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ABSTRACT Layered water injection is an important means of oilfield development. However, the process
is fraught with challenges due to the complexity of the subsurface environment and the variability in water
absorption properties across different strata. The water injection flow rate of each layer is affected by
various factors, resulting in a typical incomplete system and extremely complexmeasurement and adjustment
of layered water injection. The reasons include development plans, water absorption properties of each
layer, and differences in the structure of underground water injection devices. The combined effect of
these factors leads to the typical incomplete system and complexity of the measurement and regulation of
the layer section of layered water injection. In this paper, a reinforcement learning-based stratified water
injection control algorithm was proposed to solve the problem of stratum flow scheduling in the complex
environment of wellbore during stratified water injection. The reinforcement learning algorithm is combined
with the differential pressure stratified water injection control algorithm, and a reasonable reward function
is set according to the injection error to improve the algorithm control accuracy and efficiency. In order to
evaluate the performance of the algorithm, a gym-based simulation environment is established to simulate the
nonlinear stratigraphic environment under stochastic conditions, so that the model has a better generalization
performance. Compared with other algorithms, the proposed stratified water injection control algorithm
saves 41.94% of training time, the average injection error is less than 5% in the water injection environment
with different number of stratum segments, the average success rate is more than 90%, and there is 85%
probability to reach the injection target within 1-5 steps, which provides a more excellent performance in
terms of control accuracy and adjustment speed. The algorithm has an important guiding role in the flow
scheduling control of injection wells and realizing the automation of layered water injection process. Our
code will be available online at: https://github.com/HJZ-hub/ASWI.

INDEX TERMS Deep reinforcement learning, layered water injection, SAC, flow scheduling.

I. INTRODUCTION
Water injection development can effectively maintain
interlayer pressure, regulate interlayer contradictions, and
increase the fluctuation coefficient of water injection, which
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is an effective method to ensure high and stable production
of oil fields [1], [2], [3]. The water injection system is subject
to the interaction and influence of many factors, such as
water injection equipment, pipeline parameters, formation
environment and geo-engineering, etc. The water injection
environment is complex and variable [4]. On the one hand,
the water injection process is influenced by the friction
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of the pipeline, the compressibility of the liquid and the
elasticity of the pipeline, especially in the localized resis-
tance part of the pipeline, this nonlinear characteristic is
especially obvious [5]. On the other hand, factors such as
permeability, porosity and fluid saturation of the formation
are nonlinear and vary with the injection pressure and volume
of water injection [6]. This further adds to the complexity
and nonlinearity of the water injection environment. The
fourth generation cable controlled layered water injection
technology, with full process digitization, automation, and
tool integration, achieves underground data transmission and
layer flow control through cables, greatly improving the effi-
ciency of water injection well testing and adjustment [7], [8].
However, due to the complex underground environment, long
interval control time, and high control frequency, the service
life of the water injection device is seriously affected. The
number of subdivided layer sections is large, and the water
injection precision is low, which can not ensure good water
injection efficiency. With the promotion and application of
intelligent oilfield has higher requirements for water injection
effect [9]. Unattended automatic deployment technology has
become the difficulty and focus of the intelligent development
of oilfield wellbore.

In recent years, many scholars have conducted in-depth
research on flow control in injection wells using finite
element analysis and experimental methods. Among them,
Zhou et al. [10] used numerical calculation methods to cal-
culate the injection pressure by combining the flow and
injection index curve in the pipe column, and used the nozzle
flow equation to calculate the nozzle size using the nozzle
front pressure and injection pressure. Jiang et al. [11] estab-
lished a method for optimizing the layered water injection
nozzle in heterogeneous reservoirs by studying the relation-
ship between the layered water injection nozzle of water
injection wells, the injection volume and pressure of each
sub layer, and the physical properties of each sub layer.
Xiufang’s indoor experimental method was to simulate the
flow injection situation under different wellhead pressures
and water nozzle openings indoors, and the experiment ver-
ified that the injection flow rate is directly proportional to
the 0.5 power of the pressure difference. The numerical
simulation method involves establishing a geometric model
of a water nozzle and conducting numerical simulations.
Wang et al. [12] investigated the pressure loss of fluids with
different densities and viscosities in nozzles, and ultimately
determined the relationship between nozzle pressure loss and
flow rate, nozzle inner diameter, and fluid density. At present,
the injection flow rate of water injection wells is calculated
using the nozzle flow equation method, but there are differ-
ences in the structural parameters of the research objects,
and linear equations are difficult to solve nonlinear problems
in the water injection process [13]. Reinforcement learning
algorithms have advantages in dealing with decision control
problems in nonlinear environments. Through continuous
experimentation and feedback, they can gradually learn the
optimal decision strategy, adapt to changing environments

and parameter differences, and optimize system performance
to the greatest extent possible. Therefore, we can try to solve
this problem [14], [15].

Reinforcement learning is a machine learning technique
for solving optimal decision problems in dynamic environ-
ments [16], [17]. It has shown performance equivalent to
and beyond human levels in fields such as robot motion
control [18], [19], path planning [20] and resource schedul-
ing [21], [22], [23]. Numerous scholars have applied rein-
forcement learning techniques to the control of robots in
complex environments as well as to the problem of resource
allocation, and are committed to solving the environmen-
tal complexity and nonlinearities faced during the control
of intelligent bodies [24], [25], [26]. Iklassov et al. [20]
proposed a novel end-to-end framework for solving the
Vehicle Route Problem with Stochastic Demand (VRPSD)
using a reinforcement learning approach, which outperforms
previous state-of-art metaheuristic algorithms in terms of
performance and exhibits better robustness to environmental
changes. Qi et al. [21] proposed a UAV control strategy
based on a deep deterministic policy gradient, which solves
the problem of multi-UAV three-dimensional movement
and energy replenishment scheduling, and realises efficient
and fair coverage for users in large areas. Si et al. [23]
described the decision-making process of home energy by
building a mathematical model and used algorithms such
as deep Q-learning and deep deterministic policy gradient
for energy management. Perrusquía et al. [25] proposed a
multi-intelligence reinforcement learning based approach to
solve the kinematic problem of redundant robots and pro-
vided a task-space control scheme applicable to multi-linked
robots. The study of reinforcement learning in dealing with
control and resource allocation problems in complex environ-
ments provides important lessons for flow scheduling control
during stratified water injection.

In the process of stratified water injection, the flow rate of
the current stratum section is not only related to the current
injection environment but also related to the action of the
current water injection device. As shown in Figure 1 in the
water injection process, the water injection device observable
parameters include wellhead pressure, formation pressure,
formation depth, nozzle opening, wellhead flow rate, the
water injection device as an intelligent body will be regulated
as the time of the intelligent body action, so that the water

FIGURE 1. Layered water injection device control and working principle.
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injection device to complete the upward adjustment, down-
ward adjustment, and closure of the control action.

In this paper, a SAC-based reinforcement learning method
for stratified water injection is proposed for solving the
injection flow scheduling problem during stratified water
injection, and the main contributions can be listed as:

First, a nonlinear simulation environment based on the
water injection law, which can simulate the water injection
process in any layer section with any formation pres-
sure under the constant pressure condition at the wellhead,
is established for training and validating the algorithm pro-
posed in this paper.

Second, a method for calculating the water nozzle of strat-
ified water injection under constant pressure is proposed, and
the model can more accurately calculate the water nozzle
opening of the stratified water injection device under this
pressure.

Third, a SAC-based hierarchical water injection reinforce-
ment learning method is proposed, which is compared with
the SAC algorithm and the PFC (Baseline) hierarchical water
injection computational model, and the algorithm is able to
better achieve the water injection goal of the water injection
device in a nonlinear environment.

II. CALCULATION METHOD FOR THE OPENING OF
DOWNHOLE WATER INJECTION DEVICES
A. HYDRODYNAMIC MODELING OF WATER INJECTION
COLUMNS
In the process of water injection, the effect of water injection
is jointly determined by parameters such as surface equip-
ment, downhole tools, formation water absorption capacity,
and water nozzle shape. As shown in Figure 2 for the layered
water injection structure, this model is based on the actual
injection process, based on the observable parameters accord-
ing to the wellhead pressure P0, stratum section formation
pressure Pi, depth of the bottom layer of the water injection

FIGURE 2. Water injection well structure.

device hi, percentage of nozzle opening xi, and injection flow
rate of the stratum section qi, and the fluid dynamics in the
water injection column is modeled.

The water injection process is regarded as incompressible
flow, when the water nozzle is no longer changed, the velocity
and pressure of the fluid will not change with the change of
time, the total energy per unit mass of fluid is kept constant in
any two flow lines, and the hydraulic equilibrium relationship
between the wellhead and the outlet of the nozzle of each
layer section can be obtained from Bernoulli’s equation [29]:

P0
ρg
+ hi =

Pi
ρg
+
v2i
2g
+ hwi (1)

where, P0 is the wellhead pressure, Pa; ρ is the density of the
injected liquid, kg/m3; g is the acceleration of gravity, m/s2;
Pi is the formation pressure of layer i, Pa; vi is the average
velocity of the liquid at the outlet of the nozzle of layer i,
m/s; hi is the depth of the formation from the wellhead to the
layer i, m; and hwi is the head loss from the wellhead to the
layer i, m.

The head loss includes along-travel loss and localized loss,
and its expression is [28]:

hwi = hfi + hji (2)

where, hfi denotes the along-track loss from the wellhead to
layer i, m; and hji denotes the localized loss at the exit of
layer i, m.

A change in pipe diameter at the outlet of the water injec-
tion unit produces a localized pressure loss expression [29]:

hji = ζi
v2i
2g

(3)

where, ζi is the local loss coefficient of the layer i nozzle,
generally obtained by experiment; vi is the average velocity
of the liquid at the outlet of the layer i nozzle, m/s.
The along-travel resistance loss is the energy loss resulting

from relative motion within the liquid and viscous friction
between the liquid and the pipe wall, expressed as:

hfi =


λi
hi
do

v2oi
2g

, i = 1

λ1
(h1)
do

v2o1
2g
+

n∑
i=2

λi
(hi − hi−1)

do

v2oi
2g

, i > 1
(4)

where, λi is the loss coefficient in the layer i of the injec-
tion column, do is the diameter of the injection column, m;
voi is the average velocity inside the injection column of the
layer i, m/s.

The flow condition of the fluid, which has a large influence
on the along-stream loss, is usually described by the Reynolds
number, which is expressed as [28] for the ith section:

Rei =
ρvoido

µ
=
voido

ν
(5)

where, ρ is the fluid density, kg/m3; voi is the average
velocity in the layer i of the injection column, m/s, µ is
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the hydrodynamic viscosity, Pa· s; v is the fluid kinematic
viscosity, m2/s; and do is the diameter of the injection
column, m.

The pipe flow is transformed from laminar flow to tran-
sitional flow and turbulent flow, and the along-travel loss
coefficient λ of the pipe exists a certain relationship with
the Reynolds number and the relative roughness of the pipe
in different flow states, and the expression for the relative
roughness of the water injection pipe column is:

ε =
ε

do
(6)

where, the relative roughness ε is a dimensionless number, ε
is the roughness of the inner surface of the pipe, m; and do is
the diameter of the water injection pipe column, m.

When the Reynolds number Re < 2300, there is a laminar
flow in the injection column and the along-stream resistance
coefficient is expressed as:

λi =
64
Rei

(7)

When the Reynolds number Re > 2300, the injection column
is turbulent flow, and the along-stream resistance coefficient
is expressed by using Haaland formula [10] as:

1
√

λi
= −1.8 lg

[(
ε

3.7

)1.11

+
6.9
Rei

]
(8)

The method of calculating the loss factor in the layer i of the
injection column can be expressed as follows: [27]:

λoi =


64
Rei

, Re < 2300{
−1.8 lg

[(
ε

3.7

)1.11

+
6.9
Rei

]}−2
, Re ≥ 2300

(9)

B. MODELING OF CONSTANT PRESSURE WATER
INJECTION SIMULATION ENVIRONMENT
As shown in Figure 3 U-type water nozzle structure, layered
water injection device nozzle throttling hole, need to meet
the gradient of the overflow area is easy to adjust, hydraulic
radius, resistance to blockage, flow control range, etc., the
shape of the water nozzle directly determines the nozzle on
the flow of the flow regulation effect is good or bad, is an
important part of the water injection device. The expression

FIGURE 3. U-shaped nozzle structure.

for calculating the overflow area Ai of the water injection
device in the layer i of the injection column is as follows:

Ai (xi, a, b)

=



a2

4
arccos

(
1−

2di
a

)
−

(a
2
− di

)√
adi − d2i ,

0 ≤ di <
a
2

πa2

8
+ a

(
xi −

a
2

)
,

a
2
≤ di ≤ b+

a
2

πa2
4 + ab−

a2
4 arccos

(
2(di−b)

a − 1
)

+
(
di − a

2 − b
)√

2dib+ dia− d2i − b
2 − ab,

b+
a
2

< di ≤ b+ a

(10)

where, a represents the height of the U-shaped nozzle, m; b
represents the width of the U-shaped nozzle, m; di represents
the opening of the nozzle, m.

The fluid velocity voi in the injection column is expressed
by the fluid continuity equation as:

voi =
viAi
Ao
=

4viAi
πd2o

(11)

where, vi denotes the average velocity of the liquid at the
outlet of the nozzle of the layer i, m/s;Ai denotes the overflow
area of the nozzle, m2; Ao denotes the cross-sectional area of
the water injection pipe column, m2; do denotes the diameter
of the water injection pipe column, m.

Bringing Equation (11) into Equation (4) yields a func-
tional relationship between the outlet flow rate vi at the nozzle
and the along-stream loss, and bringing Equation (4) and
Equation (3) into Equation (1) yields an expression for the
outlet flow rate:

vi (P0, hi,Pi, ζi, λoi) =

√√√√ 2P0 + 2ρghi − 2Pi

ρ + ζiρ + λoi
hi
do

A2i
A20

ρ

(12)

The nozzle outlet flow rate vi, brought into Equation 13 can
be calculated to obtain the expression for the water injection
in layer i as:

Qi = Aivi (13)

The loss coefficient λoi along the injection column is a
function of the velocity voi inside the injection column,
which cannot be obtained when the nozzle outlet flow rate
is unknown. Using the iterative method, assuming that the
coefficient of loss along the injection column λ′oi = 0.01,
bring into equation (12) to get the nozzle outlet flow velocity
vi under the opening, bring into equation (11) to get the
average velocity voi in the injection column, calculate the
Reynolds number Rei under the flow velocity, and then bring
into equation (9) to get the coefficient of loss along the nozzle
outlet flow velocity λoi, which can be calculated by using the
original input coefficient of loss along the injection column
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Algorithm 1 An Iterative Method for Calculating the
Flow Rate of Layer Segments in a Constant-Pressure
Environment
Initialization:

Nozzle dimensions a, b; number of layer segments n, along-
track loss coefficient error γ ; wellhead pressure P0;
formation pressure P = [P1,P2 . . .Pi], height of each layer
segment from the surface h← [h1, h2, . . . hi]; spool position
of each layer segment d ← [d1, d2, . . . dn]; empty flow output
set Q = [ ]; i ∈ [1, 2, . . . n].

1: for i← 1 to n do
2: Bring the spout opening xi, U-shaped spout dimensions a,

b into Equation (10) to calculate the spout area Ai.
3: Determine the local loss coefficient ζi for the spigot.
4: λ′i = 0.01.
5: repeat
6: λi ← λ′i is brought into Equation. (11) to calculate the

nozzle outlet flow rate vi.
7: Bring vi into Equation (12) to find voi.
8: Calculate the Reynolds number Re and the relative

roughness ε
9: Equation (9) finds the current front range loss

coefficient λ′i.
10: until convergence (

∣∣λi − λ′i

∣∣ ≤ γ )
11: λi is brought into Equation (12)(13) to find the layer i

flow Qi
12: Add Q_i to the matrix Q = [ ].
13: end for

λ′oi, with the original input loss coefficient voi. The coeffi-
cient of along-range loss λoi is compared with the original
input along-range loss coefficient λ′oi, and the approximate
nozzle exit velocity vi is obtained through continuous itera-
tion so as to calculate the water injection volume of each layer
segment, and the calculation process is shown in Algorithm 1:

Aiming at the nonlinear phenomenon existing in the
water injection process, the constant pressure water injec-
tion environment with different number of layer segments
is constructed based on gym. The local loss coefficient ζ is
an important parameter affecting the water injection volume
in the process of water injection, and the random error N is
added to the local loss coefficient ζ to make the result of the
water injection volume have nonlinearity, and the expression
of the local loss coefficient ζ ∗i after the addition of noise is as
follows:

ζ ∗i = ζi + N (14)

where, ζi is the localized loss coefficient of the i-layer and the
noise N obeys the normal distribution N ∼ N (0, 0.158).
As shown in Figure 4, the simulation results of water

injection in the layer section with different nozzle pressure
differences under 50% nozzle opening are shown, fromwhich
it can be seen that this injection environment has nonlinear
characteristics.

C. CALCULATION OF THE OPENING OF THE NOZZLE OF
THE WATER INJECTION DEVICE
Based on the single-layer segment flow rule of change pro-
posed in the literature [10], [11], [12], this paper proposes

FIGURE 4. Nonlinear differential pressure flow chart.

a constant-pressure environment of the water nozzle flow
control method, the detailed step calculation process is as
follows.

With a known target injection flow rate for the layer
section, the flow velocity voi in the injection column is
expressed as:

voi =
Qtai
do

(15)

where, Qtai is the target injection volume in layer i, m/s; and
do is the diameter of the water injection column, m.
The pre-nozzle pressure is the pressure measured inside

the column of tubing at the outlet of the injection device,
which is jointly determined by the wellhead pressure, depth
of the injection layer, and head loss, and the expression for
the pre-nozzle pressure is:

Pbi = Po + ρghi − hfi (16)

The injection differential pressure is the difference between
the pressure in front of the injection device pre-nozzle and the
formation pressure, expressed as:

1Pi = Pbi − Pi (17)

A large number of studies have shown that there is a linear
relationship between injection differential pressure and flow
rate and nozzle opening, and the expression between nozzle
opening and flow rate can be obtained through experimental
or simulation methods [10], [11], [12]:

di =

(
Qtai + C

K1P0.5i

)N
(18)

where, di denotes the spout opening, m; C , K , and N are con-
stants related to the shape of the spout, which are generally
obtained by experiment or simulation. Experimentally shown
that K = 14.07, C = 3.14, N = 1.01.
The formula (14) into the formula (5) can get the layer

section of the Reynolds number Re, the Reynolds number
into the formula (9) can be obtained along the loss coefficient
λi, along the loss coefficient into the formula (4) can be
obtained along the loss of the section of the loss of h_fi, which
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Algorithm 2 Pressure Flow Control algorithm(Baseline)
Initialization:

Nozzle dimensions a, b; water injection column diameter do;
formation pressure P = [P1,P2, . . . ,Pi]; injection device
depths h = [h1, h2, . . . , hi]; segment target injection volume
Qta = [Qta1,Qta2, . . . ,Qtai]; i ∈ [1, 2, . . . , n].
Nozzle dimensions a, b; injection column diameter do;
formation pressure P = [P1,P2, . . . ,Pi]; depth
of the injection device h = [h1, h2, . . . , hi];
stratum segment target injection volume Qta =
[Qta1,Qta2, ..,Qtai]; i ∈ [1, 2, . . . n].

1: for i← 1 to n do
2: Equation (14) calculates the fluid velocity voi in this section

of the column.
3: Calculate the Reynolds number of the pipe column in this

layer section Re = voido
ν .

4: Equation (4) calculates the along-travel loss coefficient
hfi for this section of the pipe column.

5: Equation (16) yields the nozzle differential pressure 1Pi

6: Water injection device opening, di =

(
Qtai+C

K1P0.5i

)N
.

7: Converted to percentage xi = d i/(a+ b).
8: return Set of water injection device openings for each layer

segment x = [x1, x2 . . . xi].

can be calculated through the formula (15) and formula (16)
to get the differential pressure of the nozzle, and into the
formula (17) to calculate the layer section of the opening of
the injection device, and then the pressure flow is calculated
through the formula (15) and formula (16), which can be
calculated through the formula (17). Pressure Flow Control
algorithm flow is shown in Algorithm 2.

III. DESIGN AND IMPLEMENTATION OF REINFORCEMENT
LEARNING ALGORITHM FOR LAYERED WATER INJECTION
A. MARKOV DECISION PROCESS
Markov Decision Process (MDP) is a classical decision
process in reinforcement learning [30]. The conditional prob-
ability of an intelligent future state depends not only on the
current state, but also on the action taken by the intelligent
in the current state [31], [32]. The process of regulating the
flow rate of a stratified water injection layer segment can be
regarded as a Markov decision process, where the flow rate
of the current layer segment is not only related to the current
dispensing environment but also to the current action of the
water injection device.

A Markov process (MP) is a stochastic process whose
conditional probability distribution of future states, given
the present state and all past states, depends only on the
present state [16]. This means that given the present state,
it is conditionally independent of the past states Describe a
Markov process with the tuple< S,P >, S = {s1, s2, . . . sn}
denoting a finite number of sets of states, and P is the state
transfer matrix with the expression:

P =

P (s1 | s1) · · · P (sn | s1)
...

. . .
...

P (s1 | sn) · · · P (sn | sn)

 (19)

Row i and column j in P denote the probability of trans-
forming from state si to sj, which is satisfied by the Markov
process:

P (st+1 | st) = P (st+1 |ht) (20)

where, ht = {s1, s2, . . . st } denotes the history of the state,
and the transfer from the current state st to st+1 is equal to
the transfer of all previous states to st+1.
The reward function Gt is added to the Markov pro-

cess, which is transformed into Markov Reward Process
(MRP).The Markov Reward Process consists of the tuple <

S,P, r, γ >, r(s) is the reward function, which is the expec-
tation of the reward that can be obtained when transferring to
a certain state s. γ denotes the discount factor, as shown in
Figure 5 for the Markov Reward Process.

FIGURE 5. Markov reward process.

The sum of all reward decays from moment t , St up to
the termination state is called the reward Gt (Return) and is
denoted as:

Gt = Rt + γRt+1 + γ 2Rt+2 + · · · =
∞∑
k=0

γRt+k (21)

where, Rt denotes the reward obtained at moment t, and γ ∈

[0, 1] denotes the discount factor, which responds to the effect
of future rewards on the current harvest.

By adding action a to the original Markov reward process,
a Markov decision process (MDP) is obtained consisting of
tuples ⟨S,A,P, r, γ ⟩.

Where S is the set of states, A denotes the set of actions,
r (s, a) denotes the reward obtained by choosing action a in
state s, and P

(
s′|s, a

)
denotes the probability that the state of

performing action a in state s will change from the state of s
to s′, which is satisfied by the Markov decision process [30]:

P (st+1 | st , a) = P
(
st+1|ht,at

)
(22)

The Markov decision process is a time-dependent unin-
terrupted process with non-stop interactions between
the intelligence and the environment MDP. The strategy of
the intelligence, denoted by π , is the probability of a in
case the input state is s that is:

π (a | s) = P (At = a |St = s) (23)

Vπ (s) denotes the state-value function based on policy π in
MDP, representing the return obtained from state s according
to policyπ . The value of state s equals the sum of the products
of probabilities and corresponding values for all actions taken
under policy π . The expression is [35]:

V π (s) =
∑
a∈A

π (a | s)Qπ (s, a) (24)
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Qπ (s, a) denotes the action-value function based on the
policy π in the MDP, which represents the expected reward
obtained by executing action a in state s. It is equal to the
product of the immediate reward plus the probability of all
possible state transfers after decay and the corresponding
value, with the expression [36]:

Qπ (s, a) = γ
∑
s
′∈S

P
(
s
′
| s, a

)
V π

(
s
′)

(25)

B. REWARD FUNCTION
In the design of the water injection algorithm, the intelligent
body (water injection device) contains two objectives, the
smallest possible injection error, and the smallest possible
number of adjustments in each layer segment.

The target injection volume of the stratum segment is qta,
the actual injection volume is qr , and the injection well has n
stratum segments, and the accumulated total error Ea(qta, qr )
is:

Eai (qa, qr ) =
n∑
i=1

∣∣qa,i − qr,i∣∣ (26)

where, qta ∈ {qta1, qta2, . . . , qai} denotes the set of layer
segment target injections, m3/d, and qr ∈ {qr1, qr2, . . . , qri}
denotes the set of actual injections in the layer segments,
m3/d. The goal of the incentives is to adjust the layer segment
injections in the direction of error reduction.

Motion reward Rruni is the control reward for the nozzle
motion direction, the nozzle opening is proportional to the
flow rate under constant pressure state, and the nozzle motion
direction reward is given based on the target injection vol-
ume and the actual injection volume. The motion reward is
denoted as:

Rruni =

{
Rpositive, (qtai − qri) > 0androi > 0
Rreversal, (qtai − qri) < 0androi < 0

(27)

where, roi denotes the time and direction of rotation of the
layer i segment, when roi > 0 means rotating roi seconds in
the direction of increasing spout opening. Conversely, rotate
roi seconds in the opposite direction.
The positional reward Rloci is to prevent the water nozzle

movement to the critical value to prevent the maximum or
minimum situation, the opening is zero when the water injec-
tion device layer section injection is zero and seriously affect
the life of the water injection device, in order to prevent this
situation, agent penalty is given when xi = 0 or xi = 100.
The position reward is denoted as:

Rloci = −k (28)

The purpose of the time reward Rtime is to expect the agent
to reach the goal in as few adjustment steps as possible, dif-
ferent number of layer segments have different time rewards,
levelecount indicates the number of layer segments. The time
reward incentive denoted as:

Rtime = −0.5 ∗ levelcount (29)

The error reward Rerroi indicates the distance between the
actual value and the target value, the continuous reward can be
a good response, the distance between the agent and the target
value, the error indicates the distance between the actual value
and the target value. The expression of the error is:

Eai (qa, qr ) =
n∑
i=1

|qai − qri| (30)

Ten times the percentage of the error to the target value is used
as the penalty value for the error reward, which is denoted as:

Rerroi = 10×

∣∣qtai − qri∣∣
qtai

(31)

The target reward Rtarget is the reward when the agent reaches
the error range of the target value, and the target reward is
denoted as:

Rtarget =

{
Rreach, success
Rcollision, collosion

(32)

Then the total reward function is expressed as:

R =

{
Rtarget , finish

Rtime +
∑n

i=1
Rruni + Rloci + Rerroi, others

(33)

The reward values have been adjusted after extensive exper-
iments, and the results show that the inclusion of the target
reward can make the whole system converge more rapidly.
The reward values for each part are, Rpositive = 1, Rreversal, =
1, k = 100, Rreach = 0 and Rcollision = 100.

C. STATE SPACE
Reinforcement learning algorithms make decisions and eval-
uate gains based on the state of the environment perceived by
the robot, and a good state space design directly affects the
efficiency and effectiveness of the algorithm [37].

The environmental state information includes ground
information, layered injection unit structure information,
real-time sensor information, formation information, and tar-
get injection volume information, and the state space is
defined as:

S = {p0, xi, hi, pi, tai} ∀i ∈ (1, 2 · · · , n) (34)

where, p0 denotes the wellhead injection pressure; xi denotes
the percentage of nozzle opening in layer i; hi denotes the
depth of the water dispenser in layer i; pi denotes the forma-
tion pressure in layer i; and tai denotes the target injection
volume in layer i.

D. ACTION SPACE
Layeredwater injection device is by controlling the size of the
nozzle opening to change the nozzle differential pressure so
as to realize the requirements of achieving the injection flow
rate of different layers, here the nozzle movement time roi is
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used as a parameter of the agent continuous action space [38],
and the continuous action space A is defined as:

A = {roi} ∀i ∈ (0, 1, 2 · · · , n) (35)

where, roi ∈ [−20, 20] unit seconds, when roi > 0 that
means the time when the spool in the water distributor
moves roi seconds in the direction of increasing the overflow
area, roi = 0 that means the spool does not move, and when
roi < 0 that means the spool in the water distributor moves
ro_i seconds in the direction of decreasing the overflow area.

E. COMBINING REINFORCEMENT LEARNING
ALGORITHM DESIGN AND IMPLEMENTATION
SAC algorithm is a model-free deep reinforcement learning
algorithm with maximum entropy, which can be trained in an
offline environment, and is able to solve the reinforcement
learning problem in discrete action space and continuous
action space well [39], [40].

The reinforcement learning principle of ASWI algorithm
(Automatic Stratified Water Injection) combined with PFC
algorithm is shown in Figure 6, which is added to the original
SAC algorithm as a pre-processing for water injection con-
trol. The policy network takes the state s of the environment
as input, and each layer segment has four state attributes:
nozzle opening xi, depth of the injection device hi, formation
pressure pi, and target injection volume tai, and the wellhead
pressure p0 is common to each layer segment. The number
of input parameters is 1 + n × 4 for the water injection
environment with n layer segments. For different number of
layer segments, the hidden layer is n fully-connected layers,
64 neurons for one and two layer segments, and 128 neurons
for the three-layer case, and LeakyReLU and Tanh are used as
activation functions for the hidden layer and the output layer,
respectively.

FIGURE 6. Schematic diagram of the layered water injection ASWI.
Algorithm based on reinforcement learning.

Entropy denotes the degree of randomness with respect to
a random variable, and entropy is defined as:

H (π (· | st+1)) = −logπ (at+1 | st+1) (36)

The SAC algorithm maximizes the cumulative expected
reward while making the strategy more stochastic, and the
optimization objective of the strategy is defined as:

π∗ = argmin
π

Eπ

[∑
t
r (st , at)+ αH (π (· | st))

]
(37)

where, r ∈ (0, 1) the discount factor, which responds to the
effect of future rewards on the current harvest; α ∈ (0, 1)
the temperature coefficient, which controls the importance of
entropy; and H(π (· | st)) denotes the degree of randomness
of the strategy π in state s.
SAC uses two action-value functions Qωi (st , at ), and each

time a Q network is used, the network with the smaller Q
value is selected, thus mitigating the problem of having too
high a Q. The loss function for any one of the functions Q is:

LQ (ω)

= E(st ,at ,rt ,st+1)∼D,at+1∼πθ(· | st+1)[
1
2
(Qω (st,at)

− (rt + γ (min
j=1,2

Qω−j
(st+1, at+1)2 − αlogπ(at+1|st+1))))]

(38)

where, D is the data collected by the strategy in the past,
Qω−j

(st+1, at+1) is approximated using the target network of

Q. Qω−j
is the target Q network with parameter ω−, and the

updating method is denoted as:

ω−j ← τωj + (1− τ) ω−j (39)

where, τ is the learning rate, the target network is updated by
assigning a weighted average of the original target network
and the corresponding Q-network after iterative learning.
The Q-network is updated using gradient descent and the

gradient expression for the Q-network is:

∇ωLQ (ω) =
∑ ∇ωQω

|B|
(Qω (st , at)− yi) (40)

where, B denotes a fixed batch size of samples B selected
from the buffer D. For each sample the yi expression is
computed using the target network as:

yi = ri + γ min
j=1,2

Qω−j
(si+1, ai+1)− αlogπθ (ai+1 | si+1)

(41)

The policy network is a state-to-action mapping, and the
policy π is updated by minimizing the scatter, and the loss
function of the policy π is denoted as:

Lπ(θ) = Est∼D,at∼πθ

[
α log (πθ (at , st))− Qω (st , at)

]
(42)

Since the process of sampling a Gaussian distribution is not
derivable, the SAC algorithm uses a reparameterization to
make the sampling process derivable for the policy function,
which is denoted by the policy function at :

at = fθ (ϵt ; st) (43)
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where, ϵt is a noisy random variable, and considering both
Q-functions, the loss function of the rewrite strategy is:

Lπ (θ) = Est∼D,ϵt∼N [α log (πθ (fθ (ϵt ; st) | st))

− min
j=1,2

Qωj (st , fθ (ϵt ; st))] (44)

The expression for the gradient ∇θLπ of the policy network
at time slot t is

∇θLπ (θ)

=

∑ 1
|B|
∇θα log (πθ (at , st))

+
(
∇atα log (πθ (at , st))−∇atQ (st , at)

)
∇θ fθ (ϵt ; st)

(45)

The temperature coefficient of entropy is very important
in the SAC algorithm, and different sizes of temperature
coefficients are chosen in different states. In order to auto-
matically adjust the temperature coefficient of entropy, the
SAC algorithm constructs an optimization problem with con-
straints defined as:

max
π

Eπ

[∑
t

r (st , at)

]
s.t.E(st ,at )∼ρπ

[
− log (πt (at | st))

]
≥ H0

(46)

The loss function for α at time t can be obtained by transform-
ing Equation (45) into a dyadic problem via the Lagrangian
dyadic method:

L (α) = Est∼D,at∼π(· | st )
[
−αlogπ (at | st)− αH0

]
(47)

where,H0 denotes the minimum policy entropy threshold.

IV. SIMULATION RESULTS AND ANALYSIS
In this chapter, simulation experiments are conducted to
verify that ASWI is better than SAC algorithm and PFC
algorithm in terms of convergence speed, training time, suc-
cess rate, and water injection error under the same parameters
and environment.

A. SIMULATION EXPERIMENTAL DESIGN
The PyTorch and the Python language were used to compile
the PFC, SAC, and ASWI algorithms based on the mod-
els in Sections II-C and III-E, while the network models
in Section IV-B were trained on a single 6GB RAM GPU
(1660plus) and a 12400f CPU. The SAC and ASWI algo-
rithms used the same training parameters, with the number
of training steps set to 500, and the stopping condition of a
single iteration exceeding 200 steps or a water injection error
is less than 2%.

Since the algorithm is based on the SAC framework with
both actor and critic networks, the network parameters are
shown in Table 1:

Hyperparameters are the parameters that affect the per-
formance, learning speed, convergence quality, robustness,

Algorithm 3 Automatic Stratified Water Injection
Initialization:

Randomize the network parameters ω1, ω2, and θ ,
initialize the Critic networks Qω1 (s, a), Qω2 (s, a),
and the Actor network πθ (s), copy the same parameters
ω−1 ← ω1, ω

−

2 ← ω2,
and θ− ← θ , and initialize the target networks Q

ω−1
,

Q
ω−2

, and πθ− .
1: Initialize the experience pool D.
2: for e = 1→ T do
3: Get environment initialization state st .
4: Algorithm 1 st = PFC (st ).
5: for t = 1→T do
6: Choose the action at = πθ (st ) according to the

current policy.
7: Execute at , get reward rt , and the state of the

environment changes to stC1
8: D← D ∪

{
(st , at , r (st ,at ) , st+1)

}
9: for k = 1→ K do
10: Sample B tuples from D
11: ωj ← ωj − λQ∇ωLQ

(
ωj
)
forj ∈ {1, 2}

12: θ ← θ − λπ∇θLπ (θ)
13: α← α − λ∇αLα (α)
14: ω−j ← τωj + (1− τ) ω−j forj ∈ {1, 2}
15: end for
16: end for
17: end for

TABLE 1. Hyperparameter setting of ASWI algorithm.

and generalization ability of machine learning models, and
need to be set before training. Through a large number of
experiments, we adjust the hyperparameters to make the rein-
forcement learning model achieve better performance. The
hyperparameter settings are shown in Table 2.
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TABLE 2. Hyperparameter setting of ASWI algorithm.

The reinforcement learning model under the random water
injection environment of 1-3 layer segments was simulated
and trained several times through the simulation platform
respectively, and some parameters of the water injection envi-
ronment are shown in Table 3.

B. COMPARATIVE ANALYSIS OF REWARDS FOR TRAINING
RESULTS OF WATER INJECTION ALGORITHMS
The reward curves can reflect the learning of ASC algorithm
and ASWI algorithm during the training process, so the
reward curves of the two algorithms under 500 steps of
training were explored, with the horizontal coordinate being
the number of training steps and the vertical coordinate being
the reward value, as shown in Figure 7.

(1) As shown in Figure 7(a), the fluctuation range of the
reward value of ASWI and SAC algorithms is closer to the
range near 0 and the convergence speed is almost the same
in the One-layer segment environment, and the fluctuation of
SAC algorithm is slightly larger than that of ASWI algorithm,
and the maximum reward value is basically the same as that
of ASWI algorithm, as can be seen from the local zoomed-in
graph.

(2) As shown in Figure 7(b), the reward value of SAC
algorithm is smaller than that of ASWI algorithm under the
water injection environment of the Two-layer segment envi-
ronment, and from the local zoomed-in figure, it can be seen
that the reward value fluctuation range of SAC algorithm is
larger than that of ASWI algorithm, with most values fluctu-
ating around−2000, and some of the reward values of ASWI
algorithm fluctuates more, and the maximum fluctuation
value is around −1000, comparing with the SAC algorithm,
ASWI has a Compared with SAC algorithm, ASWI has better
reward value stability.

(3) As shown in Figure 7(c), the ASWI reward value is
larger than the SAC algorithm in the Three-layer segment
environment, the SAC algorithm reward value fluctuates in a
larger range, with most of the data fluctuating around−2000,
and the ASWI algorithm rewards the largest fluctuating value
around 0, which has a better reward stability.

The two algorithms are significantly different in reward
value and fluctuation range as shown in Figure 7. The SAC

FIGURE 7. SAC algorithm and ASWI algorithm reward curves.

algorithm reward value fluctuation range is larger indicating
that the single-step adjustment process does not reach the
target fast enough and therefore obtains more penalties for
the number of adjustment steps and the adjustment error.
From the SAC algorithm reward curve coverage, it can be
seen that the frequency and range of reward data fluctuation
increases significantly with the number of layer segments.
In the One-ayer segment environment, the reward value has
some data fluctuating around−400 near 0, some data around
−2000 in the Two-layer segment, and a large amount of data
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TABLE 3. Partial test environment data.

appearing around −2000 in the Three-layer segment. The
larger reward fluctuation of SAC indicates that the reward
acquisition is unstable. The reward value of ASWI algorithm
tends to stabilise at around 0 in the Three-layer segment
complexity environments after 100 steps of training. fluctuate
around 0. From the coverage area of the reward curve of
the ASWI algorithm in Fig. 7, it can be seen that the ASWI
algorithm has a larger reward value and better stability of the
reward value compared to the SAC algorithm.

C. COMPARATIVE ANALYSIS OF ALGORITHM TRAINING
TIME
We comparatively studied the time required to complete
500 steps of training for the two algorithms in different envi-
ronmental complexities, as shown in Table 4 and Figure 8.
Where Figure 8 horizontal coordinates are 1-3 layer segment
environments, the left y-axis corresponds to a bar graph indi-
cating training time, and the right y-axis corresponds to a line
graph indicating the rate of improvement in the training time
of the ASWI algorithm.

TABLE 4. Training time for SAC and ASWI algorithms.

As can be seen from Table 4, under One-layer segment
water injection environment, the training time of SAC and
ASWI algorithms are 5.2min and 2.23min respectively, and
the training time enhancement rate of ASWI algorithm is
57.12%; under Two-layer segment water injection environ-
ment, the training time of SAC and ASWI algorithms are
21.38min and 12.15min respectively, and the training time

enhancement rate of ASWI algorithm time enhancement rate
is 41.39%; in the Three-layer segment water injection envi-
ronment, the training time of SAC and ASWI algorithms
are 48.8min and 35.47min respectively, and the training time
enhancement rate of ASWI algorithm is 27.32%.

As can be seen in Figure 8, the training time of SAC
and ASWI algorithms gradually increases with the increase
in the complexity of the environment, and the training time
enhancement rate of the ASWI algorithm gradually shrinks
into a linearly decreasing trend. The ASWI algorithm has
an obvious advantage in training time compared to the SAC
algorithm, and it performs well especially in the case of
low environmental complexity. It can also be found that the
training time of reinforcement learning for hierarchical water
injection increases linearly with the increase of the complex-
ity of the water injection environment.

FIGURE 8. Comparison of training time for layered water injection
regulation algorithms.

The ASWI algorithm has an obvious advantage in train-
ing time compared with the SAC algorithm, and espe-
cially performs well in the case of low environmental
complexity. Meanwhile, the training time of reinforce-
ment learning for layered water injection increases linearly
with the increase of the complexity of the water injection
environment.
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FIGURE 9. Variation curve of water injection error.

D. COMPARATIVE ANALYSIS OF INJECTION ERRORS IN
LAYER SECTIONS
We compare and analyze the error change curves in a par-
ticular set of environments, as shown in Figure 9, where the
horizontal coordinate is the number of computational steps
and the vertical coordinate is the layer-segment regulated
water injection error.

(1) As shown in Figure 9(a), the error range of the SAC
algorithm is between 0% and 50% and the error range of the
ASWI algorithm is between 0% and 42% for the One-layer
segment environment, the fluctuation range of the ASWI
is smaller and the ASWI algorithm is closer to the target
injection amount when 5% is the injection target.

(2) As shown in Figure 9(b), the error fluctuation range
of SAC algorithm is between 0% and 9% and the error
fluctuation range of ASWI algorithm is between 0 and 8% in
the Two-layer segment environment, and the two algorithms
have similar performance in controlling the water injection
error.

(3) As shown in Figure 9(c), the error range of the SAC
algorithm is between 5% and 20% and the error range of the
ASWI algorithm is between 2% and 10% for the Three-layer
segment environment, and the error of the ASWI algorithm
is significantly smaller than that of the SAC algorithm, and
the error of the SAC algorithm gradually increases with the
increase of the environmental complexity, and the ASWI
algorithm shows a more excellent performance in controlling
the water injection error.

As can be seen from Figure 9, under One-layer seg-
ment, SAC algorithm and ASWI algorithm have almost
similar error control ability, under Two-layer segment ASWI
algorithm has a smaller error range, and under Three-layer
segment SAC error is much larger than ASWI algorithm.
ASWI has a good performance in the water injection sce-
nario with different complexity, and all of them can keep the
water injection error around 5%, and has a more excellent
performance in the water injection error control. It has more
excellent performance in water injection error control.

The distribution of training errors of analyzing PFC,
SAC, and ASWI algorithms under different environmental
complexity is shown in Figure 10, where the horizontal coor-
dinate is the layer segment regulation error and the vertical
coordinate indicates the control algorithms under different
environmental complexity.

(1) As shown in Figure 10(a), the quartiles of PFC, SAC,
and ASWI for the One-layer segment environment are about
9%, 4%, and 4%, the quartiles are about 1%, 0%, and 0%, and
the medians are about 4%, 2%, and 2%. From the One-layer
segment error box plots, it can be seen that the quartile error
values of the PFC algorithm are larger and have multiple
deviations compared to SAC and ASWI.

(2) As shown in Figure 10(b), the quartiles of PFC, SAC,
and ASWI for the Two-layer segment environment are about
8%, 7%, and 5%, the quartiles are about 1%, 0%, and 0%, and
the medians are about 4%, 2%, and 2%. From the Two-layer
segment error box plots, it can be seen that the PFC algorithm

FIGURE 10. Comparison of algorithmic water injection error distributions.
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TABLE 5. Data on average error and success rate for injection quantities.

has a higher quartile and one-quartile error than SAC and
ASWI, the SAC algorithm has a higher quartile error than the
ASWI algorithm, SAC algorithm has more number of devia-
tion points than ASWI algorithm and the range of deviation
is more.

(3) As shown in Figure 10(c), the quartiles of PFC, SAC,
and ASWI are about 9%, 12.5%, and 4%, the quartiles are
about 2%, 1%, and 1%, and the medians are about 5%, 5%,
and 2.5% for the Three-layer segment environment. From the
Three-layer segment error box plots it can be seen that the
error range of SAC algorithm is greater than ASWI and PFC
algorithms and the quartiles of SAC algorithm is greater than
ASWI and PFC algorithms and ASWI algorithm is less than
SAC and PFC algorithms.

The SAC algorithm has a small range of error distribution
in the one and two layer segments with median around 2.5%,
in the Three-layer segment, the range of error distribution and
median significantly increases median around 5%.The ASWI
algorithm has quartiles below 5% in complex environments,
with no off-points in the One-layer segment, and partial
off-points in the two and three layer segments, under complex
environments, the ASWI is still able to maintain better error
control.

The average error and success rate of injection volume
are counted to compare the error performance of different
algorithms as shown in Table 5, and the target is considered to
be reachedwhen the injection error is less than 5%. Combined
with Table 5, the average error and dispensing success rate
histograms are plotted as shown in Figure 11 to show the
injection error performance of different algorithms under
different environmental complexity, the horizontal coordinate
is the number of water injection environmental layer seg-
ments, and the histogram and line graph represent the average
injection error and injection success rate of different algo-
rithms, respectively.

(1) The average injection error of the three algorithms in
the One-layer segment environment is less than 5%, and the
average values of the PFC, SAC, and ASWI algorithms are
4.85%, 2.47%, and 2.33%, respectively, and the success rates
are 56%, 100%, and 100%, respectively, and the average
injection errors and success rates of the SAC and ASWI
algorithms are almost the same and lower than those of the
PFC algorithm.

(2) The average injection error of the three algorithms
in the Two-layer segment environment is less than 5%, and
the average values of the PFC, SAC, and ASWI algorithms
are 4.53%, 3.40%, and 3.56%, respectively, with the success
rates of 62%, 86%, and 91%, respectively, and the average

FIGURE 11. Bar chart of average error and success rate in annotation.

injection values of the SAC and ASWI algorithms are close to
each other and smaller than the average injection error of the
PFC algorithm, and the success rate of the ASWI algorithm
is higher than that of the PFC and SAC algorithm.

(3) The average injection error of ASWI algorithm is less
than 5% in the Three-layer segment environment, the average
injection error of ASWI algorithm is 3.03% less than PFC
and SAC algorithms, SAC and PFC algorithms have similar
success rate close to 50%, and ASWI algorithm has 94%
success rate more than PFC and SAC algorithms.

In terms of the average error and success rate under dif-
ferent environmental complexity, the average water injection
error of PFC and SAC algorithms increases with the increase
of environmental complexity, and the success rate of SAC
algorithm performs well at 2.47% in the One-layer segment
environment, and PFC algorithm can keep the error within
5% in theOne-layer segment and Two-layer segment environ-
ment. However, with the increase of environment complexity,
the success rate of SAC is obviously decreasing, and the
PFC algorithm is around 50%.The average error and success
rate of ASWI in different environments are 3.03% and 95%
respectively, which are better than PFC and SAC algorithms,
and fluctuation is small with the increase of environment
complexity.

E. INJECTIONS MEAN ERROR AND SUCCESS RATE DATA
SHEET
The adjustment steps of different algorithms were analyzed,
as shown in Figure 12, for the change of water nozzles of the
water injection device under the 1-3 layer section, with the
horizontal coordinate as the number of adjustment steps and
the vertical coordinate as the percentage of nozzle opening.

(1) As shown in Figure 12(a), the nozzle opening for an
injection error of 0% is approximately 66.5% in the One-layer
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FIGURE 12. Nozzle opening variation curve for water injection device.

segment environment. In the ASWI algorithm, the spout
openings occur more densely near 66.5%, the SAC algorithm
has some data near 66.5% spout openings, and the ASWI
algorithm is more densely near the optimal openings.

(2) As shown in Figure 12(b), the nozzle openings with
0% injection error for the first and second layer segments are
approximately 51.4% and 57.0% in the Two-layer segment
environment. In the SAC algorithm, the first layer segment
gradually converges to 57.0% of the water nozzle opening
after 60 steps, and the second layer segment gradually con-
verges to 46% of the water nozzle opening, which is a large
gap from the optimal opening. In the ASWI algorithm, most
of the nozzle opening data in the first segment is below 57.0%
and has a large gap, and the nozzle opening in the second
segment fluctuates around the optimal target opening.

(3) As shown in Figure 12(c), the nozzle openings with
0% injection error for the first and second layer segments are
approximately 18.1%, 19.5%, and 12.1% in the Three-layer
segment environment. In the SAC algorithm, the first nozzle
opening is approximately 22% above the optimal opening
approximately, and the second and third nozzle openings are
approximately 17% and 10% fluctuating below the optimal
opening. In the ASWI algorithm, the first and second layers

have denser fluctuations near the optimal spout opening, and
the third layer spout opening is closer to the optimal value
and fluctuates below.

The SAC algorithm was able to have some of the data
appear near the optimal opening in the One-layer segment
environment, with large offsets in both two and three layer
segments. The ASWI algorithm was able to remain near
the spigot opening as the complexity of the environment
increased, with denser data in the vicinity of the optimal open-
ing, representing a higher probability of a higher probability
of the ASWI algorithm with fewer tuning steps in the same
environment.

Statistics on the distribution of the number of adjust-
ment steps for each algorithm under different environmental
complexity are shown in Figure 13, where the horizontal
coordinate is the interval from 1-100 steps and the vertical
coordinate is the algorithm under different environmental
complexity.

(1) In the One-layer segment environment, the SAC
algorithm and the ASWI algorithm reached the goal in the
1-10 step interval at 60% and 91%, respectively. The per-
centage of reaching the target within the 1-5 step interval was
32% and 82%, respectively. The mean values of the adjusted
steps were 9.34 and 3.43 steps, respectively, and the ASWI
algorithm outperformed the SAC algorithm in reaching the
goal within the 1-10 step interval.

(2) In the Two-layer segment environment, the SAC
algorithm and the ASWI algorithm reach the goal within
1-10 steps in 72% and 89%, respectively. The percentage
of reaching the target within 95-100 steps is 24% and 6%,
respectively. The average values of adjustment steps are
25.91 and 9.52 steps, respectively, and the ASWI algorithm
has fewer adjustment steps in both layer segment environ-
ments compared to the SAC algorithm.

(3) In the Three-layer segment environment, the SAC
algorithm and the ASWI algorithm reach the goal within 1-5
steps in 55% and 85%, respectively. The percentage of reach-
ing the target within 1-10 steps is 33% and 76%, respectively.
The percentage of reaching the target within 95-100 steps is
54% and 9%, respectively. The average values of adjustment
steps are 58.97 and 16.58 steps, respectively, so the adjust-
ment steps of ASWI are smaller than those of SAC algorithm
in three individual layer segment environments.

The average percentage of SAC algorithm and ASWI
algorithm reaching the goal within 1-5 steps is 43.00%
and 73.33% respectively in 1-3 layer segment environment.
The average percentage of reaching the goal in the range
of 1-10 steps is 55.00% and 85.33%, respectively. As shown

TABLE 6. Average step data.
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FIGURE 13. Heatmap of adjustment step distribution.

in Table 6, the average number of adjustment steps for SAC
algorithm and ASWI algorithm for different environment
complexity are 34.41 and 9.84 steps respectively. The ASWI
algorithm outperforms the SAC algorithm in the number of
adjustment steps to reach the target injection faster.

V. CONCLUSION
In order to solve the problem of difficult to control the flow
rate of water nozzles due to the complexity and incom-
pleteness of stratified water injection layer segments in the
water injection process, this paper proposes a reinforcement
learning-based ASWI automatic deployment algorithm. The
water injection device is able to perform actions continuously
in a nonlinear environment, and regulate the water nozzle
opening of each layer segment according to the environmen-
tal information in order to achieve the injection target of
different layer segments. In this paper, a gym-based sim-
ulation environment is constructed to simulate the water
injection process in multi-layer segments using the local loss
coefficient as a nonlinear parameter, and the environment
is used to train and validate the control performance of the
algorithm in a nonlinear environment.

Based on the hydrodynamics of layered water injec-
tion column, establish the water nozzle control model of
water injection device under constant pressure state. Build a
PyTorch-based algorithmic program based on the nonlinear
water injection environment, train the intelligent body, and
design a reasonable reward function with the fastest tuning
speed and the smallest injection error as the goal. Compar-
ison of the performance of PFC algorithm, SAC algorithm
and ASWI algorithm is verified by arithmetic simulation,
and the results show that the ASWI algorithm shortens the
training time by an average of 41.94%, the regulation error
of each layer segment is under 5% in 1-3 layer segment,
and the average success rate of the regulation of the layer
segments to reach the injection target is 95%, and there is a
probability of 85% to reach the layer segment injection target
in 1-10 steps, and the ASWI algorithm has better perfor-
mance in terms of training reward, training time, layer water

injection error and the number of tuning steps outperforms
the PFC algorithm and SAC algorithm. This method makes
up for the lack of control of layered water injection devices
in the field of water injection and has important application
value for oil development.

Future research work will be devoted to the analysis of
nonlinear influences on the injection environment, model-
ing of the constant flow injection environment, and deep
learning-based prediction of the injection environment These
topics will be considered as future extensions of this work.
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