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ABSTRACT Integrating renewable energy sources (RESs) into electric power systems is environmentally
beneficial; however, it also introduces operational challenges. The multiperiod optimal power flow (MP-
OPF) problem becomes increasingly complex owing to the variability and uncertainty in RESs power
output and load demand. To ensure system stability and reliability, other conventional generators must
quickly adapt their output to counter fluctuations in RESs and mitigate network congestion. In this study,
we propose a novel approach utilizing a long short-term memory recurrent neural network (LSTM-RNN)
to address the MP-OPF problem. The LSTM-RNN’s capability to handle time-series data enables fast and
accurate predictions. By formulating the MP-OPF as a sequence-to-sequence learning problem, we train the
LSTM-RNN to map input data (load demand, renewable generation) to output data (generator output, RESs
injection) to meet power network constraints while simultaneously achieving economic power dispatch to
generators. Additionally, we perform the post-processing on the output of LSTM-RNN results to obtain
a feasible power generation schedule at each time step and to analyze network congestion and RESs
curtailment. Furthermore, the proposed approach is demonstrated on the IEEE-39 bus system with time-
series data, achieving highly accurate OPF solutions. Computation time is approximately 160 times faster
than conventional solver.

INDEX TERMS Deep learning, generation scheduling, LSTM-RNN, optimal power flow, renewable energy
integration.

ACRONYMS AND NOMENCLATURE
ACRONYMS
RESs Renewable energy sources.
OPF Optimal power flow.
MP-OPF Multiperiod optimal power flow.
LSTM-RNN Long short-term memory recurrent neural

network.
DNN Deep neural network.
SCOPF Security-constrained optimal power flow.
GNNs Graph neural networks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hazlie Mokhlis .

ELM Extreme learning machines.
CNN Convolutional neural network.
FCNN Fully connected neural networks.
DRL Deep reinforcement learning.
S2S Sequence-to-sequence.
RMSE Root mean square error.
NRMSE Normalize root mean square error.
MAE Mean absolute error.
NMAE Normalize mean absolute error.
PTDF Power transfer distribution factors.
ESS Energy storage system.
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NOMENCLATURE
Pmin
g,i , P

max
g,i Minimum and maximum active power

generation limits of ith generator.
Qmin
g,i , Q

max
g,i Minimum and maximum reactive power

generation limits ith generator.
Rupg,i, R

down
g,i Ramp-up and ramp-down limits of the

ith generator.
Ptd,j,Q

t
d,j Active and reactive power absorbed at

bus j at a time t .
Ptg,j,Q

t
g,j Active and reactive generated power at

bus j at time t .
V t
j ,V

t
k Voltages at bus j and k at time t .

Y tj,k Admittance between bus j and k at
time t .

θmin
j , θmax

j Minimum and maximum voltage angle
limits at bus j.

Vmin
j , Vmax

j Minimum and maximum voltage limits
at bus j.

Fmax
l Maximum capacity of the line l.
θ tj Voltage angle limits at bus j at time t .
F tl Line flows for line l from and to the bus

at a time t .
Ptg,i Active power of the ith generator at a

time t .
Qtg,i Reactive power of the ith generator at a

time t .
α, β, γ Cost coefficients of the ith generator.
Ptd Power demand input to LSTM-RNN

network at time t .
Ptg,RESs RES generation input to LSTM-RNN

network at time t .
Ptpr,i Predicted generator dispatch output of

LSTM-RNN network at time t .
Ptinj,RESs Predicted RES injection power output of

LSTM-RNN network at time t .
ψa
i , ψ

p
i Observed and predicted data points.

ψa Average observed value.
f tl Calculated flow based on the predicted

dispatch in line l.
PTDFij,sr PTDF factor from source bus s to receiv-

ing bus r for line l.
Ptpr,sr Power injection at source bus s, and

received at receiving bus r .
xij Reactance of the line connecting the bus

i and j.
κ Terms from inverse of the admittance

matrix.
Ptcurtailed,RESs Curtailed power value for RES.
Ptg,m,RESs Available power of the mth RES.
Ptinj,m,RESs Injected RES power of the mth RES.

I. INTRODUCTION
Renewable energy sources (RESs) are increasingly being
integrated into electric power systems owing to their envi-
ronmental and economic benefits. Despite the fact that this

integration is advantageous, it requires the development of
novel approaches in order to solve operational issues such as
volatility and reliability of the system caused by the inherent
variability and uncertainty in RESs power output and load
demand. In order to develop a suitable solution, research is
required in this area. Furthermore, it is challenging for power
system operators to balance electricity supply and demand in
real time. To maintain stability and reliability in power sys-
tem operation, other conventional generators need to provide
sufficient flexibility to the power system by quickly adjust-
ing their operating points to compensate for the variability
introduced by RES generators [1]. Moreover, the integration
of RESs results in network congestion because of excessive
surplus power generation, which can lead to various system
operation problems, such as power outages, line overloading,
and voltage and frequency instability [2]. To deal with such
operational issues, power system operators use optimal power
flow (OPF) analysis to achieve secure and economic opera-
tion conditions for the entire power systems. OPF analysis
was introduced in the early 1960s to optimize the dispatch
of power generation and to control the flow of electricity in
the transmission network while satisfying various operational
and physical constraints [3], [4]. However, the OPF problems
become challenging when the power system size increases
owing to the increasing complexity of the objective function
with a large amount of equality and inequality constraints.

Recently, with variable generation from RES and load
demand, it has become more cumbersome to solve the
OPF problem. A large number of scenarios and cases must
be analyzed, requiring large amounts of computation to
obtain the solution. Additionally, with the involvement of the
time-varying RESs and load, the solution needs to consider
the temporal coupling of the variables over the time horizon,
which results in a multiperiod optimal power flow (MP-
OPF) formulation [5]. For instance, temporal dependence is
inevitable in adding the ramping constraints of generators [6].
Therefore, MP-OPF becomes a more comprehensive solu-
tion for operation. However, this makes the OPF problem
more complex, nonlinear, and nonconvex, which requires
substantial time to solve. Furthermore, real-time operation
requires solutions in time which is crucial to avoid system
failure and cascaded blackout. Therefore, a fast and optimal
system scheduling solution that can identify and manage
the system on time is crucial. Given these complexities and
requirements, there is a pressing need for more adaptable and
quicker computational methods, motivating our exploration
of data-driven machine learning algorithms to efficiently
manage these challenges.

Recent studies have focused on investigating the use
of data-driven machine learning algorithms to enhance the
effective application of OPF. In learning-based approaches,
machine learning or deep learning algorithms are used to
learn the mapping between power system inputs and the
corresponding optimal power flow solutions. The learning
process involves training the machine or deep learning mod-
els using a set of labeled training data (supervised learning),
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which consists of input-output pairs. It helps obtain the near-
to-optimal solution with less computation time.

As the MP-OPF problem may considerably increase the
computation time for large systems when applied for a long
time horizon, the use of the conventional OPF tool may be
restricted. To this end, applying machine learning algorithms
in MP-OPF has the potential to predict reliable solutions
in less time compared to conventional methods. Moreover,
learning-based algorithms can substantially reduce the com-
putational time required to solve theMP-OPF problem,which
is essential for power systems.

Owing to the advantage of the fast and reliable solution
acquisition of the learning based methods and to overcome
the restrictions of conventional OPF, we propose an MP-OPF
based on long short-term memory recurrent neural network
(LSTM-RNN). This approach aims to provide timely solu-
tions essential for system stability and suitable to handle
the temporal dynamics inherent in MP-OPF problems. Fur-
thermore, the proposed approach helps obtain fast power
generation schedules and identify congestion using the line
loadings and curtailed power of RESs to manage the uncer-
tainty of the RESs and overall operation in time. TheMP-OPF
problem is a time-series problem, which is a sequence of
observations over time. Hence, the LSTM-RNN architecture,
which is well suited for time-series predictions, is used in
this study. The LSTM-RNN involves memory which allows
more learning for longer-term trends, such as in time-series
data [7].

Interest in learning-based OPF has been growing, and sev-
eral studies have been reported in the literature [8]. Herein,
we summarize the key findings and methodologies employed
in various learning-based OPF studies as we review the
relevant literature. In [9], the authors employed a deep neu-
ral network (DNN) model for the OPF problem using the
load demand as the model inputs and power dispatch and
voltage as outputs. They achieved faster computation speed
and reasonable precision compared to those using traditional
OPF solvers; the solution was feasible and tested on var-
ious network cases. Similarly, [10] proposed DNN-based
approach for security-constrained OPF (SCOPF) problem.
By taking load data as input and predicting real-power dis-
patch, in comparison to conventional solvers, it delivered
feasible solutions with less than 0.2% optimality loss and
a much shorter computation time. Reference [11] used a
DNN-based OPF approach focusing on identifying conges-
tion and calculating RESs curtailment. The authors used load
demand and RESs power generation as input, and genera-
tion scheduling, congestion identification, and RESs power
injection as output. The method reported an error rate of
less than 1% and considerably shorter computation time.
For further details on DNN-based OPF, readers may refer
to [12], [13], [14], and [15].

In [16], a physics-informed neural network is presented to
estimate the OPF solution for a given demand. The frame-
work incorporates power flow equations during the neural

network training, resulting in higher prediction accuracy with
fewer data points. Moreover, the paper introduces a method
to minimize worst-case constraint violations in the OPF prob-
lem. Reference [17] proposed a data-driven OPF approach
that uses extreme learning machines (ELM) to provide faster
results while maintaining acceptable accuracy. The speed of
OPF computations was significantly boosted by their method,
which outperformed traditional solvers by a factor of more
than 100. In [18], a novel model based on neural networks
and random forests was presented for SCOPF. The approach
used multitarget regression and local information to predict
power generation dispatch. The dataset included load data,
contingency scenarios, and transmission-line data. Various
AI algorithms for mapping OPF were presented in [19],
and gradient-boosting regression had the best performance
in terms of accuracy and computational time. The input was
load demand, and the outputs were real and reactive power
dispatch and voltage levels. Some network constraints were
violated, even though more than 90% of predictions were
within 5% of the true solution.

References [20] and [21] investigated warm-starting OPF
using graph neural networks (GNNs) for power systems in
Illinois and Texas. Load data served as input, and the out-
put was real-power scheduling. Both studies demonstrated
the superior speed of GNN-based methods compared to
conventional OPF solvers. In [22], a novel approach based
on a random-forest model was presented, where predicted
OPF solutions were used as starting points for the solver,
outperforming direct current warm and flat-start methods.
In [23] and [24], the topology aware GNN for learning OPF
solutions by emphasizing the use of topology information
in machine learning models for OPF is proposed. In [25],
authors have presented a novel framework for OPF anal-
ysis based on convolutional neural networks (CNN). and
self-attention mechanism. In the proposed approach, power
network rearranged the data to resemble the structure of a
multi-channel image to be utilized in CNN. It helped to
improve the model’s ability to generalize for various power
system sizes. In comparison to existing OPF algorithms,
the proposed method showed better efficiency and accuracy.
Similarly, the authors in [26] framed the OPF problem as both
a regression and a classification problem. They examined
fully connected neural networks (FCNN), CNN, and GNN
for OPF, demonstrating GNNs’ higher performance in cases
with changeable topology.

In addition to end-to end supervised learning, there are few
studies that have introduced reinforcement learning (RL to
frame OPF problem with temporal constraints. For instance,
in [27] and [28] the deep RL (DRL)-based OPF is presented
for real-time operation. In these studies, the authors have
designed the OPF problem as a safe DRL by using the
constrained Markov decision process to ensure the feasibil-
ity of the solutions. Nevertheless, LSTM-RNN can have an
advantage over DRL techniques because of its simpler prob-
lem design. It requires mapping the input and output based
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on historical data. On the other hand, RL requires a more
complex setup, including reward functions, agents, and envi-
ronments. In a high-dimensional stochastic setting, designing
the reward functionmay be a complicated procedure, and per-
formance may become unstable [24] However, the purpose
of this study is to apply and enhance the use of supervised
learning for problems with temporal dependencies, such as
the MP-OPF problem. RL is another field to study in depth
for the OPF, and it is beyond the scope of this paper.

For further exploration of learning-based OPF, [29], [30],
[31], [32] provide valuable insights. Additionally, surveys
related to learning-based OPF can be found in [8] and [33].
These studies collectively showcase the growing popularity
and effectiveness of AI techniques in addressing OPF chal-
lenges in power systems.

Notably, the literature focuses on single period or snapshot
OPF studies using machine learning and deep learning tech-
niques. There is a need to integrate the temporal dependencies
in the learning-based OPF solution in order to use it for real-
world problems. In real case scenarios, the OPF problem
needs to be solved by considering uncertainties frequently,
and the problem becomes more complex if temporal informa-
tion is added to it. To this end, learning-based OPF comes into
play to reduce the computation time of the solution. A very
few studies have applied learning-based methods to MP-OPF
problems. Therefore, a novel LSTM-RNN-based approach
for MP-OPF is proposed to address this gap. Furthermore,
in order to ensure that the OPF solution obtained from the
LSTM-RNN network satisfies load demand, network, and
generation constraints, a systematic post-processing tech-
nique is proposed. Post-processing the LSTM-RNN network
output results in updated feasible power generation sched-
ules, line loadings, congestion information based on line
loadings, and RES curtailment values. This approach can
quickly solve the MP-OPF problem with negligible opti-
mality loss. As the MP-OPF problem is temporal and uses
time-series data, LSTM-RNN is chosen as the model because
it achieves better accuracy in time-series prediction. The
concept of the proposed MP-OPF is depicted in Fig. 1.

The contribution of the study is summarized as follows:

• The study proposes an LSTM-RNN-based model for
solving the MP-OPF problem, which is a complex
optimization problem that involves finding the power
generation schedule for a given time horizon subject
to various constraints. The study introduces a novel
formulation of the MP-OPF problem as a sequence-
to-sequence learning problem and uses LSTM-RNN to
learn the mapping from the input data (such as load
demand, renewable generation) to the output data (such
as generator output, RESs generation injection). It helps
solve the temporal and nonlinear aspects of theMP-OPF
problem.

• The study proposes a post-processing method to ensure
feasible solutions within the limits of constraints. Post-
processing is applied to the solution obtained from

the LSTNM-RNN network to obtain feasible power
generation schedules, network line loadings, and RESs
curtailment values. The proposed approach can provide
fast and accurate solutions with negligible optimality
loss compared to conventional solvers that are compu-
tationally expensive.

• The study demonstrates the effectiveness of the pro-
posed method on the IEEE-39 bus power system using
time-series data and evaluates the performance of the
proposed method in terms of accuracy, feasibility, and
computation time by comparing the proposed method
with traditional OPF solvers.

FIGURE 1. Concept of proposed AI aided MP-OPF dispatch.

The remainder of the paper is organized as follows.
Section II formulates the MP-OPF problem. Section III
presents the proposed approach for MP-OPF based on
LSTM-RNN. Section IV describes the experiment for the
case study of the IEEE-39 bus system. The Results are pre-
sented in Section V, and conclusions are drawn in Section VI.

II. FORMULATION OF MP-OPF PROBLEM
The MP-OPF problem is formulated mathematically as fol-
lows.

A. OBJECTIVE FUNCTION
The objective function f (x) is defined as

min
x
f (x) = min

Ptg,i


T∑
t=1

Ngen∑
i=1

Cg(Ptg,i)

 , (1)

where the optimization variable x includes the output power
of dispatchable generators Ptg,i which is defined as the gen-
eration power of the ith generator at a time t; T is the overall
period of the optimization; Ngen is the total number of the
generators; and Cg is the function of the generation cost of
the dispatch power.

B. POWER EQUALITY CONSTRAINTS

(Ptg,j−P
t
d,j)−Re

V t
j

(Nbus∑
k=1

Y tj,kV
t
k

)∗
=0, j=1, . . . ,Nbus,

(2)
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(Qtg,j−Q
t
d,j)−Im

V t
j

(Nbus∑
k=1

Y tj,kV
t
k

)∗
=0, j=1, . . . ,Nbus,

(3)

where Ptg,j and Qtg,j are the active and reactive generated
power and Ptd,j and Q

t
d,j are the active and reactive power

absorbed at a bus j at a time t , respectively. V t
j and V t

k are
the voltages at bus j and k at time t , respectively; Y tj,k is the
admittance between bus j and k at time t . Nbus is the total
number of buses in the system.

C. BUS VOLTAGE AND ANGLE LIMIT CONSTRAINTS

θmin
j ≤ θ tj ≤ θmax

j , j = 1, . . . ,Nbus, (4)

Vmin
j ≤ V t

j ≤ Vmax
j , j = 1, . . . ,Nbus, (5)

where θmin
j and θmax

j are the minimum and maximum volt-
age angle limits, and Vmin

j and Vmax
j are the minimum and

maximum voltage limits at a bus j, respectively.

D. LINE CAPACITY CONSTRAINTS
Power flows in the transmission lines can be determined by
the voltages and phase angles of two buses where the lines are
connected. Because of the physical limits of the lines, such as
the thermal limits of the lines and transformers, insulations,
and protections, line flows are limited to specific capacity
limits. Equation (6) expresses the constraints of line flows in
MVA as follows:∣∣F tl (θ,V )∣∣ ≤ Fmax

l , l = 1, . . . ,Nline, (6)

where F tl is the line flows from and to the bus at a time t ,
respectively; Fmax

l is the maximum capacity of the line; and
Nline is the total number of lines in the power system.

E. GENERATION LIMIT CONSTRAINTS

Pmin
g,i ≤ Ptg,i ≤ Pmax

g,i , i = 1, . . . ,Ngen, (7)

Qmin
g,i ≤ Qtg,i ≤ Qmax

g,i , i = 1, . . . ,Ngen, (8)

where Pmin
g,i and Qmin

g,i are the minimum active and reactive
generation limits, and Pmax

g,i andQmax
g,i are the maximum active

and reactive generation limits of the ith generator, respec-
tively.

F. RAMPING LIMIT CONSTRAINTS

Ptg,i − P(t−1)
g,i ≤ Rupg,i, i = 1, . . . ,Ngen (9)

P(t−1)
g,i − Ptg,i ≤ Rdowng,i , i = 1, . . . ,Ngen (10)

where Rupg,i and R
down
g,i are the ramp-up and ramp-down limits

of the ith generator, respectively.

G. FUEL COST CURVE
Generator cost curves are usually presented as cubic,
quadratic, or piecewise linear functions. Here, we use a
quadratic fuel cost function defined as:

Cg(Ptg,i) = α + β.Ptg.i + γ.(Ptg,i)
2, (11)

where α, β, and γ are the cost coefficients of the ith generator

III. LSTM-RNN BASED MP-OPF
A. STRUCTURE OF LSTM-RNN BASED MP-OPF
In this study, we propose an MP-OPF based on LSTM-
RNN for time-series operation in order to obtain generation
schedule along with line loadings, RESs curtailment and
congestion information. The architecture for the proposed
MP-OPF based on LSTM-RNN consisting of the follow-
ing four steps is shown in Fig. 2. Details of each step are
explained in the subsections.
Step 1: In the first step, the dataset is created.

In real systems, the historical data is obtained from the
energy-management system at the system-operator end. The
data should comprise historical MP-OPF dispatch solutions,
load, and RESs generation. Herein, we create a dataset that
includes the MP-OPF solution computed using a conven-
tional MP-OPF solver, historical time-series load, and RESs
power generation data.
Step 2: The LSTM-RNN model is then trained using the

input as the time-series RESs power generation and load data
while the output is the time-series generation dispatch.
Step 3: This is the inference phase, where unseen inputs

are provided to the trained LSTM-RNN model to obtain the
outputs. The test set is used at this stage to obtain theMP-OPF
results from the trained model. A 24-h operation horizon is
considered. In real-case scenarios, the input is the real load
demand and renewable energy generations. Then, the trained
RNN-LSTM model enables the prediction of the MP-OPF
outputs.
Step 4: The obtained MP-OPF output is then moved to the

post-processing phase where the transmission and equipment
constraints are checked and the final output is obtained in
terms of updated generation schedule, congestion scenarios,
line loadings, and power curtailment values of the RESs
power.

B. DATASET CREATION AND DATA PRE-PROCESSING
Dataset creation and data pre-processing is the first step
of the proposed scheme. In this step, a dataset is created
using time-series data which includes the load and renewable
energy resource data as input data. This input data is fed into a
conventional MP-OPF solver [34] and the MP-OPF solution
is obtained.

The solution of the MP-OPF solver is stored as the output
data. We used five years of hourly data for load and RESs
data. We used the wind speed data from the NASA database
for New England, USA. The load data was acquired as his-
torical real data of the same location and scaled to the peak
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FIGURE 2. Proposed LSTM-RNN MP-OPF framework.

value of the case-study system; more detail for the dataset and
time-series data analysis is provided in the case-study section.
Furthermore, in this step, pre-processing was performed to
handle the data outliers, feature scaling, and data division
for training, validation, and testing of the proposed approach.
The method to create the database is depicted in Fig. 3.

C. TRAINING OF THE LSTM-RNN MODEL
The LSTM-RNN model was trained using the training
dataset. In this case, sequence-to-sequence (S2S) architecture
was used for LSTM-RNN training. The architecture of the
LSTM-RNN for the MP-OPF problem is shown in Fig. 4.
In this approach, the sequence of the input was fed into the
LSTM-RNN cells to obtain the sequence of output while
minimizing the training loss. LSTM-RNN was used for the
proposed model because several studies showed that it is best
suitable for time-series problems. For training, hyperparam-
eters were optimized using the validation set.

The network has various layers, such as the input layer,
the output layer, the fully connected layer, and several hidden
layers based on LSTM cells. The addition of more than one
LSTM-based layer deepens the network and aids it in learning
the temporal connections associated with the relevant time
steps. The predicted result is outputted by the fully connected
layer and the output layer. Inputs are fed to the LSTM layer
in the form of the sequence t ∈ T which is the time horizon
as the MP-OPF period, while the feature inputs are the load
and RESs presented as F . Furthermore, the total number
of training examples is presented as N . After passing the
examples from the network, final outputs are generated as
G1, . . . .GT .

FIGURE 3. Architecture of database creation for LSTM-RNN based
MP-OPF approach.

FIGURE 4. LSTM-RNN architecture for MP-OPF.

For MP-OPF, we used multiple inputs such as time-series
demand Ptd and RES generation Ptg,RESs for T time steps. The
output consisted of the predicted generator dispatch values
Ptpr,i including RES generation injection Ptinj,RESs i.e. multi-
ple outputs for T time steps.

D. PERFORMANCE EVALUATION
To test the trained model, we used the test dataset for one
year and obtained the generation schedule and including
RESs power injection into the system.We compared the accu-
racies of test results with the validation results accuracies
to prevent underfitting and overfitting of the model. Then,
we fed the output into the post-processing phase for the
final output. We used the following performance parameters
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in this study: root mean square error (RMSE) (12), nor-
malized RMSE (NRMSE) (13), mean absolute error (MAE)
(14), and normalized MAE (NMAE) (15). The aim to utilize
multiple evaluation metrics was to provide a comprehensive
analysis of the model performance from different statistical
perspectives, each relevant to the specific characteristics and
requirementsThe RMSE and MAE are widely used metrics
for regression problems; therefore, we have used these met-
rics for the proposed study. Normalization of these metrics
is performed to evaluate the various parameters on the same
scale.

RMSE =

√√√√ 1
N

N∑
i=1

(
ψa
i − ψ

p
i

)2
, (12)

NRMSE =
RMSE

ψa
∗ 100%, (13)

MAE =
1
N

N∑
i=1

∣∣ψa
i − ψ

p
i

∣∣, (14)

NMAE =
MAE

ψa
∗ 100%, (15)

In the above equations, ψa
i and ψp

i , are the observed
and predicted data points, respectively; ψa is the average
observed value; N is the total number of samples.

E. POST-PROCESSING PROCEDURE
The output of the LSTM-RNN model was postprocessed.
The results were checked to make them feasible within the
limits of constraints such as power balance, ramping limits,
generation minimum and maximum power.

This was done using the information of the physical system
configuration. Fig. 5. shows the flow chart of the post-
processing process. The post-processing is described in the
following steps.
Step 1: For generation constraints, the obtained power

generation dispatch is adjusted as follows: If the obtained
generation point of any generator is more than the maximum
or less than theminimum power, it is adjusted to theminimum
and maximum generation limits, respectively.
Step 2: If the output generating schedule does not meet

the demand, the power balance is maintained by adjusting
the operating points of the generators within the generation,
ramping, and line-loading limits.

For example, if the total generation is less than the total
load demand, then the power points of RES generators are
increased, given that RES power is available and line loadings
are within limits. If it is true then power is assigned to
other generators (considering line, ramp-up, and generation
limits) based on cost prioritization until generation balance is
achieved.

Similarly, if the total generation exceeds the load
demand, power is reduced, starting from the costliest
generator to the cheapest until the power balance is
maintained.

FIGURE 5. Flow-chart for the post-processing process.

The line flows are calculated based on the updated power
dispatch and power transfer distribution factors (PTDF) as
follows.

f tl = PTDF∗
ij,srP

t
pr,sr (16)

where f tl is the calculated flow based on the predicted dis-
patch in line l from bus i to j, PTDFij,sr is the factor that
gives the fraction of power to the network at source bus s to
receiving bus r which flows over line l, Ptpr,sr is the power
injection at source bus s, and received at receiving bus r .

In addition, PTDF is obtained from the inverse of the
admittance matrix as in [27]:

PTDFij,sr =
1
xij

[(κis − κir ) − (κjs − κjr )], (17)

where xij is the reactance of the line connecting the bus i and
j, and κ terms are obtained from the inverse of the admittance
matrix.
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Line loadings are obtained in MW and then converted to
percentage values. Line loadings also help identify conges-
tion in the line, and early warning on overloaded lines can be
obtained.
Step 3: During post-processing, the amount of RES power

curtailment is the power generation from RESs minus the
predicted RESs power injection by the Nrsource at each time
step, calculated as:

Ptcurtailed,RESs =

Nr∑
m=1

Ptg,m,RESs −

Nr∑
m=1

Ptinj,m,RESs, (18)

where Ptcurtailed,RESs is the curtailed power value, P
t
g,m,RESs is

the available power, and Ptinj,m,RESs is the injected power of
the mth RES, respectively.
Step 4: The overall generation cost is recalculated based on

the updated power generation dispatch using (11).
In summary, the updated generator schedule, total gener-

ation cost, amount of RES power curtailment, RES power
injection, and line loadings are obtained as the final output
after the post-processing procedure.

IV. EXPERIMENTAL SETUP
A. CASE STUDY
The case study for the proposed approach explored the IEEE
39-bus system, which is a 10-machine New England power
grid [35]. The system has a transmission voltage of 345 kV
and 10 generators that can produce up to 7,367 MW. The
system has 21 loads with a peak demand of 6,254 MW.
The network comprises 46 branches that connect the buses,
including six tie lines that link three areas. A RES generator
in the form of a wind farm was added on bus 18, as shown in
Fig. 6.

The network data for the study was taken from [36]. The
wind power and load profile in terms of time-series data are
described in the following subsections.

1) LOAD DATA
The load data was acquired as historical real data of New
England [37]. The data was scaled to the 6254 MW peak to
match with the IEEE 39-bus system. The monthly average
load pattern for the year 2020 is shown in Fig.7; the same
patterns were observed for other years. Usually, peaks happen
at night between 6 and 9 o’clock. The months of July and
August have the most consumption.

2) WIND SPEED DATA
We used wind turbines as RESs at Bus 18 and the data for
wind speed were obtained from NASA [38]. The wind speed
curve with rated power, and cut-in and out speed is shown in
Fig. 8. The wind speed distribution is shown in Fig. 8.
We considered a 700-MW wind farm which was assumed

based on the average total rated generation of other generators
which is around 700 MW. The farm comprised of 140 wind
turbines generating 5 MW. The power output is calculated
using the wind speed, swept area of the turbine which we

FIGURE 6. IEEE-39 bus system with RES location at Bus 18.

FIGURE 7. Monthly load pattern.

considered as 12,868 m2, and air density, which is taken as
1.225 kg/m3

B. DATASET DIVISION
For MP-OPF, we used the time-series data of wind speed,
and for the load data, we used five years of wind speed and
power consumption data. Wind speed data were acquired
from NASA. The load data were acquired from the New
England region. The data were further divided into training,
validation, and test sets as described in Table 1.

C. HYPERPARAMETER TUNING
To achieve the best forecasting model performance, it is
crucial to fine-tune the hyperparameters that affect the com-
putation and memory factors. In this study, we tuned the
hyperparameters of the LSTM-RNN model such as the num-
ber of hidden layers, number of hidden units, dropout rate,
number of epochs, optimization solver, learning rate, and
scaling of features. Table 2 shows the optimal values of the
hyperparameters for the LSTMmodel from the search space.
The hyperparameter optimization was done by trial-and-error
method.

Among the tested optimization solvers, which included
ADAM, SGDM, and RMSprop, the ADAM optimizer was
the most effective. The optimal values for the number of
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FIGURE 8. Power curve of wind turbines and wind speed distribution.

TABLE 1. Data division.

TABLE 2. Hyperparameter for LSTM-RNN based MP-OPF.

hidden layers and hidden units were 2 and 24, respectively.
The standard scaler method was used for feature scaling as
it yielded the best results. The dropout rate was fixed at 0.5,
which also helped to prevent overfitting. Lastly, the number
of epochs was set to 4000.

V. RESULTS
In this section, the results of the proposed approach are
shown and discussed. Herein, the IEEE-39 bus system is
used, as described in the case study. First, the results
for the LSTM-RNN model are discussed, and then, the
post-processing results are reported. Thereafter, a comparison
between the output of the proposed approach and that of the
conventional approach is performed. Finally, the computation
burden is compared.

A. LSTM-RNN BASED MP-OPF TRAINING PERFORMANCE
The LSTM-RNN model is trained on the MP-OPF input
and targeted outputs. The period is selected as 24 h; it pro-
duces the prediction of 24 time slots. We obtained the results
for the generation scheduling and postprocessed them to
obtain the line loading, RES curtailment and total generation
cost. Fig. 9 shows the scatter curve fitting plot for the test
set for the MP-OPF solutions, which are generation dispatch

FIGURE 9. Scatter plot for the generation obtained from LSTM-RNN based
MP-OPF and calculated from conventional OPF.

points (including RES generation) obtained from the conven-
tional MP-OPF solver. These are considered measured points
versus generation dispatch points obtained from the trained
LSTM-RNN model.

Table 3 shows the accuracy results in terms of RMSE,
NRMSE, MAE, and NMAE. The NRMSEs are <0.1% for
both validation and test sets (Table 3 ). Results of NRMSE
comparisons of the validation and test sets are shown in
Fig. 10. The comparison shows that the trained network is
neither underfitted nor overfitted because the accuracy is
almost the same for the validation and test sets; hence, the
model is well generalized.

B. LSTM-RNN-BASED MP-OPF AFTER POST-PROCESSING
ACCURACY ANALYSIS
The obtained generation dispatch solutions from the trained
LSTM-RNN model are post-processed and used to calculate
the line loadings, RES curtailment values, and generation
cost to the expected dispatch solution. Accuracies in terms
of NRMSE are calculated for these parameters using the
conventional MP-OPF solver values.

The accuracies of the proposed approach are shown in
Table 4. The expected generation dispatch, expected genera-
tion cost, line loadings, and RES curtailment values achieved
NRMSE values of 0.076%, 0.0053%, 0.196%, and 0.036%,
respectively. These errors are <1% and these solutions are
obtained in less than a minute for the whole year’s data.Post-
processing on the obtained solution is necessary to ensure
that system constraints are not violated and to obtain system
balance by adjusting the outputs of the generation.

C. ANALYSIS AND COMPARISON OF THE PROPOSED
MP-OPF METHOD
We compared the results of the proposed study. For annual
operation, Table 5 shows the comparison of total generation,
cost, and RESs curtailment for the conventional OPF solver
before post-processing and after post-processing.

Figs. 11(a) and 11(b) show the daily total generation com-
parison before post-processing and after post-processing with
the conventional solver, respectively. The total generation
for the conventional and LSTM-RNN trained model after
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FIGURE 10. Error comparison for validation and test set.

TABLE 3. Performance evaluation for LSTM-RNN-based MP-OPF.

TABLE 4. Performance evaluation for LSTM-RNN-based MP-OPF after
post-processing.

TABLE 5. Comparison of the proposed and conventional methods for
annual operation.

post-processing has the same generation. There is no differ-
ence in generation between the conventional solver and the
proposed method with post-processing. Similarly, the cost
difference is also small with the percentage difference of
0.028%. However, the curtailment difference is 5.46 GWh.

Additionally, we compared the graphical results to have
better insight into the proposed method. Fig. 12. shows the
overall dispatch solutions obtained from the conventional
MP-OPF solver and the proposed method for a day when the
maximum load has been recorded (209th day of the test set).
Herein, the results are for the LSTM-RNN model output

of the proposed method before post-processing. Before post-
processing, in 18, 19, and 20 h, there are some shortages

FIGURE 11. Comparison of the output generation.

FIGURE 12. Scheduling results for conventional and proposed method for
a day (209th day of test set).

in the prediction of generation points. These shortages are
adjusted by applying the proposed post-processing algorithm.
We observed that the demand is met with the proposed
method with post-processing without any shortages. In this
case, the generation cost for the conventional method and the
proposed method have a difference of around 0.041%.

From the same day, we also compared the dispatch of the
single period to evaluate the operation of the proposed and
conventional approaches. Fig. 13(a) shows the single-period
dispatch results for 11 generators including one RES for hour
number 18. Generator number 10 compensated for the gener-
ation by increasing its output under the limits of generation,
ramp rate, and other constraints.
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FIGURE 13. Generation scheduling and line-loading results for
conventional and proposed methods for an hour (209th day, 18th hour of
test set) for high-demand loading condition.

Overall, the obtained generation points from proposed
method for generators were not considerably varied from
those obtained by the conventional method. Fig. 13(b) shows
the line loading of the same hour to evaluate the effects
of the proposed method on line loadings. It compares the
line loading of 46 lines under the conventional and proposed
methods. The line-loading results show no limit violations for
both methods. There are no extreme increases or decreases
in line loading for the proposed solution; therefore, this is
another indicator that the proposed MP-OPF method can be
adopted with the advantage of fast solution acquisition for
larger systems.

Similarly, the results are discussed for the scenario when
there is surplus RESs power in a particular hour. In the case
of total curtailment, the proposed approach showed more
curtailment; however, there are some periods when there
was less curtailment compared to that of the conventional
solver. Therefore, to analyze such a case, the 12th hour of
the 10th day of the test day is discussed in terms of gen-
eration dispatch, line loadings, and RES power curtailment.
Fig. 14(a) shows the generation dispatch for the conventional
and proposed methods.

The line loadings are depicted in Fig. 14(b). The results
of the proposed method for dispatch are quite close to those
of the conventional method. In this scenario, the generation
from Generator 1 and RES were slightly more than those of
the conventional method.

FIGURE 14. Scheduling and line loading results for conventional and
proposed methods for an hour (10th day, 12th hour of test set) for large
RES generation.

FIGURE 15. Computational time for solutions of the proposed and
conventional methods.

D. COMPUTATIONAL TIME EVALUATION
For this study, simulations are performed using MATLAB
2022a on a desktop computer with i7 processor and 16 GB
RAM. For the conventional MP-OPF solutions, we used
MATPOWER 7.1. The computational time for the proposed
and conventional methods was compared for a one-year oper-
ation. The conventional MP-OPF solver took 1023.6 seconds
to obtain the solutions for a year of operation, whereas the
proposed approach took just 6.39 seconds for the same,
as shown in Fig. 15.
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Therefore, the proposed solution method is approximately
160 times faster than the conventional solver. Moreover,
the proposed approach has the advantage of fast processing
with minor error of<1%. Additionally, post-processing helps
obtain a feasible solution without violating the thermal and
generation limits and without considerable loss in overall
operating cost.

VI. CONCLUSION
This study proposed an LSTM-RNN based MP-OPF
approach design to obtain solutions in terms of genera-
tion dispatch, total generation cost, curtailment values, and
line loadings. The model demonstrated high accuracy across
all parameters, with errors below 1%. The post-processing
mechanism in the proposed approach helps obtain feasi-
ble solutions by keeping the solutions within the limits
of constraints. For annual operations, the proposed method
demonstrated a marginal percentage difference of 0.028% in
optimal cost of generation compared to conventional method.
The total generation from the proposed method matched
that of the conventional approach, meeting a demand of
28,063.41 GWh.

Moreover, the computational time required for a one-year
operation for the proposed approach and a conventional
solver was compared. The proposed approach took merely
6.39 seconds to solve the problem compared with the
1023.6 seconds taken by the conventional solver. The pro-
posed method was approximately 160 times faster.The fast
speed of the proposed method makes it a promising solution
for real-time operations. It can play a vital role in addressing
uncertainties related to RES and efficiently managing their
impact on power systems. Moreover, the approach can be
scaled to lower time resolutions, making it well suited for
handling the uncertainties associated with RES in such set-
tings.

Overall, as presented in this paper, the MP-OPF approach
based on LSTM-RNN depicts both accuracy and computa-
tional efficiency, thereby making it a valuable tool for power
system optimization and real-time operations with renewable
energy integration.

Furthermore, future work could enhance the proposed
approach by applying it to the unit commitment problem,
where it could handle additional constraints other than ramp-
ing constraints, such as minimum up and down times and
binary variables for unit on/off operations. This enhancement
would require extensive training and a development of hybrid
deep learning techniques, alongside more sophisticated post-
processing algorithms. Similarly, integrating energy storage
systems (ESS) would be a valuable extension of the proposed
work, as it involves managing the temporal dynamics of
charging and discharging states.

REFERENCES
[1] R. Rajan, F. M. Fernandez, and Y. Yang, ‘‘Primary frequency con-

trol techniques for large-scale PV-integrated power systems: A review,’’
Renew. Sustain. Energy Rev., vol. 144, Jul. 2021, Art. no. 110998, doi:
10.1016/j.rser.2021.110998.

[2] F. Monforti-Ferrario and M. P. Blanco, ‘‘The impact of power net-
work congestion, its consequences and mitigation measures on air
pollutants and greenhouse gases emissions. A case from Germany,’’
Renew. Sustain. Energy Rev., vol. 150, Oct. 2021, Art. no. 111501, doi:
10.1016/j.rser.2021.111501.

[3] J. Carpentier, ‘‘Contribution to the economic dispatch problem,’’ Bull.
de la Societe Francoise des Electriciens, vol. 3, no. 8, pp. 431–447,
1962.

[4] M. B. Cain, R. P. O’neill, and A. Castillo, ‘‘History of optimal power
flow and formulations,’’ Federal Energy Regulatory Commission, vol. 1,
pp. 1–36, Dec. 2012.

[5] J. F. Marley and I. A. Hiskens, ‘‘Multi-period AC-QP optimal power flow
including storage,’’ in Proc. Power Syst. Comput. Conf. (PSCC), Genoa,
Italy, Jun. 2016, pp. 1–7, doi: 10.1109/PSCC.2016.7540844.

[6] Q. Gemine, D. Ernst, Q. Louveaux, and B. Cornélusse, ‘‘Relaxations for
multi-period optimal power flow problems with discrete decision vari-
ables,’’ in Proc. Power Syst. Comput. Conf., Wroclaw, Poland, Aug. 2014,
pp. 1–7, doi: 10.1109/PSCC.2014.7038396.

[7] J. Korstanje, Advanced Forecasting With Python. New York, NY, USA:
Springer, 2021.

[8] F. Hasan, A. Kargarian, and A. Mohammadi, ‘‘A survey on applications
of machine learning for optimal power flow,’’ in Proc. IEEE Texas Power
Energy Conf. (TPEC), College Station, TX, USA, Feb. 2020, pp. 1–6, doi:
10.1109/TPEC48276.2020.9042547.

[9] X. Pan, M. Chen, T. Zhao, and S. H. Low, ‘‘DeepOPF: A feasibility-
optimized deep neural network approach for AC optimal power flow
problems,’’ IEEE Syst. J., vol. 17, no. 1, pp. 673–683, Mar. 2023, doi:
10.1109/JSYST.2022.3201041.

[10] X. Pan, T. Zhao, M. Chen, and S. Zhang, ‘‘DeepOPF: A deep neu-
ral network approach for security-constrained DC optimal power flow,’’
IEEE Trans. Power Syst., vol. 36, no. 3, pp. 1725–1735, May 2021, doi:
10.1109/TPWRS.2020.3026379.

[11] R. Zafar, B. H. Vu, and I.-Y. Chung, ‘‘A deep neural network-based
optimal power flow approach for identifying network congestion
and renewable energy generation curtailment,’’ IEEE Access,
vol. 10, pp. 95647–95657, 2022, doi: 10.1109/ACCESS.2022.
3204803.

[12] X. Pan, ‘‘DeepOPF: Deep neural networks for optimal power flow,’’ in
Proc. 8th ACM Int. Conf. Syst. Energy-Efficient Buildings, Cities, Transp.,
Nov. 2021, pp. 250–251, doi: 10.1145/3486611.3492390.

[13] T. Zhao, X. Pan, M. Chen, A. Venzke, and S. H. Low, ‘‘DeepOPF+:
A deep neural network approach DC optimal power flow for ensuring
feasibility,’’ in Proc. IEEE Int. Conf. Commun., Control, Comput. Technol.
Smart Grids, Tempe, AZ, USA, Nov. 2020, pp. 1–6, doi: 10.1109/Smart-
GridComm47815.2020.9303017.

[14] M. Kim and H. Kim, ‘‘Projection-aware deep neural network for DC
optimal power flow without constraint violations,’’ in Proc. IEEE Int.
Conf. Commun., Control, Comput. Technol. Smart Grids, Singapore,
Oct. 2022, pp. 116–121, doi: 10.1109/SmartGridComm52983.2022.
9961047.

[15] W. Huang, X. Pan, M. Chen, and S. H. Low, ‘‘DeepOPF-V: Solving
AC-OPF problems efficiently,’’ IEEE Trans. Power Syst., vol. 37, no. 1,
pp. 800–803, Jan. 2022, doi: 10.1109/TPWRS.2021.3114092.

[16] R. Nellikkath and S. Chatzivasileiadis, ‘‘Physics-informed neural networks
for AC optimal power flow,’’Electric Power Syst. Res., vol. 212, Nov. 2022,
Art. no. 108412, doi: 10.1016/j.epsr.2022.108412.

[17] W. Liang, Y. Wang, Z. Zhao, B. Liu, and X. Li, ‘‘A data-driven AC
optimal power flow using extreme learning machine,’’ J. Physics: Conf.
Ser., vol. 2418, no. 1, Feb. 2023, Art. no. 012105, doi: 10.1088/1742-
6596/2418/1/012105.

[18] Y. Sun, X. Fan, Q. Huang, X. Li, R. Huang, T. Yin, and G. Lin, ‘‘Local fea-
ture sufficiency exploration for predicting security-constrained generation
dispatch inmulti-area power systems,’’ inProc. 17th IEEE Int. Conf. Mach.
Learn. Appl. (ICMLA), Orlando, FL, USA, Dec. 2018, pp. 1283–1289, doi:
10.1109/ICMLA.2018.00208.

[19] J. S. Giraldo, M. Salazar, P. P. Vergara, G. Tsaousoglou, J. G. Slootweg,
and N. G. Paterakis, ‘‘Optimal operation of community energy stor-
age using stochastic gradient boosting trees,’’ in Proc. IEEE Madrid
PowerTech, Madrid, Spain, Jun. 2021, pp. 1–6, doi: 10.1109/Pow-
erTech46648.2021.9495010.

[20] F. Diehl, ‘‘Warm-starting AC optimal power flow with graph neural net-
works,’’ in Proc. Conf. 33rd Conf. Neural Inform. Process. Syst., 2019,
pp. 1–6.

VOLUME 12, 2024 95289

http://dx.doi.org/10.1016/j.rser.2021.110998
http://dx.doi.org/10.1016/j.rser.2021.111501
http://dx.doi.org/10.1109/PSCC.2016.7540844
http://dx.doi.org/10.1109/PSCC.2014.7038396
http://dx.doi.org/10.1109/TPEC48276.2020.9042547
http://dx.doi.org/10.1109/JSYST.2022.3201041
http://dx.doi.org/10.1109/TPWRS.2020.3026379
http://dx.doi.org/10.1109/ACCESS.2022.3204803
http://dx.doi.org/10.1109/ACCESS.2022.3204803
http://dx.doi.org/10.1145/3486611.3492390
http://dx.doi.org/10.1109/SmartGridComm47815.2020.9303017
http://dx.doi.org/10.1109/SmartGridComm47815.2020.9303017
http://dx.doi.org/10.1109/SmartGridComm52983.2022.9961047
http://dx.doi.org/10.1109/SmartGridComm52983.2022.9961047
http://dx.doi.org/10.1109/TPWRS.2021.3114092
http://dx.doi.org/10.1016/j.epsr.2022.108412
http://dx.doi.org/10.1088/1742-6596/2418/1/012105
http://dx.doi.org/10.1088/1742-6596/2418/1/012105
http://dx.doi.org/10.1109/ICMLA.2018.00208
http://dx.doi.org/10.1109/PowerTech46648.2021.9495010
http://dx.doi.org/10.1109/PowerTech46648.2021.9495010


R. Zafar, I.-Y. Chung: Data-Driven MP-OPF for Power System Scheduling

[21] D. Owerko, F. Gama, and A. Ribeiro, ‘‘Optimal power flow using
graph neural networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Barcelona, Spain, May 2020, pp. 5930–5934, doi:
10.1109/ICASSP40776.2020.9053140.

[22] K. Baker, ‘‘Learning warm-start points for AC optimal power
flow,’’ in Proc. IEEE 29th Int. Workshop Mach. Learn. for Signal
Process. (MLSP), Pittsburgh, PA, USA, Oct. 2019, pp. 1–6, doi:
10.1109/MLSP.2019.8918690.

[23] S. Liu, C. Wu, and H. Zhu, ‘‘Topology-aware graph neural net-
works for learning feasible and adaptive AC-OPF solutions,’’ IEEE
Trans. Power Syst., vol. 38, no. 6, pp. 5660–5670, Nov. 2023, doi:
10.1109/TPWRS.2022.3230555.

[24] M. Yang, G. Qiu, J. Liu, Y. Liu, T. Liu, Z. Tang, L. Ding, Y. Shui, and
K. Liu, ‘‘Topology-transferable physics-guided graph neural network for
real-time optimal power flow,’’ IEEE Trans. Ind. Informat., early access,
May 20, 2024, doi: 10.1109/tii.2024.3398058.

[25] Q. Tran, J. Mitra, and N. Nguyen, ‘‘Learning model combining convo-
lutional deep neural network with a self-attention mechanism for AC
optimal power flow,’’ Electric Power Syst. Res., vol. 231, Jun. 2024,
Art. no. 110327, doi: 10.1016/j.epsr.2024.110327.

[26] T. Falconer and L. Mones, ‘‘Leveraging power grid topology in machine
learning assisted optimal power flow,’’ IEEE Trans. Power Syst., vol. 38,
no. 3, pp. 2234–2246, May 2023, doi: 10.1109/TPWRS.2022.3187218.

[27] P. Wu, C. Chen, D. Lai, J. Zhong, and Z. Bie, ‘‘Real-time optimal power
flow method via safe deep reinforcement learning based on primal-dual
and prior knowledge guidance,’’ IEEE Trans. Power Syst., early access,
Apr. 30, 2024, doi: 10.1109/TPWRS.2024.3395248.

[28] B. Feng, J. Zhao, G. Huang, Y. Hu, H. Xu, C. Guo, and Z. Chen, ‘‘Safe
deep reinforcement learning for real-time AC optimal power flow: A near-
optimal solution,’’ CSEE J. Power Energy Syst., early access, May 3, 2024,
doi: 10.17775/CSEEJPES.2023.02070.

[29] A. Venzke, G. Qu, S. Low, and S. Chatzivasileiadis, ‘‘Learning opti-
mal power flow: Worst-case guarantees for neural networks,’’ in
Proc. IEEE Int. Conf. Commun., Control, Comput. Technol. Smart
Grids, Tempe, AZ, USA, Nov. 2020, pp. 1–7, doi: 10.1109/SmartGrid-
Comm47815.2020.9302963.

[30] N. Guha, Z. Wang, M. Wytock, and A. Majumdar, ‘‘Machine learning for
AC optimal power flow,’’ 2019, arXiv:1910.08842.

[31] R. Canyasse, G. Dalal, and S. Mannor, ‘‘Supervised learning for optimal
power flow as a real-time proxy,’’ in Proc. IEEE Power Energy Soc. Innov.
Smart Grid Technol. Conf. (ISGT), Washington, DC, USA, Apr. 2017,
pp. 1–5, doi: 10.1109/ISGT.2017.8086083.

[32] G. Ruan, H. Zhong, G. Zhang, Y. He, X. Wang, and T. Pu, ‘‘Review
of learning-assisted power system optimization,’’ CSEE J. Power Energy
Syst., vol. 7, no. 2, pp. 221–231, Mar. 2021, doi: 10.17775/CSEE-
JPES.2020.03070.

[33] R. D. Zimmerman and C. E. Murillo-Sanchez. (2020). MATPOWER (Ver-
sion 7.1). [Online]. Available: https://matpower.org

[34] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, Power Generation,
Operation, and Control. Hoboken, NJ, USA: Wiley, 2013.

[35] M. A. Pai. (1989). IEEE 39-Bus System. [Online]. Available:
https://icseg.iti.illinois.edu/ieee-39-bus-system/

[36] S. Babaeinejadsarookolaee, A. Birchfield, R. D. Christie, C. Coffrin,
C. DeMarco, R. Diao, M. Ferris, S. Fliscounakis, S. Greene, R. Huang,
and C. Josz, ‘‘The power grid library for benchmarking AC optimal power
flow algorithms,’’ 2019, arXiv:1908.02788.

[37] ISO. New England Demand Data. Accessed: Apr. 17, 2023. [Online].
Available: https://www.iso-ne.com/isoexpress/web/reports/load-and-
demand/-/tree/dmnd-rt-hourly-sys

[38] NASA. Prediction of World Energy Resource. Accessed: Apr. 17, 2023.
[Online]. Available: https://power.larc.nasa.gov/

REHMAN ZAFAR (Member, IEEE) received
the B.S. degree in electrical engineering from
the COMSATS University Islamabad, Islamabad,
Pakistan, in 2015, and the Ph.D. degree in electron-
ics engineering from Kookmin University, Seoul,
South Korea, in 2024.

He was a Graduate Researcher with Kookmin
University, from 2017 to 2024, where he is cur-
rently a Postdoctoral Associate. His research inter-
ests include artificial intelligence for power system

applications, renewable energy integration into the power grids, and power
system control and operation.

IL-YOP CHUNG (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in electri-
cal engineering from Seoul National University,
Seoul, South Korea, in 1999, 2001, and 2005,
respectively.

He was a Postdoctoral Associate with Virginia
Tech, Blacksburg, VA, USA, from 2005 to 2007.
From 2007 to 2010, he was with the Center
for Advanced Power Systems, Florida State Uni-
versity, Tallahassee, FL, USA, as an Assistant

Scholar Scientist. He is currently a full-time Professor with the School of
Electrical Engineering, Kookmin University, Seoul. His research interests
include power system control and operation, renewable energy integration to
power grids, remote microgrid with renewable energy, and shipboard power
systems.

95290 VOLUME 12, 2024

http://dx.doi.org/10.1109/ICASSP40776.2020.9053140
http://dx.doi.org/10.1109/MLSP.2019.8918690
http://dx.doi.org/10.1109/TPWRS.2022.3230555
http://dx.doi.org/10.1109/tii.2024.3398058
http://dx.doi.org/10.1016/j.epsr.2024.110327
http://dx.doi.org/10.1109/TPWRS.2022.3187218
http://dx.doi.org/10.1109/TPWRS.2024.3395248
http://dx.doi.org/10.17775/CSEEJPES.2023.02070
http://dx.doi.org/10.1109/SmartGridComm47815.2020.9302963
http://dx.doi.org/10.1109/SmartGridComm47815.2020.9302963
http://dx.doi.org/10.1109/ISGT.2017.8086083
http://dx.doi.org/10.17775/CSEEJPES.2020.03070
http://dx.doi.org/10.17775/CSEEJPES.2020.03070

