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ABSTRACT In this study, we exploit themodified Jensen-BregmanLogDet (MJBLD) divergence tomeasure
the dissimilarity between two region covariance descriptors extracted from an image, and design a target
detection method based on this descriptor. In particular, MJBLD divergence, which considers the non-
Euclidean geometric structure, is used as the measurement on the symmetric positive-definite (SPD) matrix
manifold. The MJBLD divergence is a modified version of the Jensen-Bregman LogDet (JBLD) divergence
which has many properties similar to the affine invariant Riemannian metric. Then, the MJBLD divergence
is applied for the task of the image target detection where the image region of interest is represented as a
covariance descriptor. The covariance descriptor is a SPDmatrix which is constructed by the first and second
gradients of intensity and the three-dimensional color information. Since the SPD matrix naturally resides
on the non-Euclidean Riemannian manifold and the MJBLD divergence can be treated as a manifold metric,
applying the non-Euclidean distance to SPD matrices can yield a better performance in comparison with the
Euclidean distance. Experimental results show that our proposed method outperforms the state-of-the-art
method.

INDEX TERMS Riemannianmanifold, symmetric positive-definite matrix, image target detection, modified
Jensen-Bregman LogDet divergence, region covariance descriptor.

I. INTRODUCTION
Target detection involves finding the target of interest from
a two-dimensional image and then dividing it into many
known types. Target detection is a significant problem
in the fields of computer vision and image processing
because it is closely related to applications in robotics [1],
[2], [3], surveillance [4], registration, manipulation [5],
and signal processing [6], [7], [8]. Several methods have
been implemented for target detection. However, it still
remains an ongoing research area. A successful example
is to extract efficient image features to complete the task
of the target detection. Typically, features used for target
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detection can be classified into two classes, local description
features and global description features. Usually, global
features characterize the whole region of a target, while local
features are represented by some characters extracted from
the part region [9]. Global feature-based target detection
often employs an exhaustive strategy to search the image
at various sizes and scales to discover the target of interest.
In contrast to the exhaustive search using the local feature, the
global feature is more expensive and sensitive to the change
in rotation and scale. Extracting local features typically
contains two steps. The salient region invariant to affine
transformations is obtained first. Then, a descriptor of the
detected region is established to make them discriminative.
Classical feature-based approaches have achieved good
performance in many applications due to their robustness to
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rotation, scale, illumination, and occlusions [9]. However,
detecting target in the presence of varying appearance and the
wide range of poses is a challenging task, and the detection
performance needs to be improved.

Classical image features often rely on pixel information
such as the intensity, image color, and its gradients, and have
been widely used for many image processing tasks for a
long time, for example, [10], [11], [12]. Unfortunately, the
application of these features for image processing can be
easily affected by illumination changes and nonrigid motion.
A natural way to extend the pixel-information-based feature
is to model the classical image feature as a histogram derived
by a nonparametric estimation of an image region. In [13],
histogram features extracted from the image region are used
for target detection with a nonrigid motion. In [14] and [15],
a fast histogram construction method is explored and used for
searching the global match. The histogram feature has been
used for target tracking [16], texture representation [17], and
others. Moreover, different features can be combined with a
joint representation via a histogram, but this representation
has an expensive computational cost.

Recently, one of the most successful histogram features,
the histograms of oriented gradients (HOG) [18], [19],
[20], has attracted increasing attention. The HOG feature
originates from the scale-invariant feature transformation
(SIFT), and it can be viewed as a dense version of SIFT. The
HOG feature mainly describes the contrast between contours
and the background. Typical applications of the HOG feature
are provided in [21] and [22], the HOG feature is used
together with the support vector machine algorithm to detect
target in the presence of varying appearance. This approach
is robust under various conditions including illumination,
distortion and environmental noise. Another example is given
in [23], the authors exploit the HOG feature together with
the local binary pattern (LBP) feature to implement target
detection. However, the joint representation of the HOG
feature and the other feature requires high computational cost.
Nowadays, covariance matrices constructed by the image
information have been used for feature description in the field
of computer vision, and provide a compact framework of
fusing different kinds of features. In contrast to the vector-
form feature, covariance matrices can describe the correlation
of the second-order feature information of data, and have
been shown to provide a powerful representation for many
tasks in contexts of image processing and computer vision,
including texture categorization [24], [25], joint covariance
descriptors for action recognition [26], [27], diffusion
tensors-based medical image processing [28], and region
covariance descriptors for pedestrian detection [29], [30].
In this paper, we establish a region covariance matrix from

an image region via the color information, the coordination,
and the first and second gradients of intensity. In particular,
the MJBLD divergence that takes into account the non-
Euclidean Riemannian structure is exploited to measure the
dissimilarity of two region covariance matrices. A coarse-
to-fine target detection method is presented and applied to

target detection on the Inria person, the Fashion-MNIST and
the Pascal VOC datasets. At the coarse detection stage, many
similar regions are localized through the covariance matrix
extracted from the whole region. To achieve fine detection,
four covariancematrices are obtained from left, right, bottom,
and top parts of an image region, and used to select the
most similar region of the target. Numerical experiments are
provided to demonstrate the superiority of this method.

The remainder of this paper can be organized as follows:
Section II introduces how to construct the region covariance
descriptor; the Riemannian geometry of symmetric positive-
definite matrix is presented in Section III; the modified
Jensen-Bregman LogDet divergence and its properties are
detailed in Section IV; Section V implements numerical
examples for target detection on three datasets; and conclu-
sions are provided in Section VI.
Notation: In order to facilitate the description of this

paper, some notations should be given. The math italic x,
the lowercase bold x, and the uppercase bold X denote the
scalar, vector, and matrix, respectively. Symbols XT stands
for the transpose of the matrix X. Symbol |X| denotes the
determinant of matrix X. I is the identity matrix. ∂f (x)

∂x
represents the derivative of function f (x) with respect to x.
The conjugate of a complex data y is denoted by ȳ. Symbols
∥X∥F and tr(X) denote the F-norm and the trace of the matrix
X, respectively.

II. REGION COVARIANCE DESCRIPTOR
A region in the image often contains much information,
such as the image intensity, the color information, the
coordinates of a pixel, and so on. Let I be a three-dimensional
color image, I (a, b) denotes the intensity of pixel (a, b).
R(a, b), B(a, b), G(a, b) denote three color values of the
location (a, b), respectively. The norm of the first and second
order derivatives of the intensities with respect to a and b
are |

∂I (a,b)
∂a |, |

∂I (a,b)
∂b |, |

∂2I (a,b)
∂a2

|, and |
∂2I (a,b)

∂b2
|, respectively.

A straightforward way to combine these features in the
location (x, y) is to be represented as a nine-dimensional
vector z = [a b R(a, b) G(a, b) B(a, b) |

∂I (a,b)
∂a |

|
∂I (a,b)

∂b | |
∂2I (a,b)

∂a2
| |

∂2I (a,b)
∂b2

|]T . For an image region Q,
suppose that the width is W , the height is H , and there are
n = W × H pixels in this region, each element in the
region is a nine-dimensional vector, and the i-th vector can
be represented as z(i).

There are several advantages to using the covariancematrix
as the region descriptor. The covariance matrix feature,
extracted from an image region, can effectively represent
the region across different views and poses. If the two
distributions vary only in their covariance matrices, the
covariance matrix contains all the sample information needed
to discriminate between different distributions. Further, the
covariance matrix can be used to fuse several kinds of
correlate features. The autocorrelation of each feature is
represented by the diagonal entries, and the correlation of
multiple features is noted by the non-diagonal entries. It is
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worth noting that noise in any one feature can result in a
large entry in the covariance matrix. Contrast to other region
descriptors, such as the histogram, the covariance matrix
is low dimensional. The covariance matrix is (d2 + d)/2-
dimensional, where d is the dimensionality of the features,
and the joint feature histogram is qd -dimensional, where q
represents the number of histogram bins.

Suppose that a region R contains n pixels, each pixel is
modeled as a d-dimensional vector z, and {zj}nj=1 denote n
feature points inside the region R. Then, the region R can be
represented by a d × d covariance matrix CR constructed as
follows,

CR =
1

n− 1

n∑
k=1

(zk − z̄)(zk − z̄)T , (1)

where CR is the covariance matrix estimated by the image
information of the region R, and z̄ denotes the arithmetic
mean of n vectors.

On the basis of this representation, each region in the image
can be expressed as a covariance matrix. The (i, j)-th element
of matrix CR can be given by

CR(i, j) =
1

n− 1

n∑
k=1

(zk (i) − z̄(i))(zk (j) − z̄(j)). (2)

Expand the mean z̄ and rearrange the terms, then we can
obtain

CR(i, j) =
1

n− 1
[
n∑

k=1

zk (i)zk (j) −
1
n

n∑
k=1

zk (i)
n∑

k=1

zk (j)]. (3)

To obtain the covariance matrix in a given region R, the
summation of the terms {zj}nj=1 and the summation of the
multiplication {zj}nj=1 are needed to compute. Suppose R is
a rectangular region, (w1, h1) is the upper left coordinate and
(w2, h2) is the lower right coordinate, letG be the d×H ×W
dimensional image feature obtained from the image I , then,
the d × H ×W tensor P can be given as

P(x1, y1,m) =

∑
a<w1,b<h1

G(a, b,m),m = 1, . . . , d . (4)

Additionally, the d×d×H×W tensor of the second order
image feature U is given as

U (w1, h1,m, n) =

∑
a<w1,b<h1

G(a, b,m)G(a, b, n),

m, n = 1, . . . , d . (5)

Assume that Pa,b is a d-dimensional vector and Ua,b is
a d × d-dimensional matrix, then, Pa,b and Ua,b can be
formulated as

Pa,b = [P(a, b, 1) . . .P(a, b, d)]T ,

Ua,b =

U (a, b, 1, 1) · · · U (a, b, 1, d)
...

...
...

U (a, b, d, 1) · · · U (a, b, d, d)

 . (6)

Note that Ua,b is a symmetric matrix with (d2 +

d)/2 dimensions and Pa,b is a d-dimensional vector. The
computational complexity of computing P and U are
O(d2WH ). Let R(w1, h1;w2, h2) be the rectangular region,
the covariance matrix of the region bounded by (1, 1) and
(w1, h1) is estimated as

CR(1,1;w1,h1) =
1

n− 1
[Uw1,h1 −

1
n
Pw1,h1P

T
w1,h1 ], (7)

where n = w1h1 is the number of points in the region R.
Through a serial of manipulations, the covariance matrix of
the region R(w1, h1;w2, h2) can be computed as

CR(w1,h1;w2,h2)

=
1

n− 1
[Uw1,h1 + Uw2,h2 − Uw2,h1 − Uw1,h2

−
1
n
(Pw1,h1 + Pw2,h2 − Pw1,h2 − Pw2,h1 )(Pw1,h1 + Pw2,h2

− Pw1,h2 − Pw2,h1 )
T ], (8)

where n = (w2 − w1)(h2 − h1). According to Eq.(8),
the region covariance descriptor can be established. Given
a region R, its corresponding covariance matrix is invariant
to the scale and rotation in different images as it does not
contain any information about the number of points and the
order of the matrix. However, if the information regarding
the gradient (scale) with respect to the location is included
in the covariance matrix, the covariance matrix is sensitive to
the rotation (scale). The region covariance matrix estimated
by Eq.(8) is a symmetric positive-definite (SPD) matrix.
SPD matrices naturally lie on the non-Euclidean Riemannian
manifold, which will be introduced in the subsequent text.

III. RIEMANNNIAN GEOMETRY OF SYMMETRIC
POSITIVE-DEFINITE MATRIX MANIFOLD
A Riemannian manifold is a non-linear mathematical space,
where a point x on the manifold has a local neighbourhood
that is differentiable homeomorphism with its tangent space
TxM ( Euclidean space). The tangent space of a point on
the Riemannian manifold defines an inner product, which
induces the norm ∥y∥2x = ⟨y, y⟩x . As stated in [31] and [32]
that the geometric structure of the Riemannian manifold is
determined by a Riemannian metric, which can reflect the
powerful framework to work on the manifold. SPD matrices
form a connected Riemannian manifold Sym+

d constructed by
a set of SPD matrices, where each point on this manifold is a
SPD matrix. A Riemannian metric can be defined as [33]

⟨Y,Z⟩X = tr(X−
1
2YX−1ZX−

1
2 ). (9)

As is known that by choosing a point X on the SPD
manifold and a vector x⃗y on the tangent space TXM of the
point X, only one geodesic starting from X with the tangent
vector. A geodesic is the shortest curve connected two points
on the manifold. The exponential mapping, which maps a
point on the tangent space TXM to the manifold, is defined
as

expXY = X
1
2 exp(X−

1
2YX−

1
2 )X

1
2 . (10)
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The exponential mapping is a function that is defined
on the tangent space TXM. The mapping is not a global
diffeomorphism but only a local one, as the one-to-one
mapping is meet on the local neighbourhood of the point X.
Therefore, the inverse function, that is the logarithmmapping,
is defined as

logX Y = X
1
2 log(X−

1
2YX−

1
2 )X

1
2 . (11)

For the case of SPD matrix, the matrix can be computed
easily by eigenvalue decomposition, as

6 = UDUT
= Udiag(λi)UT . (12)

The exponential and logarithm mapping are given as

exp(6) = Udiag(exp(λi))UT ,

log(6) = Udiag(log(λi))UT . (13)

Based on this metric and the exponential and logarithmic
mapping, a geodesic distance is given as follows,

d2R(X,Y) = ⟨logX Y, logX Y⟩X

= tr(X−
1
2X

1
2 log(X−

1
2YX−

1
2 )X

1
2X−1X

1
2

× log(X−
1
2YX−

1
2 )X

1
2X−

1
2 )

= tr(log2(X−
1
2YX−

1
2 ))

= tr(log2(X−1Y)). (14)

Thus, the geodesic distance which is also called the Affine
Invariant Riemannian Metric (AIRM) can be formulated
as [34]

dR(X,Y) = ∥ log(X−1Y)∥F . (15)

In addition to the geodesic distance, lots of divergences
can be exploited to measure the dissimilarity between two
points on the SPD manifold. In the next section, the modified
Jensen-Bregman LogDet (MJBLD) divergence is formally
discussed.

IV. MODIFIED JENSEN-BREGMAN LOGDET DIVERGENCE
A Riemannian manifold can be endowed with different
information divergences. Different divergences reflect dif-
ferent geometric structures of the Riemannian manifold.
Here, we introduce a new divergence, that is a modified
version of the JBLD divergence [35]. In the following, the
JBLD divergence is introduced first, and then the MJBLD
divergence is presented.

Given two vectors u and v, the Bregman divergence dϕ :

L × relint(L) → [0, ∞) is defined as

dϕ(u, v) = ϕ(u) − ϕ(v) − ⟨u − v, ∇ϕ(v)⟩, (16)

where ϕ : L ⊆ Rd
→ R denotes a Legendre type

function and strictly convex on int(dom L). ∇ denotes the
differentiation of a function. As the Bregman divergence is
asymmetric, it loses many useful properties. As a conse-
quence, a substantial interest is focused on a symmetrized

version, the so-called JBLD divergence, which is given
by [36]

Jϕ(u, v) =
1
2
(dϕ(u, s) + dϕ(s, v)), (17)

where s = (u + v)/2.
Eq.(16) and Eq.(17) can be naturally extended to the case

of SPD matrix by instead using the eigenvalue map λ of
the convex function ϕ, and by substituting the trace for the
inner product used in Eq.(16). Thus, the Bregman divergence
between the given SPD matrices U and V, is defined as

Bϕ(U,V) = ϕ(U) − ϕ(V) − ⟨U − V, ∇ϕ(V)⟩. (18)

Similarly, for two SPD matrices U and V, the JBLD
divergence between them can be derived by employing
ϕ(U) = − log |Y| as the seed function, as follows,

Jld =
1
2
(Bϕ(U,S) + Bϕ(S,V)),S = (U + V)/2. (19)

Substitute Eq.(18) into Eq.(19), and we can obtain

Jld =
1
2
(ϕ(U) − ϕ(S) − ⟨U − S, ∇ϕ(S)⟩ + ϕ(S) − ϕ(V)

− ⟨S − V, ∇ϕ(V)⟩)

=
1
2
(ϕ(U) − ϕ(V) − ⟨U − S, ∇ϕ(S)⟩

− ⟨S − V, ∇ϕ(V)⟩). (20)

Plug ϕ(U) = − ln |U| and S = (U + V)/2 into Eq.(20),
and we have

Jld = ln |
U + V

2
| −

1
2
ln |UV|. (21)

It can be noted from Eq.(21) that the JBLD divergence
Jld (x, y) is symmetric, nonnegative, and definite [37]. Many
properties about the JBLD divergence can be summarized as
follows:

1. nonnegativity: Jld (U,V) ≥ 0,
2. definiteness: Jld (U,V) = 0 iff U = V,
3. symmetry: Jld (U,V) = Jld (V,U),
4. triangle inequality:

√
Jld (U,V) ≤

√
Jld (U,Z) +

√
Jld (Z,V),
5. affine invariance: Jld (AUB,AVB) = Jld (U,V) for

invertible matrices A and B,
6. invariance to inversion: Jld (U−1,V−1) = Jld (U,V).
Additionally, Jld is commonly used as a proxy for the

AIRM D2
R due to its close relation to the Riemannian metric

that is given in Theorem 1.
Theorem 1: Let U,V ∈ Sd++. Then,

Jld (U,V) ≤ D2
R(U,V), (22)

and ifMI ⪰ U,V ⪰ mI ≻ 0, then,

D2
R(U,V) ≤ 2 ln(M/m)(Jld (U,V) + γ ), γ = d ln 2.

(23)

Proof 1 (Proof of Theorem 1): As U and V ∈ Sd++

are positive, the eigenvalues λ(UV−1) > 0. Let vi =
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λi(UV−1) = eui , then, the AIRM between U and V can be
rewritten as

D2
R(U,V) = ∥u∥2, (24)

and the JBLD is given as

Jld (U,V) =

d∑
i=1

(ln(1 + eui ) − ui/2 − ln 2). (25)

According to affine invariance, we have

Jld (U,V) = Jld (UV−1,VV−1)

= Jld (UV−1, I)

= Jld (I,UV−1)

= ln |I + UV−1
| −

1
2
ln |UV−1

| − ln 2d . (26)

Let

f (x) = x2 − ln(1 + ex) + x/2 + ln 2, (27)

the second derivative of f (x) can be given as

f ′′(x) = 2 −
ex

(1 + ex)2
. (28)

It is clear that the function f (x) is convex as f ′′(x) > 0.
Moreover, the first derivative of f (x) is given as

f ′(x) = 2x − ex/(1 + ex) + 1/2. (29)

Set f ′(x) = 0, and we have x∗
= 0. Thus, for all x ∈ R,

the formulation f (x) ≥ f (x∗) = 0 holds, this means that

d∑
i=1

f (ui) = D2
R(U,V) − Jld (U,V) ≥ 0. (30)

To prove the inequality Eq.(23), let’s first note that

d∑
i=1

(|ui|/2 − log 2) ≤

d∑
i=1

(−ui/2 − ln 2 + ln(1 + eui )),

(31)

Then, we have the bound

Jld (X,Y) + d ln 2 ≥
1
2
∥u∥1. (32)

Substitute the Holder’s inequality uT n ≤ ∥u∥∞∥u∥1 into
Eq.(32), and we can obtain the bound

2∥u∥∞(Jld + d ln 2) ≥ ∥u∥22 = D2
R(U,V). (33)

In addition,MI ⪰ U,V ⪰ mI implies that ln(M/m) ≥ ∥u∥∞.
Based on the definition of the JBLD divergence (21),

we define a divergence function by replacing the matrix
determinant with the matrix trace, as

(U,V) 7→ tr(
U + V

2
) − tr(U

1
2V

1
2 ). (34)

It is obvious from (34) that this function is positive and equals
to zero if U = V. Indeed, (34) is a divergence function which
is called the modified JBLD divergence.

Proposition 1: The modified JBLD divergence is a sym-
metric function on the SPD manifold.
Proof 2 (Proof of Proposition 1): The modified JBLD

divergence function can be rewritten as

DMJ (U,V) =
1
2
tr((U

1
2 − V

1
2 )2) =

1
2
∥U

1
2 − V

1
2 ∥

2. (35)

It is clear that (35) is a symmetric function. When matrices
U and V commute, DMJ (U,V) = DMJ (V,U).
Proposition 2: The modified JBLD divergence satisfies

the following triangle inequality,

DMJ (U,V) ≤ 2(DMJ (U,W) + DMJ (W,V)). (36)

Proof 3 (Proof of Proposition 2): According to (35), the
following triangle inequality can be given,√

DMJ (U,V) ≤

√
DMJ (U,W) +

√
DMJ (W,V). (37)

Square left and right of the inequality, and we have

DMJ (U,V) ≤ DMJ (U,W) + DMJ (W,V)

+ 2
√
DMJ (U,W)DMJ (W,V). (38)

Then we can obtain the following inequality√
DMJ (U,W)DMJ (W,V) ≤

1
2
(DMJ (U,W) + DMJ (W,V)).

(39)

Proposition 3: Themodified JBLD divergence is invariant
under congruence transformations.

DMJ (WUWT ,WVWT ) = DMJ (U,V). (40)

It is noted that the modified JBLD divergence is not invari-
ant under the inversion, as DMJ (U,V) = DMJ (U−1,V−1).
An outstanding advantage of the MJBLD and the JBLD

divergences against the Riemannian distance is its computa-
tional complexity. Specifically, DMJ can be computed by a
matrix multiplication U and V, and it requires (1/2)d3 flops.
Jld need only computation of determinants, which is com-
pleted through three Cholesky factorizations (U + V, U and
V), and each factorization requires (1/3)d3 flops. However,
the Riemannian distance DR is computed via eigenvalues,
and it can be derived for SPD matrices in approximately
4d3 flops. Therefore, DMJ and Jld are much faster than DR.
Lots of trials are provided in Table 1.

V. EXPERIMENTS
Detecting targets in images is challenging due to varying
appearances and a wide range of poses. Many methods have
been implemented for this purpose but it still remains as
an ongoing area of research. In this Section, we aim to
implement and evaluate our proposed method. The region
covariance descriptor is applied to extract the image feature
for target detection, and the MJBLD divergence is used as the
dissimilarity measure between two covariance descriptors.
Given an image, the goal of target detection is to find
the location of the target in a given image. In this paper,
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TABLE 1. Time consuming (seconds) of calculating function values over 5 ∼ 1000 trials.

we exploit the pixel coordinates (a, b), the color information
(RGB) and the first and second gradients of the intensity with
respect to a and b coordination. Then, each location of the
image can be represented as a 9-dimensional feature vector,
as [a b R(a, b) G(a, b) B(a, b) |

∂I (a,b)
∂a | |

∂I (a,b)
∂b |

|
∂2I (a,b)

∂a2
| |

∂2I (a,b)
∂b2

|]T , where the first and second order
derivative can be obtained through the filters [−1 2 −1]T

and [−1 0 1]T , respectively. For an image region, the
covariance descriptor is a 9 × 9 covariance matrix and can
be derived as (1).
To conduct the target detection experiment, the image tar-

get is represented by five covariance matrices. As illustrated
in Figure 1, these five covariance matrices are computed
inside the overlapping image region. Specifically, Ci, i =

1, . . . , 5 are derived in the whole, left part, right part, top
part, and bottom part of the region. A two-stage scheme is
employed to detect the image target from coarse to fine steps.
At the first stage, covariance matrices derived from the whole
region with nine different scales are used to search a region
where covariance matrices of all locations are close, and the
dissimilarity of any two matrices is measured by the MJBLD
divergence. We do not change the scale of the target image
but the size of the search window. During the process, there
is a 0.15 scaling factor in different search windows.

At the second stage, 1000 best matching locations are
selected, and we repeat to search for these 1000 locations by
exploiting these five SPD matrices Ci, i = 1, . . . , 5. Given
a target model, the dissimilarity between region covariance
descriptors in the search region and the target model is
calculated by

d(T ,R) = j
min

[
5∑
i=1

d(CT
i ,CR

i ) − d(CT
j ,CR

j )], (41)

where CT
i and CR

i are covariance descriptors of the target
model and the search region, respectively. The matching
region is regarded as the region with the smallest dissimilarity
with respect to the covariance descriptor of the target model.
This method is robust to the possible occlusion and large
illumination change, as five covariance matrices in different
regions are used to compute the dissimilarity.

To obtain a statistically meaningful conclusion, a variety
of experiments are given to validate the superiority of our
proposed target detection method that is the covariance
descriptor with the MJBLD (CD-MJBLD) divergence on the
Inria person [38], the Fashion-MNIST [39] and the Pascal
VOC [40] datasets. Detection performances are compared
with the covariance descriptor with the JBLD (CD-JBLD)

FIGURE 1. Target representation. Five covariance matrices are derived
from overlapping regions of the feature image. (a) Original image. (b)
Covariance matrix from the whole region. (c) Covariance matrix from the
left region. (d) Covariance matrix from the right region. (e) Covariance
matrix from the top region. (f) Covariance matrix from the bottom region.

divergence, the AIRM (CD-AIRM) [41] and the histogram
of oriented gradients (HOG) method [42], which is one of the
most successful target descriptors. The HOG descriptor was
created to allow the human form in images to be discriminated
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FIGURE 2. Sample images from the inria person dataset.

clearly at first then applied to other problem domains as well.
The three datasets are presented as follows:
Inria Person: The Inria person dataset is collected from

video and images with different postures of people. This
dataset was divided in two versions: (a) positive images in
normalized format, and (b) original images with correspond-
ing annotation files. The obtained positive images have been
cropped to highlight persons by the high resolution images.
The people in these images are bystanders taken from the
image backgrounds, and then there is no particular bias in
their pose. See Figure 2 for sample images.
Fashion-MNIST: The Fashion-MNIST dataset consists

of 7000 products with 10 categories. Each image is a
28 × 28 grayscale image. These products have several
different groups, including women, men, neutral and kids.
Particularly, we have randomly selected 6000 images from
each class. Labels and images are contained in the same file
format, and the file stores the vector-form and the matrix-

TABLE 2. Perfromance comparison (%) on inria person dataset.

form data. This dataset has been used for benchmarkingmany
machine learning tasks.
Pascal VOC: The PASCAL VOC 2007 dataset is collected

from everyday sceneswith 20 classes, including bicycle, boat,
bus, cat, dog, person, train, dining table, sheep, motorbike,
potted plant, bird, chair, horse, train, aeroplane, bottle, car,
cow, sofa, and tv monitor. We select 5000 images with
12000 annotated instances for test.

Detection results on these three datasets are provided in
Table 2, Table 3, and Table 4. It can be noted from Table 2,
3, and 4 that the CD-MJBLD has the best detection per-
formance on these datasets. Both CD-JBLD and CD-AIRM
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TABLE 3. Perfromance comparison (%) on fashion-MNIST dataset.

TABLE 4. Average accuracy (%) on pascal VOC dataset.

outperform the HOG method. Region covariance descriptor
can characterize the region of interest accurately while
many regions found by the HOG descriptor are mismatched.
Even among the correctly detected regions with these three
methods, it is clear that the covariance descriptor can better
localize the target region. The detection task is challenging
as there are nonrigid motion, illumination changes, and large
scale. The result also indicates the robustness of the proposed
approach. It can be concluded that the region covariance
descriptor is very effective and discriminative. The average
accuracy for CD-MJBLD has a more than 3% ∼ 6%
performance improvement with respect to the CD-AIRM
method.

VI. CONCLUSION
In this paper, a region covariance descriptor-based target
detection method has been proposed via the MJBLD
divergence. In particular, the MJBLD divergence has been
employed as the dissimilarity measurement between two
region covariance descriptors. We have analyzed the proper-
ties of the MJBLD divergence with the detailed mathematical
foundation. The MJBLD divergence is a modified version of
the JBLD divergence which has been proven to be a proxy of
AIRM metric since many intrinsic attractive properties such
as the affine invariance. In the assessment stage, a variety
of experiments have been provided to verify the superiority
of our proposed target detection method in comparison with
the region covariance descriptor with the JBLD divergence,
the AIRM metric and the HOG descriptor. The results have
shown that the region covariance descriptor with the MJBLD
divergence has better detection performance than the region
covariance descriptor with the JBLD divergence and the
AIRM metric, followed by the HOG descriptor.
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