVEL ENSEMBLE MODEL: PERFORMANCE
METRIC-INFUSED WEIGHTED ENSEMBLE (PMIWE)
Initially, the primary results of the base models can affect
the ensemble outcomes. Then, assigning different weights
on the base models has a particular effect on the ensembled
outcome. During training, base learners generate probability
scores that can be used to calculate assignedweights. Amodel
trained on the test dataset uses these weights throughout the
ensemble. This accurate method assures the independence
and reliability of predictions. The maximum weight given to
the base learners has the most priority in a prediction system
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of the ensemble model. Weighted ensembling is an effective
method for classifier fusion. To ensure the ensemble’s
success, however, the weights assigned to the various base
learners must be carefully considered. The majority of
methods in the literature determine the weights through
experimentation or by considering only the classifier’s
accuracy. When there is a class imbalance in the dataset,
this may not be the best metric to use. To ascertain the
base learners’ priority, additional assessment metrics like
F1-score, AUC, precision, recall, kappa and MCC may
offer reasonably reliable data. In order to achieve this,
we developed a novel weight allocation strategy in this study.

Initially, the weights assigned to each base learner using
the suggested strategy are determined using the probability
scores that the base learners obtained during the training
phase. Using these generated weights, an ensemble trained
on the test set is created. This tactic ensures that the test set
is totally independent and that no information from it leaks.

During the evaluation, predictions (ypred) from the i-th
model are generated. Compared with the true labels (y)
to compute the influential performance metrics, including
precision score (prci), recall scores (reci), F1-score (F1i),
MCC score (MCC i), and Cohen’s Kappa (kappai), which are
described in detail in Section V-D. The weightW i is assigned
to each classifier and then calculated using the hyperbolic
tangent function shown in Eq. 15. The hyperbolic tangent
function, tanh, is a mathematical operation that reduces input
values into a specific range. In the context of our experiment,
it appears to be in the range [0, 0.865], although the usual
range is typically [−1, 1]. In this scenario, the variable z
represents an evaluation metric, with values limited to the
range of 0 to 1.

The tanh function is selected for its monotonic increase
within the specified range, indicating that as metric values
rise, the output of the tanh function also increases. In practical
terms, this translates to an approach where higher metric
values are given more importance while lower values are
dismissed. This approach is in line with the idea that higher
metric values typically suggest superior performance in
evaluation. When using a truncated range of [0, 0.865], the
tanh function gives more importance to instances with metric
values closer to 1. This means that it focuses on the cases that
perform better within the overall metric range of [0, 1].

w(i) =

∑
z∈A(i)

tanh(z) =

∑
z∈A(i)

ez − e−z

ez + e−z
(15)

Eq. 15 assigns a weight w(i) to the i-th base learner in an
ensemble model based on its performance metrics. Here,
A(i) represents the set of evaluation metrics for the i-th base
learner, such as precision, recall, F1-score, MCC, or Cohen’s
Kappa. Each metric z in this set is transformed using the
hyperbolic tangent function, tanh(z), which scales z to a value
in the range [0, 0.865]. The equation generates a weight w(i)
that reflects the base learner’s overall effectiveness, giving
more importance to models with better performance metrics.

After that, we calculated the final prediction for ensemble
models by using the process described below.

Firstly, we computed the probability scores of each base
classifier for a specific class and then the prediction made by
the ensemble model. For multi-class probability array:

p(i)j = [p(i)j,1, p
(i)
j,2, . . . , p

(i)
j,C ]

The probability array for the j-th sample by the i-th base
classifier (p(i)j ) is a vector of length C representing the
probability distribution over the C classes for that sample.

When calculating the ensemble probability for multi-class
scenarios, we used the probabilities of the base classifiers for
each class. This is done by calculating a weighted average of
these probabilities:

enpj =

 ∑
i w

(i)∑
i w

(i) · p(i)j,1
,

∑
i w

(i)∑
i w

(i) · p(i)j,2
, . . . ,

∑
i w

(i)∑
i w

(i) · p(i)j,C


(16)

In Eq. 16, enpj represents the ensemble prediction for the
j-th instance across C classes. Each element enpj [c] in enpj
is computed as the inverse-weighted average of predicted
probabilities p(i)j,c from i-th base learners. Here,

∑
i w

(i) sums
the weights assigned to each base learner i, reflecting their
importance based on performance metrics. The denominator∑

i w
(i)

·p(i)j,c adjusts each p
(i)
j,c by its corresponding weightw

(i),
ensuring that better-performing base learners contribute more
to the final prediction. This ensemble approach optimizes
prediction accuracy by combining diverse model outputs
while giving greater weight to more reliable predictions,
as determined during training.

Ultimately, the ensemble model predicts the class using
Eq. 17.

Predictionj = argmax(ensemblepj ) (17)

We applied the argmax function to identify the class with
the highest probability among the classes where predictionj
is the predicted class of the samples. The architecture of the
proposed weighted ensemble model is shown in Figure 3.
The algorithm of the proposed PerformanceMetric-Infused

Weighted Ensemble (PMIWE) model is described below.

V. EXPERIMENTAL SETUP
A. IMPLEMENTATION
Python is the main programming language used for fish
disease detection using Google Colab Pro+. A number of
libraries and frameworks were used in our research. Among
the foundational frameworks, TensorFlow stands out for its
strong capabilities in neural network model building and
training. Keras is a high-level API that works in tandem
with TensorFlow to enable quick experimentation with deep
learning architectures on top of TensorFlow’s backend.
Scikit-learn’s abundance of preprocessing, model evaluation,
and selection tools enhances the ecosystem. NumPy’s array-
based operations improve computational efficiency, and
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FIGURE 3. Proposed novel Performance Metric-Infused Weighted
Ensemble (PMIWE) model.

pandas make data manipulation and analysis easy. These are
important tasks for preprocessing and organizing datasets.
When combined, these tools provide a complete toolkit that
makes it possible to create advanced models for the detection
of fish diseases in the Google Colab Pro+ environment.

B. DATASET SPLIT
By using the augmentation process on the original dataset,
we significantly enhanced the dataset. By using this method,
we can make sure that our model is exposed to a greater
variety of data variations. After that, we organized the
resultant enhanced dataset, containing both the original and
the augmented images, into three distinct folders: training,
testing, and validation. By doing this, we can make sure that
our model is trained, tested, and validated on a variety of data
samples, which will increase its resilience and capacity for
generalization. We have 1,616 images for training, 178 for
validation, and 203 for testing. Table 3 shows the number of
training, validation, and testing samples of each class.

Algorithm 1 Performance Metric-Infused Weighted Ensem-
ble (PMIWE) Model
Input: Training dataset with features and labels, Test
dataset with features
Output: Predicted classes for the samples in the test
dataset

Base Model Creation:
for each base learner i do
Train base learner i on the training dataset.
Generate probability scores p(i)j for each sample j in the
training dataset.
Evaluate base learner i on the test dataset.
Compute predictions yipred from base learner i.
Compute performance metrics using yipred and true
labels.
Calculate the weight W i for each classifier using the
hyperbolic tangent function:
W i

=
∑

z∈A(i) tanh(z) based on performance metrics
prci, reci, F1i, MCC i, and kappai.

end for

Ensemble Model Creation:
Assign weights to each base learner based onW (i)
Create the ensemble model using the weighted base
learners.
Train the ensemble model on the training dataset.

Prediction Using Ensemble Model:
for each sample j in the test dataset do
Compute the probability scores for each class using the
base learners’ probability arrays:
p(i)j = [p(i)j,1, p(i)j,2, . . . , p(i)j,C ]
Calculate the weighted ensemble probability for each
class:
enpj = [

∑
(i)W (i)∗p(i)j,1∑

(i)W (i) , . . . ,

∑
(i)W (i)∗p(i)j,C∑

(i)W (i) ]
Predict the class with the highest probability:
Prediction = argmax(ensemblep)

end for

TABLE 3. Class distribution in training, validation, and testing datasets.

C. HYPERPARAMETERS
• Learning Rate: One hyperparameter that regulates the
step size or the speed at which the model weights
are updated during training is the learning rate. It is
an important parameter since it has an impact on
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the optimization and convergence processes in finite
time [53], [54]. A low learning rate could result in
an excessively slow training process, whereas a high
learning rate could cause the model to exceed the
minimum. Sometimes, a model’s accuracy is dependent
on its learning rate settings.
In symbolic terms, the gradient descent updating rule for
a parameter w with learning rate η is as follows:

w = w− η · ∇L(w)

Here, the model parameter is denoted by w. The rate
of learning is η. With regard to the parameter w, the
gradient of the loss function L(w) is represented as
∇L(w).
Stable updates to the model parameters are ensured
by a lower learning rate, such as 0.0001, which
lowers the possibility of overshooting the loss function
minimum, an issue that can arise with higher learning
rates. In order to achieve a smooth and consistent
convergence, this stability is essential. Furthermore,
fine-tuning parameters at a slower learning rate is
crucial for accurately identifying the complex patterns
linked to fish illnesses. Extensive empirical testing was
used to validate this decision, and the results showed
that 0.0001 offered the best trade-off between training
time and model performance. While lower learning
rates needlessly prolonged training without producing
appreciable performance gains, higher learning rates
caused instability. This decision is further supported
by the Adam optimizer [55], which is well-known
for working well at lower learning rates [56] and
for enhancing training dynamics and model accuracy.
In order to ensure efficient and accurate model training,
stability, precision, and empirical validation were there-
fore factors in the decision to choose a 0.0001 learning
rate. In fact, in the experiments, we also tried out a higher
learning rate of 0.001. But, 0.0001 indeed offers better
results.

• Loss Function: During training, the loss function
calculates the degree to which the model’s predictions
agree with the target values. It measures the accuracy or
accuracy of the model’s predictions by quantifying the
error between the predicted and actual values.
The loss function can be represented symbolically as
L(y, ŷ), where y stands for the true target values and ŷ
for the forecast values. Depending on the problem being
solved, the loss function’s specific form (for example,
mean squared error in regression or cross-entropy in
classification) will vary. The objective of the training is
to reduce the loss function.
The categorical cross-entropy loss function, which
is commonly used for multi-class classification, is
defined as:

L(y, ŷ) = −

k∑
i=1

yi · log(ŷi)

where k is the number of possible classes (k = 7 in our
case), yi ∈ {0, 1} is the actual class label for the class
i, and ŷi ∈ {R|0 ≤ ŷi ≤ 1} is the predicted probability
(a.k.a. confidence) for the class i. (Notes: among all the
k classes, only one yi is 1, and the remaining are all 0.
The sum of the ŷi values for all the k classes is 1.)

• Optimizer: To reduce the loss function during model
training, optimizers are crucial algorithms used in
machine learning. To improve model performance,
they iteratively modify the model’s parameters by the
gradients of the loss function. Optimizers are essential
because of their effectiveness in reducing loss, pro-
moting quicker convergence, and adjusting to different
optimization issues like sparse data or non-convex loss
surfaces. Moreover, they allow practitioners to fine-tune
optimization algorithms for particular workloads and
datasets by providing robustness and customization
choices through hyperparameter adjustment. Achieving
dependable and consistent performance depends heavily
on how robust the optimizer is that we employ in our
model. We selected the Adam optimizer [55] because
of its adaptive learning rate and track record of success
with noisy and sparse gradients [57], [58]. Based on the
first and second moments of gradients, Adam modifies
the learning rates for each parameter, resulting in faster
convergence and a lower chance of becoming trapped
in local minima. Its capacity to manage sparse gradients
is beneficial for our model, which processes a variety
of features taken from photos of fish illnesses. Adam
also uses bias correction to improve stability during
training by mitigating initialization bias in moment
estimates. The optimizer is appropriate for larger models
and datasets due to its computational efficiency and
lower memory requirements when compared to other
optimizers, guaranteeing real-world application in the
aquaculture sector. The ideal configuration was further
guaranteed by extensive hyperparameter tuning, which
struck a balance between model stability and conver-
gence speed. Overall, Adam’s resilience in learning
dynamics greatly enhances the model’s efficacy and
dependability in practical applications.

Table 4 contains a list of the suggested model’s important
hyperparameters, which represent the estimated computing
dimension of a particular neural network. It should be noted
that the suggested design uses Softmax activation functions
for the output layer and Rectified Linear Unit (ReLU) for the
hidden layer activation.

D. PERFORMANCE EVALUATION METRICS
All of the widely used performance evaluation metrics [59],
namely, accuracy, precision, recall, F1-score, and AUC-ROC,
are used in this evaluation to support the model’s high
performance. These metrics are defined below.

Confusion matrices are produced in order to analyze the
error. A confusion matrix is a table that shows the counts
of TP, TN, FP, and FN predictions for each class, thereby

VOLUME 12, 2024 96423



A. A. Maruf et al.: Classification of Freshwater Fish Diseases in Bangladesh

TABLE 4. Experiment settings.

summarizing the performance of a classification algorithm.
Here, FN stands for false negative, FP for false positive,
TP for true positive, and TN for true negative. When an
instance (fish image in our case) is predicted by the classifier
as belonging to the class of interest, it is defined as a
‘‘positive’’. When an instance is predicted as belonging to the
other classes, it is regarded as a ‘‘negative’’. We take each of
the seven classes as the class of interest at a time and calculate
the seven sets of TP, TN, FP, and FN values. From each set of
values, we can calculate the following performance metrics.

The percentage of correctly classified instances relative to
all instances is known as accuracy. It is used to assess the
overall classification performance. Accuracy is computed as
shown in Eq. 18.

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

Precision is the percentage of correctly predicted positive
instances among all positive predictions. It is computed as
shown in Eq. 19.

Precision =
TP

TP + FP
(19)

Recall (a.k.a. TP rate) is a metric that quantifies the
percentage of accurately predicted positive instances among
all actual positive instances. It is also referred to as sensitivity
or true positive rate. It is computed as shown in Eq. 20.

Recall =
TP

TP + FN
(20)

The harmonic mean of recall and precision yields the
F1-score, also called the F-score or F-measure, which is a
balancedmetric between the two, and it is calculated as shown
in Eq. 21.

F1-score = 2 ×
Precision × Recall
Precision + Recall

(21)

Plotting the TP rate (TP/(TP+FN)) against the FP rate
(FP/(FP+TN)) at different threshold settings, the ROC-AUC
calculates the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve [60]. The AUC-ROC is
computed by integrating the area under the ROC curve.

Since our dataset is not balanced, we also used Kappa and
MCC to calculate the agreement. The Kappa coefficient [61]
is an appropriate measure of the reliability of a classifier. It is
regarded as a robust measure, as the possibility of the correct
classification by chance is taken into account. It quantifies
the degree of agreement between observed and predicted
classifications by taking into account true and false positives
as well as negatives. It is defined in Eq. 22.

kappa=
2 × (TP × TN − FN × FP

(TP+FP) × (FP + TN) + (TP + FN) × (FN+TN)
(22)

The Matthews correlation coefficient (MCC) [62] eval-
uates the accuracy of binary classifications for unbalanced
data. It also takes all of TP, TN, FP, and FN into account and
is regarded as a balanced measure that can be used even if
the classes are of different sizes. MCC runs from 1 (perfect
agreement) to −1 (complete disagreement). It is calculated
using Eq. 23.

MCC =
TP × TN − FP × FN

√
(TP + FP)(FP + FN)(TN + FP)(TN + FN)

(23)

VI. RESULT AND ANALYSIS
We calculate the average values from the seven sets of
performance metrics described above in Section V-D (one set
for each class).

A. MODEL GENERALIZATION ANALYSIS
Table 5 displays the performance of the base pre-trained
models and ensemble models across training, validation, and
testing phases.

TABLE 5. Training, validation, and testing accuracies of the base
pre-trained models and the proposed ensemble models (AE = Averaged
Ensemble; PMIWE = Performance Metric-Infused Weighted Ensemble; the
subscripts 0.001 and 0.0001 are the learning rates).

From Table 2, we can observe that DenseNet-121 exhibits
the smallest model size of 28.57 MB and a moderate number
of total parameters of 7,046,239, where 7,038,569 parameters
are trainable, which made the model adaptable. Despite its
faster training time of 700 sec., however, its lower training
accuracy of 76.31% indicated slight underfitting where the
validation and testing accuracy is much higher than that.
It achieved 87.52% validation accuracy and 78.89% testing
accuracy.
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Despite having the highest training accuracy of 99.51%,
EfficientNetB3 suffers from overfitting. It happened because
the validation dropped to 96.51% with the testing accuracy
of 80.90%. It has a model size of 41.8 MB and more
total parameters of 10,704,294 than DenseNet-121, with a
significant number of trainable parameters of 7,256,895.
It has the largest number of trainable parameters.

With a model size of 83.23 MB and a high number of
parameters of 21,817,127, InceptionV3 has a considerable
number of non-trainable parameters of 1,967,424. Here, the
training accuracy for InceptionV3 is 98.57%, the validation
accuracy is 96.51%, and the testing accuracy is 83.91%.

On the other hand, ResNet-50 also showed a similar
trend to InceptionV3, where it has the largest model size
at 90.3 MB and the greatest number of total parameters of
23,620,255. However, only 14,343 parameters are trainable,
which indicates that most of the network’s parameters are
frozen, which might help in leveraging pre-trained features.
The validation accuracy is much lower than the training
accuracy, which suggests a slightly overfitting situation.
The training accuracy for ResNet-50 is 98.46%, while the
validation accuracy is 97.63%, with a testing accuracy of
82.91%. Pre-trained models have shown promising results in
reducing overfitting to some degree.

Through modification of these models, a large fraction
of parameters were made non-trainable, thereby reducing
computational complexity. However, another key goal of
our research is to determine how the model can perform
on unseen data. At first, using customized transfer learning
models allowed for a decrease in processing costs. Afterward,
using ensemble methods produced impressive increases in
test accuracy, which satisfied the main objective of our study.
As mentioned above, We have applied the AE and PMIWE
ensemble models.

The PMIWE with 0.001 learning rate obtained 98.65%
training accuracy; the validation accuracy was 92.23%,
and the testing accuracy was 86.65%, indicating that the
ensemble model overfitted nut performed well on unseen
data compared to the pre-trained models. Additionally, the
training accuracy for the AE model with a learning rate of
0.001 was 98.10%, while the validation and testing accuracy
was 89.61% and 84.54%, respectively. Although the testing
accuracy is increased compared to pre-trainedmodels in some
situations, the overfitting issue is still not resolved.

Furthermore, when the learning rate is applied to 0.0001,
a significant change was observed among the ensemble
models. For a 0.0001 learning rate, PMIWE acquired 97.70%
training accuracy with an almost similar validation accuracy
of 97.54%. Here, the training and validation accuracy is
quite the same with 97.53%, so this PMIWE model is well-
fitted. On the other hand, the AE model with a learning
rate of 0.0001 performed reasonably well but still with some
overfitting (training 99.27%, validation 93.74$, and testing
87.11%).

In our research, the PMIWE model performed best in
classifying fish diseases, and the proposed model was

well-fitted. The testing accuracy is 97.53%. First of all,
by giving each base model a distinct weight for its prediction
based on multiple performance metrics, the PMIWE model
leverages the advantages of multiple base models.

Large datasets are used to train pre-trained models, which
enable them to pick up general features and patterns.
These pre-trained models can be made more adaptive and
knowledgeable about the available data by developing them
on particular tasks or datasets. In fact, combining these
improved, pre-trained models into an ensemble enables the
utilization of the various advantages of various architectures
and training approaches. Because of this diversity, the
ensemble is better able to predict outcomes because it can
draw from the combined knowledge and experience of several
models.

Fish disease classification performance was enhanced with
a lower learning rate of 0.0001, which allowed for more
accurate updates to the model’s parameters, finer adjust-
ments, and more effective convergence. Moreover, ensemble
approaches reduce the chance of any one model memorizing
noise or unimportant patterns in the data by combining
predictions from several models, which naturally reduces the
risk of overfitting. This ensemble effect improved the overall
model’s capacity for generalization, which improved our fish
disease classification’s performance on unseen data.

In Figure 4, we present our model’s performance metrics
over 50 epochs. A pattern becomes apparent during training:
training and validation losses both go down gradually,
indicating that the model is capable of learning. Crucially,
we see a steady increase in training and validation accura-
cies, indicating that the model successfully generalizes to
new data without displaying overfitting during the whole
training period. Once more, the graphical representations
demonstrated the robustness of the model.

B. PERFORMANCE ANALYSIS
We have thoroughly examined our model’s behavior regard-
ing overfitting and generalization to previously unseen data.
Our analysis produced a strong model with few overfitting
indicators, indicating that it can generalize well outside of the
training set. To extensively evaluate themodel’s performance,
we also used a wide range of assessment criteria. These
standards gave us detailed information about different aspects
of its efficacy and guaranteed a comprehensive compre-
hension of its potential. Table 6 presents the performance
of the models evaluated by accuracy, precision, recall, and
F1-Score. The same data are also displayed in a graphical
format in Figure 5.

Firstly, DenseNet-121 displays reasonable recall and preci-
sion rates of 78% and 79%, respectively. But EfficientNetB3
outperforms DenseNet-121 with a higher recall of 81%
and a precision of 80%, demonstrating its better capacity
to recognize pertinent instances with negligible precision
loss. Both models have an F1-score of 78% and 80%.
On the other hand, InceptionV3 places more emphasis on
accuracy, outperforming DenseNet-121 and EfficientNetB3
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FIGURE 4. Graphical representation of training and validation accuracy, training and validation loss of every epoch (PMIWE0.001).

FIGURE 5. Performance of all models.

TABLE 6. Average values of accuracy, precision, recall, and F1-score of
the base pre-trained models and the proposed ensemble models on the
testing dataset.

with an 84% rate. This preference for accuracy points to
InceptionV3’s methodical identification process, making it
an appealing option. InceptionV3 performed well on unseen
data and had fewer overfitting problems than any pre-trained
model. Additionally, the F1-score of 83% indicates the

identification of positive and negative instances better than
any pre-trained models. Lastly, ResNet-50 outperforms
DenseNet-121 and EfficientNetB3 with a recall rate of 83%.
The F1-score and precision are 82%.

The ensemble model that we used in our study to improve
detection performance has already proven to be the best.
Additionally, we discovered that they had significantly better
identification rates for false positive and negative cases and
also true positive and negative cases than the pre-trained
models. When various ensemble methods with different
learning rates are compared, distinct patterns in precision,
recall, and F1-score metrics are revealed. At a learning rate
of 0.001, PMIWE consistently achieves 85%, 84%, and 85%
for precision, recall, and F1-score, respectively. Comparably,
the AE model with the same learning rate performs steadily,
keeping recall and precision at 85% apiece, yielding an
F1-score of 85%. As an illustration, PMIWE which uses a
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lower learning rate of 0.0001, achieves remarkable results
in terms of precision, recall, and F1-score, with values of
97%, 97%, and 97%, respectively, across all metrics. A lower
learning rate in the AE model results in better recall and
precision (87% and 86%, respectively), which contributes
to an F1 score of 87%. The significant improvement in
performance metrics, especially when the PMIWE model is
used at a lower learning rate, indicates that the ensemble
makes good use of the various advantages that each model
has to offer. The more careful adjustments made possible by
the lower learning rate lead to improved generalization and
finer pattern learning, which in turn produce higher recall,
F1-score values, and precision. Consequently, PMIWE, with
a learning rate of 0.0001, comes out on top, demonstrating
its robustness and effectiveness in the classification of fish
diseases, where we have previously found that it is well-fitted
and performs best on unseen data. As evidenced from
the analysis, the PMIWE model with a learning rate of
0.0001 performed best among all models to classify the fish
diseases; we have presented the class-wise performance of
this model in Table 7.

TABLE 7. Classification report of our PMIWE0.001) model (class-wise).

C. AGREEMENT ANALYSIS
Agreement analysis metrics go deeper than precision, recall,
and F1-score in providing insightful views into the model’s
capacity to accurately classify instances and strike a bal-
ance between positive and negative instances. The overall
agreement of the model with the ground truth is revealed by
Cohen’s Kappa coefficient, which takes into consideration
the agreement between true and predicted classifications
that go beyond chance. In contrast, the correlation between
true and predicted classifications—which takes into account
both true and false positives and negatives—is captured
by the Matthews correlation coefficient. A more thorough
understanding of the model’s performance is obtained by
integrating these metrics into the evaluation process. This
includes not only the model’s ability to achieve high preci-
sion, recall, and F1-score but also its ability to maintain con-
sistent agreement and correlation with the true classifications
across all classes.With the highest Cohen’s Kappa coefficient
of 0.8106 among the individual models, InceptionV3 stands
out as indicating a substantial agreement that goes beyond
chance. It also has the highest MCC (0.8118), indicating a
high degree of agreement between the true and predicted
classifications. Closely behind, EfficientNetB3 and ResNet-
50 also show strong metrics for agreement, with MCC

values of 0.7740 and 0.7986 and Cohen’s Kappa values
of 0.7755 and 0.7989, respectively. The performance of
DenseNet-121 is also impressive, if marginally lower, with
Cohen’s Kappa and MCC coefficients of 0.7520 and 0.7508,
respectively. Turning now to ensemble techniques, Cohen’s
Kappa coefficients of 0.8341 and 0.8242, respectively, show
improved agreement metrics for the PMIWE and AE models
with a learning rate of 0.001 when compared to individual
models. Similarly, stronger correlations between the true and
predicted classifications are reflected in their MCC values
of 0.8217 and 0.8357, respectively. All other models are
significantly outperformed by the PMIWE model with a
lower learning rate of 0.0001, which results in an MCC
of 0.9562 and a Cohen’s Kappa coefficient of 0.9523. The
outcomes prove the ensemble’s ability to capture intricate
relationships in the multi-class dataset, leading to better
predictive performance.

TABLE 8. Kappa and MCC values of the models.

D. ERROR AND GRAPHICAL ANALYSIS
A ROC curve is a graphical plot of the true positive rate
versus the false positive rate at various thresholds or a
linear function of multiple other parameters being rates. For
every cut-off point or method of calculating probabilities,
a pair of sensitivity and specificity are obtained. ROC curves
analysis for multi-class Fish disease classification with the
four transfer learning models and Ensemble Models with
seven different Fish Disease classes are demonstrated in
Figure 6.

We calculated all class’s Area Under Curve (AUC). For
ResNet-50, it exhibits commendable performance across
most classes. The class ‘Argulus’ has an AUC of 0.93, which
means the model performs pretty well in identifying cases
of this particular disease against other conditions. The class
‘Broken Antennae and Rostrum’ incredibly exhibits an AUC
of 0.99, with most classes having near-perfect classification
of the class. This is vice-versa for ‘EUS,’ which has a
moderate AUC of 0.72. It also worked well for ‘Healthy
Fish,’ whereby the AUC is 0.86, but slightly drops to 0.78 for
‘Red Spot,’ hence the possibility of some areas needing some
model improvement. At the top of the list, both ‘Bacterial Gill
Rot’ and ‘Tail and Fin Rot’ classes yield a perfect score of
AUC at 1.00, therefore signifying that the model has an even
higher classification accuracy for such classes.

The InceptionV3 model has high discriminative abilities,
scoring an AUC of 0.91 for ‘Argulus’. The model does
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FIGURE 6. ROC curve (AUC value) of the pre-trained models and proposed (PMIWE0.0001).
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a perfect job distinguishing the ‘Broken Antennae and
Rostrum’, having achieved an AUC of 1.00. On the other
hand, the class ‘EUS’ showed less effective discrimination;
that is, the value of AUC is 0.67. Competent discrimination
was observed among the class ‘Healthy Fish’ and class
‘Red Spot,’ where the AUC was found to be 0.88 and 0.85,
respectively. More specifically, the InceptionV3 model, like
the ResNet-50 model, also displayed perfect discrimination
for the classes ‘Bacterial Gill Rot’ and ‘Tail And Fin Rot,’
with both having an AUC of 1.00, hence rendering the
strength of this model to identify these diseases as very high.

The ROC curve of the EfficientNetB3 model displayed
very strong predictive performance, where the AUC for
‘Argulus’ is 0.92. The ‘Broken Antennae and Rostrum’ class
demonstrates performance almost at the perfect level: AUC=

0.99. However, ‘EUS’ appeared to be a challenging condition
for the model to discern accurately, with a lower AUC of 0.66.
‘Healthy Fish’ performs admirably evenwith anAUCof 0.85,
while ‘Red Spot’ can only come up to a modest AUC of 0.77,
meaning it has more space for performance. The model can
score the perfect AUC of 1.00 for the class of ‘Bacterial Gill
Rot’ and another perfect score of 1.00 for the class ‘Tail And
Fin Rot,’ demonstrating a great ability to classify.

For the DenseNet-121 model, the ROC curve revealed
the good discriminatory power of the class ‘Argulus,’ with
an AUC value of 0.88. On the other hand, the ‘Broken
Antennae and Rostrum’ class has an AUC value of 0.99,
while the ‘EUS’ class has a reasonably good AUC value
of 0.71. The model can differentiate ‘Healthy Fish’ with
a high level of reliability, as evidenced by the computed
AUC score of 0.88. On the other hand, the class of ‘Red
Spot’ is not well discriminated, whereby the AUC equals
0.70. The ‘Bacterial Gill Rot’ and ‘Tail and Fin Rot’ classes
had an AUC of 0.99 and 0.97, respectively, which points
out very good predictive power at discriminating by these
diseases.

Pre-trainedmodels performed admirably in several classes,
but they faced considerable difficulties, especially in the
‘EUS’ class, where all models had very low AUC values.
However, the PMIWE model with a learning rate of
0.0001 performed much better as compared to the pre-trained
models with the highest AUC. The result for the ‘EUS’ class
was 0.92 AUC, and this outperformed the AUC that the
individual pre-trained models could attain at 0.72. Notably,
the AUC values for classes like ‘Bacterial Gill Rot’ and ‘Tail
and Fin Rot’ reached 1.00, indicating accurate classification
without any cases of misclassification. Despite facing
challenges in the ‘Red Spot’ class, the suggested model’s
effectiveness was further demonstrated by its respectable
AUC score of 0.94. This outstanding performance points out
how ensemble models can enable accurate and dependable
fish disease detection, which is essential for preserving fish
health in aquaculture operations.

The proposed model is evaluated using a variety of
criteria, such as analyzing the overfitting or underfitting,

discussing the classification reports as well as the agreement
analysis. Based on high performance (ref. Table 5), it is
observed that the PMIWE model with a learning rate of
0.0001 is the best-performing ensemble model for fish
disease classification. A thorough error analysis is carried out
to acquire a further understanding of the effectiveness of the
suggested approach.

Figure 7 presents the confusionmatrix of the best ensemble
model, and based on this, the quantitative analysis is
performed. Table 3 shows the number of test samples of
each class. The class ‘Tail and Fin Rot’ contains 25 test
samples. The confusion matrix shows that the proposed
model does not incur any errors in classifying this class.
Among the 25 samples, it can accurately classify all samples.
The ‘Bacterial Gill Rot’ class consists of 31 test samples, and
among them, all are predicted accurately. Our model made
some errors in classifying the ‘Red Spot’ class. Among the
22 ‘Red Spot’ instances, the model classified 1 instance as
‘EUS’ and one instance as ‘Argulus.’ The same situation is
observed in the ‘EUS’ class, where 2 samples are predicted
to be ‘Red Spot.’ Among the 33 test instances, it has
predicted 31 instances correctly. The model classified all
the test instances correctly for ‘Healthy Fish.’ The same
scenario happened for the Broken antennae and rostrum
class, where all samples were predicted without making any
errors. Finally, among the 29 ‘Argulus’ instances, the model
predicted 1 sample to be a ‘Red Spot.’ Among the total
203 test instances our PWIME model classifier 198 samples
accurately among all classes.

FIGURE 7. Confusion matrix of the proposed weighted ensemble model
(PMIWE0.0001).

Figure 8 presented some sample output produced by
our model PMIWE0.0001. A total of 25 samples are pre-
sented here. Among the model accurately classified the
21 samples and 4 samples were misclassified. The correct
classification is blue, whereas red is marked as the wrong
classification.
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FIGURE 8. Sample output of the proposed model. Here, the correct classification is marked in blue, and the wrong classification is marked in
red (PMIWE0.0001).

FIGURE 9. Gradient-weighted class activation map (Grad-CAM) decision
visualization of fish disease detection. The original image is on the left
side, and the Grad-CAM-generated image is on the right side.

E. GRAD-CAM VISUALIZATION ACROSS FOUR BASE
LEARNERS FOR ENHANCED INTERPRETABILITY
IN FISH DISEASE
We used gradient-weighted class activation mapping (Grad-
CAM) in this study to interpret the decision-making process
of four pre-trained advanced models, namely, DenseNet-
121, EfficientNetB3, InceptionV3, and ResNet-50, applied
for the classification of images into seven distinct classes of
fish diseases. GradCAM, a technique that generates visual
explanations for decisions made by convolutional neural
networks, offers a window into understanding which features

within an image contribute most significantly to a model’s
classification output. This method is of particular interest
in areas requiring a high level of interpretation, such as the
detection and diagnosis of fish diseases in aquaculture.

To determine how much each highlight outline feature
map (FM) contributes to the prediction, CAM determines
how many weights each FM has depending on the final
convolutional layer. The final feature map (Ck

ij ) and the
projected value ŷ are connected via a linear association. The
linear layers consist of fully connected layers (FCLs) and
global average pooling (GAP). While FCLs, with weights
wgk , generate an output specified by Eq. 24, where Ck

displays the visualization of the kth feature map (FM), GAP
produces the output Ak = Ck

ij .

yg =

∑
k

wgkAk =

∑
k

wgkCk
ij =

∑
k,i,j

wgkCk
ij (24)

Consequently, we employGradCAMas global average FM
gradients as weights rather than grouping them. Rather than
being categorized in the usual way, special class weights are
gathered from the last convolutional layer using the Global
Average FM Gradients (GAG). Equation 24, in which P
denotes the number of pixels in an FM, g denotes the class
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gradient, and Ck
ij represents the k-th FM’s value.

agk =
1
P

∑
i,j

∂yg
∂Ck

ij

(25)

GradCAM’s main feature is its capacity to use gradients of
the target idea flowing into CNN’s final convolutional layer to
emphasize the portions of an image that are crucial for class
label prediction. For each class c, the GradCAM localization
map LcGrad-CAM can be expressed as follows:

LcGrad-CAM = softmax

(∑
k

αckA
k

)
(26)

where αck indicates the significance of these activations
towards the class c, computed as the gradient of the class
score concerning the feature map activations, averaged over
all spatial locations. Ak represents the feature activations of
the k th channel of the final convolutional layer. By using the
softmax function, it is made sure that only the features that
positively impact the class prediction are displayed.

Utilizing this technique, we analyzed the activation
patterns induced by different disease manifestations in fish,
with each of the four models assigned to a specific disease
condition for visualization purposes. The DenseNet-121
model’s GradCAM output for detecting Argulus showcased a
concentrated focus on the body surface areas, pinpointing the
exact locations where Argulus parasites typically manifest.
This precision in localization reflects the model’s capability
to discern subtle textural and morphological cues indicative
of the disease.

Similarly, the EfficientNetB3 model generated heatmaps
highlighting the areas of the head and antennae most
damaged by such physical damage when applied to photos
of broken rostrums and antennae. This focus on specificity
in the model’s attention highlights how good it is at
spotting structural irregularities, which is an important part
of evaluating physical injury in fish.

The GradCAM representations emphasized ulcerated
regions and lesions, which exactly aligned with the clinical
signs of EUS, for the identification of EUS using the Incep-
tionV3model. Themodel’s ability to identify disease-specific
textural alterations is validated by these visual explanations,
supporting the model’s diagnostic accuracy.

Several previously trained base learners are combined in
the proposed ensemble model. Every base learner possesses
a unique set of abilities and can recognize significant
regions in the input pictures. Our algorithm can identify
and highlight significant regions or characteristics in the
photos by using Grad-CAM representations, which makes
the decision-making process easier. The ensemble model
successfully synthesizes a variety of insights by combining
the predictions of these base learners, which improves its
predictive ability. As shown in Figure 9, the ensemble
model makes predictions by carefully selecting regions in

images that have higher red density, as identified by Grad-
CAM analyses. The analysis shows that the model highlights
the place where the disease symptoms are presented.
This thorough approach ultimately advances the model’s
applicability across multiple domains by fostering robustness
and reliability in the predictions in addition to improving
interpretability.

F. COMPARATIVE ANALYSIS
The results’ analysis showed that the ensemble method,
weighted, was the most successful model for classifying fish
diseases. We also compared the performance of the suggested
model to that of other methods, with many perspectives,
to assess our research contribution and model efficacy.
We have presented some comparisons with prior research
in Table 9. (Note: The comparisons are merely indicative
because different datasets and/or different experimental
settings were used.)

While many studies have concentrated on binary classifi-
cation tasks, our study tackled a more intricate multi-class
scenario and achieved an impressive accuracy of 97.53%.
As an example, using CNN with attention mechanisms
produced an accuracy of 94.28% in a noteworthy study by
Huang et al. [2], but at a significantly higher computational
cost, estimated at roughly 51,639,400 trainable parameters.
In addition to surpassing this benchmark, our model had
a total of 12,309,710 trainable parameters and significantly
less computational complexity. We also compared our
findings with those of other researchers who used baseline
classifiers like SVM and RF. While Ahmed et al. [16] and
Manik et al. [18] obtained accuracies of 94.12% and 91.42%,
respectively, with SVMclassifiers,Mia et al. [13] reported an
accuracy of 88.87%with the RF classifier. Our results showed
a significant improvement in accuracy over these approaches,
confirming the superiority of our suggested ensemble model.

It can be observed that our comparative study highlights
the novelty and effectiveness of our suggested ensemble
model in the field of fish disease classification. It is not
only more accurate than previous approaches, but it also
provides a computationally efficient solution. These results
represent a significant contribution to the field and open new
avenues for research on disease classification. In another
work [22], the single transfer learning model produced
59.33% accuracy. They have applied ResNet-50, where we
applied this pre-trained model with other models to make an
ensemble. However, the ensemble model showed that instead
of applying a single model, the ensemble can perform well.
A similar scenario is observed [21], where the single CNN
model performed worse than ours.

G. DISCUSSIONS
It is essential to recognize our suggested model’s limitations
and potential biases, particularly regarding its reliance on
specific environmental conditions within the dataset. Since
the training data predominantly originates from two particular
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TABLE 9. Indicative comparison of the proposed work with existing research.

locations in Bangladesh, there’s a risk of bias introduced
by the limited representation of different fish populations
and environmental contexts. Future research could focus
on gathering information from a broader range of sites,
encompassing various freshwater fish habitats throughout
Bangladesh, to address this limitation. By enlarging the
dataset to include a more comprehensive representation of
environmental factors and fish species from different geo-
graphical areas, we can improve the model’s generalizability
and efficacy in practical applications. Continued efforts to
update and maintain this larger dataset will ensure the
model’s accuracy and dependability in real-world scenarios.
In conclusion, while our investigation did not reveal evidence
of biases or overfitting in the current dataset, it is imperative
to acknowledge the potential impact of environmental factors
on fish diseases and take proactive measures to address
them.

Our research offers game-changing advantages in produc-
tivity, sustainability, and disease control for Bangladesh’s
aquaculture sector, with important practical ramifications.
First of all, aquaculture farmers now have a useful tool
for early disease detection and diagnosis thanks to the
application of our sophisticated deep learning model for
classifying diseases affecting freshwater fish. This ability
is essential for prompt interventions, allowing farmers to
deal with health problems before they become widespread
epidemics. As a result, there may be significant decreases
in the financial losses brought on by fish mortality and
lower productivity. Second, by correctly classifying diseases
according to two environmental factors, the model aids
farmers in understanding the precise factors that contribute
to the occurrence of disease. With this understanding, they
can modify their risk-reduction strategies. Farmers can
improve the overall productivity of their farms by creating
healthier environments for their fish, such as by implementing
targeted treatment protocols, optimizing feeding strategies,
or adjusting water quality parameters. Furthermore, our
model can be used as a basis for creating all-inclusive
disease management systems that incorporate data analytics
and real-time monitoring. This can further improve farmers’
operational efficiency and decision-making processes by
providing them with predictive capabilities and actionable
insights.

In summary, our study provides useful instruments and
approaches to enhance disease control in Bangladesh’s
aquaculture sector. Our model contributes to the expan-
sion, resilience, and long-term sustainability of aquaculture
operations in the area by facilitating early detection, cus-
tomized interventions, and sustainability.

VII. CONCLUSION
Our study introduces a novel method combining transfer
learning with pre-trained CNN models and two ensemble
techniques with adjustable learning rates to detect seven
different types of freshwater fish diseases using augmented
and non-augmented images. This approach improves neural
network training using information from an initial task
to enhance convergence, resulting in improved model per-
formance, accuracy, and robustness on unidentified data.
Our evaluation metrics show that pre-trained models with
weighted ensemble learning (PMIWE), having a learning
rate of 0.0001, outperform individual pre-trained models and
ensemble techniques with different learning rates, achieving
97% accuracy, precision, recall, and F1-score. To ensure the
interpretation of results and the decision-making process of
neural network algorithms, we have used Grad-CAM for
more concise visualization by highlighting the region of
infected images, leading to effective fish disease detection.
Along with concise visualization, this work contributes to
reducing computational loss with huge training parameters
during accuracy improvement, resulting in a computationally
efficient solution compared to previous research in fish
disease detection. Furthermore, our accuracy surpasses
that of previous works using traditional machine learning
methods.

As aquaculture is a growing and sustainable sector world-
wide, further research is needed. Subsequent efforts could
improve the interpretability of the ensemble model’s predic-
tions by utilizing novel techniques such as advanced segmen-
tation and preprocessing techniques, attention mechanisms,
and model distillation. These improvements would provide
a more in-depth understanding of the decision-making
mechanisms that underlie the classifications in the model.
Furthermore, investigating how well the method works
with different datasets and fish species shows potential
for improving its robustness and real-world applicability.
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It is crucial to acknowledge the presence of intrinsic
limitations, such as possible biases in the training data
and computational resource constraints, as these could
affect the scalability and generalizability of our suggested
ensemble model. Furthermore, incorporating real-time data
collection andmonitoring systems could improve ourmodel’s
responsiveness and accuracy in disease detection and classi-
fication tasks, given the dynamic nature of fish diseases and
the impact of environmental factors. We hope to progress
the field of fish disease classification and promote more
effective management techniques in aquaculture operations
by carefully considering the inherent limitations and carefully
navigating these future directions.
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