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ABSTRACT In the rapidly evolving landscape of smart transportation, the passenger volume in urban rail
transit consistently demonstrates an upward trajectory. In this context, precise and scientifically grounded
short-term passenger flow prediction methods are essential for optimizing operational scheduling and
ensuring safety in urban rail transit. Consequently, this paper introduces Temporal Graph Attention Long
Short-Term Memory (TGALSTM)), a spatiotemporal integrated prediction network model that incorporates
the surrounding environment of the station. Initially, the paper enhanced the Temporal Convolutional
Network (TCN) model to capture temporal features more accurately. Subsequently, the paper utilizes the
Graph Attention Network (GAT) network module specifically to extract the topological structure and
surrounding environmental features of the station. Lastly, the prediction task is accomplished by weighted
fusion of various features, inputting them into the Attention Long Short-Term Memory (LSTM) network.
Experiments were conducted on two authentic datasets, revealing that the TGALSTM model outperforms
the baseline model in both single-step and double-step predictions, showcasing the model’s exceptional
performance and robustness. This research offers a robust method and support to enhance the operational
efficiency and passenger flow management of urban rail transit systems.

INDEX TERMS Urban rail transit, short-term passenger flow prediction, surrounding environment, feature

fusion.

I. INTRODUCTION
In recent years, with the continuous advancement of smart
cities, urban rail transit has emerged as the cornerstone
of modern urban transportation. Passenger flow prediction,
as a critical component of intelligent transportation systems,
holds paramount importance in enhancing transportation
efficiency, ensuring station safety, and optimizing operational
scheduling. Accurate short-term passenger flow prediction
is paramount for adjusting operational strategies, alleviating
carriage congestion, and enhancing passenger satisfaction.
The Autoregressive Integrated Moving Average (ARIMA)
model is the most commonly used traditional model for time
series passenger flow prediction. In recent years, scholars
have proposed a series of improvements and optimizations for
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the ARIMA model. Milenkovic et al. [1] similarly employed
the seasonal autoregressive integrated moving average
(SARIMA) model to predict monthly railway passenger
flows, taking into account the varying impact of seasons on
passenger flows. Wang et al. [2] used wavelet decomposition
to eliminate the impact of stochastic fluctuations in passenger
flow and then employed the ARIMA model for prediction.
With the rise of deep learning technology, in recent
years, there have also emerged passenger flow prediction
methods based on deep learning, which can handle passenger
flow prediction problems under multiple factors. Short-
term passenger flow prediction methods based on deep
learning primarily encompass Long Short-Term Memory
(LSTM) networks [3], [4], Gated Recurrent Unit (GRU)
[5], [6], Convolutional Neural Network (CNN) [7], [8],
and Graph Convolutional Network (GCN) [9], [10], [11],
[12]. In current research, LSTM and GRU networks are
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predominantly employed for capturing the temporal depen-
dencies of passenger flow, whereas CNN and GCN networks
are primarily utilized for extracting spatial features of
stations. Zhang et al. [13] proposed a clustered LSTM model
(CB-LSTM) based on the LSTM model. They employed
a two-step k-means clustering method to cluster data from
nine subway stations for training, thereby considering spatial
characteristics locally. Chen et al. [14] proposed a deep
learning network that integrates CNN and LSTM end-to-
end, enabling simultaneous consideration of temporal and
spatial features. Building upon this, Ke et al. [15] introduced a
fusion convolutional long short-term memory network (FCL-
Net), which integrates spatial and temporal variables into a
deep learning architecture. While convolutional neural net-
works can extract spatial correlations, their effectiveness in
extracting spatial characteristics from complex and irregular
network topologies is limited, which is also a limitation
of CNNs. Therefore, the Temporal Graph Convolutional
Networks (T-GCN) model proposed by Zhao et al. [16]
utilizes graph convolutional networks (GCN) and GRU to
capture spatial and temporal dependencies in traffic data
separately. Zhang et al. [17] proposed a fused deep learning
architecture that employs GCN and Residual Network
(ResNet) to capture spatiotemporal features. Wang et al.
[18] proposed a multi-graph data approach, processing
spatiotemporal features using multiple graph convolutional
networks, and then extracting temporal features using LSTM.
With further research, some scholars have begun considering
the geographical information of stations.

In summary, researchers have predominantly restricted
their consideration of spatial factors to station locations,
with little discussion on the influence of the surrounding
environment on passenger flow. However, variations in these
environmental factors could induce fluctuations in passenger
flow, thereby impacting prediction accuracy. To tackle this
issue, the paper introduces a spatiotemporal prediction net-
work model that integrates environmental factors surrounding
stations to accurately predict short-term passenger flow.

A. RELATED WORKS

In the realm of traffic flow and passenger flow pre-
diction research, numerous scholars have integrated deep
learning models to address the shortcomings of traditional
methods and enhance prediction accuracy. Hochreiter and
Schmidhuber [19] introduced LSTM, resolving the vanishing
gradient issue of RNN in long sequence learning, thereby
enabling the capture of long-term dependencies despite its
high computational complexity. Oord et al.’s [20] WaveNet
model showcased the potential of Convolutional Neural Net-
works (CNN) in processing sequence data, effectively captur-
ing long-term dependencies through causal convolution and
dilated convolution. Lea et al. [21] pioneered the application
of Time Convolutional Network (TCN) in action segmenta-
tion and detection, employing convolutional networks to pro-
cess sequence data, capturing long-term dependencies, and
enhancing processing speed through parallel computation.
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Yu et al.’s [22] proposal of Spatio-Temporal Graph Convolu-
tional Network (ST-GCN) for traffic prediction amalgamates
spatial-temporal convolutional networks to apprehend spatio-
temporal dependencies, addressing spatial relationships via
graph convolution and temporal relationships through time
convolution. Velickovic et al.’s [23] introduction of Graph
Attention Network (GAT) enhances the performance of
graph neural networks through a self-attention mechanism.
Bai et al. [24] conducted a comprehensive evaluation of
TCN, demonstrating its superiority over traditional RNN and
LSTM in various sequence modeling tasks, underpinned by
robust parallel computing capabilities and swift sequence
processing speed.

In pursuit of greater accuracy in passenger flow prediction,
scholars are increasingly combining multiple models to
account for a broader range of factors, catering to the
evolving demands of prediction. The hybrid deep learning
approach introduced by Wu et al. [25], integrating LSTM and
TCN, leverages LSTM to capture long-term dependencies
and TCN to boost computational efficiency, resulting in
enhanced accuracy in traffic flow prediction. The AST-
GCN, introduced by Guo et al. [26], integrates attention
mechanisms into a spatiotemporal graph convolutional
network, dynamically adjusting weights to enhance model
performance and thus improving the accuracy of traffic flow
prediction while accommodating complex spatiotemporal
data. Zhao et al. [16] introduced the T-GCN, a spatiotemporal
prediction model integrating GCN and GRU, leveraging
graph convolution to capture spatial dependencies and GRU
to capture temporal dependencies, demonstrating robust
modeling capabilities in urban traffic flow prediction.
Li et al. [27] showcased the robust spatiotemporal modeling
capabilities of their hybrid model (GCN-LSTM), which
integrates GCN and LSTM. The spatiotemporal synchronous
graph convolutional network (STSGCN), introduced by
Song et al. [28], enhances model performance and prediction
accuracy by concurrently handling spatiotemporal data.
Wu et al. [29] presented an approach for multi-variable
time series prediction utilizing graph neural networks, which
integrates graph neural networks and multi-variable time
series, capturing relationships between variables through
graph structures, thus handling intricate data relationships.
The spatiotemporal graph convolutional network with multi-
attention mechanisms, introduced by Hu and Chen [30],
demonstrates outstanding performance in short-term traffic
flow prediction and adeptly handles complex spatiotemporal
data. The CNN-LSTM model for passenger flow prediction
based on attention mechanisms, presented by Liu et al.
[31], employs CNN for spatial feature extraction, assigns
weights to features through attention mechanisms, and
ultimately utilizes LSTM to extract time dependencies, thus
achieving short-term passenger flow prediction. The TCN-
LSTM hybrid prediction model introduced by Hou et al. [32]
integrates external factors such as weather and air quality,
enhancing overall prediction performance. The ResNet-
GCN-AttLSTM prediction model proposed by Liu et al. [33]
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employs residual networks and graph convolutional networks
for spatial feature extraction, integrating attention-based
long short-term memory networks for temporal feature
extraction to achieve passenger flow prediction at each
station. Zhang et al. [34] utilized Points of Interest (POI)
information as graph data and employed CNNs to extract
POI features. However, POI information is closely linked to
stations, constituting irregular spatial topology, where CNNs
may not efficiently extract relevant features.

Based on the aforementioned research background, this
paper proposes a combined model that integrates time, space,
and station geographic information. In terms of processing
POI data, this paper initially computes the similarity of
POI data for each station, followed by utilizing the Graph
Attention Convolutional Networks (GAT) to comprehen-
sively extract features from the POI information.

B. MAIN CONTRIBUTIONS
The main contributions of the paper include the following:

(1) Introduction of a comprehensive spatiotemporal frame-
work that thoroughly POI information into the prediction
model. This framework not only accounts for temporal and
spatial variations but also integrates geographical location
data. By holistically considering the influence of POIs,
it enhances prediction accuracy and reliability.

(2) The proposed prediction model employs graph convo-
lution and graph attention networks to capture the topological
structure between stations and the surrounding environmental
attributes. It utilizes an enhanced temporal convolutional
network for extracting temporal features and ultimately
constructs an LSTM model based on attention mechanisms
for short-term passenger flow prediction.

(3) This paper evaluates and validates the performance of
the model using two real-world datasets. The experimental
results indicate that the model outperforms other baseline
models, whether in single-step or double-step predictions,
across private and public datasets. Furthermore, the model
exhibits strong performance in predicting different types of
stations.

The remainder of this paper is structured as follows.
Section Il introduction to the construction of station topology
and POI data, laying the groundwork for subsequent mod-
eling, followed by a detailed exposition of the TGALSTM
model architecture. Section III introduces the configuration
of private datasets and public datasets,as well as the setup of
related experiments. Section IV provides an analysis of the
experimental results. The main findings and limitations of
the current study and their significance are summarized and
directions for future research are proposed in Section V.

Il. METHODOLOGY

The primary focus of this study is to predict short-term
passenger flow for certain stations in the urban rail transit
network based on historical passenger flow data, station
topology, and POI data around the stations. This section
highlights the structure of TGALSTM and how to use
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this model for short-term passenger flow prediction. The
TGALSTM model comprises three main modules: GAT,
Improved Temporal Convolutional Module (TCN), and
Attention Mechanism Long Short-Term Memory Module
(Attention LSTM). Before constructing the model, certain
preparatory steps are necessary to ensure the project’s
smooth progress. The subsequent subsections delineate the
preparatory work involved in the research, with the details of
the TGALSTM model to be presented in subsequent chapters.

A. PREPARATION

Passenger flow dynamically changes over time, and historical
passenger flow data for a time step is defined as X =
[X:, Xy, - - - Xy, ]. Additionally, this paper involves two main
types of graph structure matrices: one is the adjacency matrix
representing the topological structure between stations in the
rail network, and the other is the similarity matrix based on
POI data.

For the construction of station topology relationships, let
represent the i-th station out of n stations. The topological
structure between stations is represented by the adjacency
matrix A.

Sl SZ Sn
St a1 a1 -+ ann
A=% a2 a2 - anp2 (1

Sn Aln A2.n " Aun
The elements in the matrix are:

1 Two adjacent stations
ajj = ) ()
0 Otherwise

For the construction of the similarity matrix for POI data,
assuming there are m types of POlIs, the POI information for
each station can be represented by a feature vector p.

P = [poiipoiy - - - poin] 3)

where poi. represents the number of the c-th type of POI in
the vicinity of the station. Therefore, this paper first calculates
the similarity between POI information of stations using
cosine similarity, as shown in (4) [35].

m
zpi,cxpj,c

Lo k=1
D= < ] @
where m represents the dimension of the feature vector,
and p; represents the feature vector of a certain station.
After processing the similarity matrix using cosine similarity,
to enhance the capture of non-linear data and the model’s
expressive capability in prediction, this paper further pro-
cesses the similarity matrix using a threshold Gaussian kernel
function to obtain the final matrix SIM as input. The threshold
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FIGURE 1. Model structure.

Gaussian kernel function is shown in (5) [36].

exp
Wi, Jj= (

0

_ [sim@, )?

262

if sim(i, j) < k
) if sim(i, j) < )

otherwise

B. THE OVERVIEW OF MODEL FRAMEWORK
To better capture the non-linear characteristics of passenger
flow, this paper proposes the TGALSTM passenger flow
prediction model, as shown in Fig. 1. The model primarily
consists of the improved TCN, GAT, and Attention LSTM.
The improved TCN is utilized to extract local temporal
correlations from passenger flow data, while Attention LSTM
is employed to extract long-term temporal dependencies.
The model comprises three inputs: inbound passenger
flow, network topology, and POI similarity matrix. Inbound
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passenger flow considers three different periodic patterns:
weekly, daily, and neighboring. Therefore, the passenger flow
prediction problem in this paper can be briefly summarized
as follows: Given historical inbound passenger flow data
X = [Xy, Xy, - - - Xy, ], network topology matrix A, and POI
similarity matrix, the TGALSTM algorithm model predicts
short-term passenger flow for the target station in future time
steps.

C. IMPLEMENTATION STEPS OF THE TGALSTM MODEL
FOR SUBWAY PASSENGER FLOW PREDICTION
The main content of the TGALSTM model proposed in this
paper for subway passenger flow prediction is as follows,
as shown in Fig. 2.

Step 1:Data preprocessing is the initial step in predictive
modeling, aiming to ensure data quality and consistency.
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FIGURE 2. Steps to implement the TGALSTM model.

Initially, preprocessing involves cleaning and standardizing
inbound passenger flow data to eliminate noise and outliers,
ensuring data accuracy and usability. Next, processing the
topological structure data of the rail transit network ensures
the data accurately reflects real network connections. Lastly,
processing POI data involves extracting useful features
through aggregation and transformation. This step results in a
cleaned and standardized dataset, readying it for subsequent
feature extraction.

Step 2:Following data preprocessing, feature extraction
becomes a critical step. This stage employs diverse neural
network models to extract valuable features from various
data types. Initially, enhanced Temporal Convolutional
Networks (TCN) are employed to extract features from
inbound passenger flow data. Subsequently, Graph Attention
Networks (GAT) are utilized to extract features from the
topological structure data, which are further processed with
an enhanced TCN to derive richer features. Lastly, features
are extracted from POI data using GAT and processed with an
enhanced TCN to achieve the ultimate feature representation.
These procedures facilitate the extraction of rich features
from multi-source data, furnishing the model with ample
information.

Step 3:Upon completion of feature extraction, it’s essential
to merge features from diverse sources to construct a unified
feature representation. Initially, features extracted from vari-
ous data sources are weightedly fused to ensure each feature
carries an appropriate weight in the final representation.
Subsequently, the merged features are flattened to convert
them into one-dimensional vectors, facilitating subsequent
neural network processing. Lastly, fully connected layers
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further process the flattened features to extract higher-level
feature representations. This step yields a merged feature
vector, serving as input for subsequent feature enhancement
steps.

Step 4:Following feature fusion, enhancing the features
further is vital to enhance the model’s predictive capability.
Initially, the fused features undergo processing using an
Attention LSTM network to capture long dependencies
and crucial information among the features. Subsequently,
features processed by the Attention LSTM are flattened once
more, converting them into one-dimensional vectors. Lastly,
fully connected layers further process the flattened features
to extract the ultimate high-level feature representation. This
step yields an enhanced feature vector, serving as input for
the final prediction step.

Step 5:Following the completion of all feature processing,
the final prediction step is initiated. Through the preceding
steps, a high-quality feature representation has been acquired.
Employing these features as input, the prediction model
is trained and inferred to produce the ultimate prediction
results.

D. ENHANCEMENT OF TCN

Temporal Convolutional Network (TCN) is a network
model designed specifically for time series prediction tasks.
It mainly consists of causal convolution, dilated convolution,
and residual connections [37]. The primary function of this
module is to efficiently extract temporal features from input
data and enhance the model’s focus on significant features
through attention mechanisms. As depicted in Fig. 3, the
module comprises three layers: dilated causal convolution,
channel attention mechanism, and a 1 x 1 convolutional
layer. In comparison to traditional temporal models, this
module, with the introduction of dilated causal convolutions,
can extract features over a broader time range while
bolstering feature expression through attention mechanisms.
Specifically, dilated causal convolutions increase the spacing
between convolutional kernels (dilation rate), effectively
enlarging the receptive field. This allows for the extraction
of more abundant temporal features without escalating
computational complexity. This paper proposes three dilated
causal convolution layers to capture features of three dif-
ferent cycles in passenger inflow simultaneously. Moreover,
a local gate control mechanism with a Sigmoid function is
introduced after the second dilated causal convolution layer,
enabling the network to dynamically adjust attention to input
information. Following the extraction of relevant features
in the convolutional layers, the ReLU activation function is
applied to introduce non-linear features. Subsequently, the
channel attention mechanism is employed to amplify the
model’s focus on significant features. Additionally, we retain
the residual structure of the traditional TCN to improve
the computational efficiency of the model. To enhance the
extraction of temporal features from passenger flow data, this
paper utilizes a two-layer improved TCN network, where the

VOLUME 12, 2024



J. Cheng et al.: Short-Term Passenger Flow Prediction in Urban Rail Transit

IEEE Access

Dilated Causal Conv

Dilated Causal Conv

Sigmoid

Dilated Causal Conv

11 Conv

ReLU

|

Channel attention

Sigmoid

FIGURE 3. Enhanced TCN.

first layer has 32 output channels and the second layer has
64 output channels.

E. CHANNEL ATTENTION MECHANISM

The attention mechanism mimics the resource allocation of
human attention. At any given moment, the human brain
concentrates attention on areas requiring focus, reducing or
even ignoring attention to other areas, thereby acquiring more
detailed information pertinent to focus, suppressing irrelevant
data, and amplifying relevant information [38].

The channel attention module, illustrated in Fig. 4,
in this paper, AdaptiveAvgPool2d and AdaptiveMaxPool2d
are employed for global average pooling and global max
pooling on the input, respectively, to obtain the global
average features and global max features for each channel.
Subsequently, two fully connected layers are added. The
first fully connected layer reduces the number of channels
proportionally. We set the reduction_ratio to 4 to decrease
computational load. The second fully connected layer
restores the number of channels to the original number. ReLU
activation functions are applied in between to introduce non-
linearity. Such configuration allows for better attention to the
importance of each channel.

F. SPATIAL FEATURE MODULE
Conventional convolutional modules, like CNN modules,
represent the transportation network as a grid matrix, which
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fails to accurately capture the influence of the topological
structure between stations on prediction accuracy [26].
Hence, this paper adopts GAT to specifically extract spatial
features of the transportation network. Prior to entering the
GAT network, the paper initially employs the Laplacian
operator to update the graph signal [39], as outlined
in (6) - (7).

A=A+1 (6)

Di; = zj Ajj (N

where / is the identity matrix with the same dimension as A;

D is the degree matrix of A; X, is the input flow matrix; X';,
is the updated flow matrix after graph signal updating.

Subsequently, X’;, is fed into the GAT network module
as input, and the GAT calculates the weight of each node.
Finally, the node information is updated again based on these
weights to generate the output result Y. The entire process is
illustrated in Fig. 5.

The role of the GAT network module is to extract spatial
features of the topological structure and the environmental
features surrounding the stations. The module comprises
multiple Graph Attention Layers, each containing 4 Multi-
Head Attention Mechanisms, to more effectively capture the
intricate relationships between station nodes.

The selected environmental features in this paper include
functional features such as restaurants, hospitals, and resi-
dential areas near the stations. Given the varying impact of
different features on passenger flow, the attention mechanism
in GAT is utilized to determine the weights of each feature.
Specifically, the attention coefficients e;; are calculated for
each station node i and its adjacent station node j.

ejj = LeakyRe LU (a” [Wh;||Whj]) (8)

where, al represents a learnable attention vector, W stands
for a linear transformation matrix, k; and h; denote feature
vectors of nodes i and j respectively, and || denotes the vector
concatenation operation.

Later, the softmax function is applied to normalize the
attention coefficients to determine the weight of each
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station. Subsequently, the normalized attention coefficients
are weighted and summed to update the feature representation
of station node i. Through this method, the GAT network can
dynamically adjust the weights based on different functional
features in the POI information, thus extracting the station’s
features more accurately.

G. WEIGHTED FEATURE FUSION

Considering the variation in the impact of the three input parts
of the model on passenger flow, and given that the output
data dimensions of the three branches are identical, this paper
employs weighted feature fusion to perform comprehensive
prediction [40]. Specifically, the calculation for weighted
fusion is depicted in (9).

Srusion=Wi1-fi+Wa-H+W3-f3 )

where f1,f> and f3 represent the output features of three
distinct branches, with corresponding weights of W, W> and
W3 learned as parameters by the network.

H. ATTENTION LSTM

LSTM networks have evolved from recurrent neural networks
(RNNs) to primarily address the issues of gradient vanishing
and explosion that arise when traditional RNNs process
long sequential data [41]. To further extract longer temporal
information, we utilize an LSTM module with 128 hidden
layers to capture the temporal dependencies of 78 stations.
In this study, to mitigate the loss of information in long time
sequences by LSTM, self-attention mechanism is incorpo-
rated. The paper calculates the attention weights of the LSTM
output sequence through linear transformation [42]. These
weights are utilized to weight the input, thereby emphasizing
or suppressing information from different time steps.

h/t =ar I (10)

where a; represents the attention weight at the current time
step; i'; represents the final output.

Ill. EXPERIMENT

A. DATA DESCRIPTION

This study employs two datasets. The first dataset! is
proprietary, obtained from the automatic ticket inspection
system of Nanjing Metro Company in China. To mitigate the
influence of the sharp increase in passenger flow before New
Year’s Day and Dragon Boat Festival, it covers passenger
flow data from January 4th to January 31st, April 1st to April
24th, and May 1st to May 31st, 2018. The study focuses on
the entry passenger flow of 78 stations across Nanjing Metro
Lines 1, 2 and 3. It utilizes data collected only from 6:00 to
23:00 on 60 working days within the target period, amounting
to 110 million records. Each record comprises entry time,
transaction occurrence time, entry station number, transaction
route, and transaction station. The specifics are shown in
Table 1. In this study, we chose a time interval of 10 minutes,

1 https://github.com/CJ5202/0D_DATA
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TABLE 1. Optimal hyperparameter combinations.

Field Name Description

Entry Time
Transaction Time
Transaction Type

Transaction Device ID
Entry Station ID
Transaction Line

Transaction Station

Timestamp identifying entry
Timestamp identifying exit
Entry or exit
Exit gate device ID
Name of the entry station
Identifying the subway line
Name of the exit station

—— Zhonghua Gate Station
—— Xuezhe Road Station
— Taifeng Road Station

%
%
o
%
%
%

%

v
& > & & 5 Y N ¥
& & & & & S S S
- S 8 S 8

FIGURE 7. POI data.

resulting in a total of 102 time slots per day. To better
represent the real data, we randomly selected three stations
and conducted visual analysis of their inbound passenger
flow every 10 minutes from January 4th to January 11th,
2018. As depicted in Fig. 6, there is significant fluctuation
in passenger flow at the three stations, with noticeable
differences between them. Therefore, this study adopts a
sliding window approach to predict the passenger flow of the
next time slot based on the passenger flow of the previous
5 time slots.

Concerning the POI data, this study solely focuses on the
time period corresponding to the private dataset, gathering
POl-related data within a 1-kilometer radius around the sta-
tions from Gaode Maps. The POI data comprises the quantity
of 10 categories near the stations, including restaurants, bus
stops, companies, shopping venues, accommodation hotels,
educational institutions, convenience stores, residential areas,
healthcare services, and government facilities. Eventually,
processed as inputs to the model using equations 4 and 5
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TABLE 2. Dataset comparison.

Attribute Private Dataset Public Dataset
Number of Records 110 million 130 million
Review Days 60 days 25 days
Time Period 2018.1.4-5.31 2016.2.29-4.3
TG 10min 10min
Days of the Week Monday to Friday Monday to Friday
Number of Stations 276

in Section III-A. As illustrated in Fig. 7, the majority of
stations have relatively low counts of Points of Interest
(POIs), yet a minority of stations demonstrate notable peaks
across multiple categories. These stations serve as pivotal
transportation hubs or commercial centers within the city,
such as Station 6, known as Xinjiekou Station (a commercial
hub).

The second dataset is a publicly available one [17],
comprising AFC data from Beijing subway, spanning from
February 29th, 2016 to April 3rd, 2016. It covers 25 work-
ing days between 05:00 and 23:00 over five consecutive
weeks. During the forecasting period, the analysis in this
study is conducted at 10-minute intervals. To facilitate a
comprehensive comparison of the differences and similarities
between the two datasets, Table 2 illustrates the distinctions
and similarities in terms of time range, time interval, record
count, and station count.

B. LOSS FUNCTION AND EVALUATION METRICS

Mean Squared Error (MSE) and Mean Absolute Error (MAE)
are the most commonly utilized regression loss functions.
MSE is more sensitive to outliers in the training dataset as
it assigns greater weight to large errors, whereas MAE is
relatively robust to outliers. However, a drawback of using
MAE as the loss function for neural network training is its
constant gradient, which may lead to being trapped in local
minima during training with gradient descent. Huber loss is
a loss function that lies between MSE and MAE. It behaves
similarly to MSE when the predicted values are close to the
true values and similar to MAE when the predicted values are
far from the true values [40]. Its mathematical definition is:

1 .

S(-3)° y=3[ <

Loss = Huber = { 2 1 (1D
Sly—3| - 582 otherwise

where § is a hyperparameter of the loss function. When
§ > 0, the Huber loss approaches MSE, and when § > oo,
it approximates MSE.

Furthermore, this study employs Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and Weighted Mean
Absolute Percentage Error (WMAPE) as evaluation metrics
for prediction.

1 < .2
RMSE = \/ =, =) (12)
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TABLE 3. Optimal hyperparameter combinations.

Hyperparameters Determined Values
Batch Size 128
Dropout Rate 0.1
Dilation Rate 1
Hidden Layers 128
1 n .
MAE = - Zi:l |(vi — i) (13)
n . PR 5 .
WMAPE = > " (ei— |22 (14)
i=1 j=1Yj Vi

where y; represents the true value, y; denotes the predicted
value, and n stands for the total number of predicted values.

C. MODEL HYPERPARAMETER SELECTION

The experiments were conducted on a graphics processing
unit (GPU) platform with a GeForce RTX 2080Ti model,
featuring 10GB of memory (powered by an Intel (R) Xeon (R)
CPU E5-2630 v4 2.20GHZ). The model was developed using
Python 3.7.10 and PyTorch 1.8. The data was partitioned into
training and testing sets at a ratio of 9:1, with a validation split
set to 0.1 for tuning model hyperparameters to enhance model
performance. To assess the model’s performance at different
time steps, this study employed the first five time steps to
predict the next time step and the following two time steps.
During the experiments, Adam optimizer with a learning rate
of 0.0003 was employed. The batch size was chosen from [32,
64, 128]. Dropout rates in the GAT network were selected
from [0.1, 0.2, 0.3, 0.4], dilation rates in the improved
TCN network were chosen from [1, 2, 3], and the number
of hidden layers in the LSTM network ranged from [64,
128, 256]. Finally, the optimal hyperparameter combination
was determined through multiple experiments, and the best
hyperparameter combination is shown in Table 3. To prevent
overfitting during training, early stopping technique was
employed.

D. BASELINE MODELS
In this experiment, to showcase the model’s performance,
comparisons will be made with the following baseline model
methods.

(1) Temporal Convolutional Networks (TCN) are specifi-
cally tailored for sequence modeling tasks, particularly in the
context of time-series data. TCN employs one-dimensional
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convolutions along the temporal axis to capture patterns and
dependencies in sequence data. The dilation rate is set to start
at 2, dropout rate at 0.1, kernel size at 3, batch size at 128,
learning rate at 0.0003. The number of channels for entry
flow is set to [3, 32, 64], and for other inputs, the number
of channels is set to [1, 32, 64].

(2) The TCN-LSTM (TCN Convolutional Long Short-
Term Memory) composite model integrates their distinct
advantages in sequence modeling. TCN is employed to
capture short-term local patterns, while LSTM is utilized
to capture long-term dependencies. Such combination can
improve the model’s performance. The number of hidden
layers is set to 128, dilation rate to 1, kernel size to 3, batch
size to 128, and learning rate to 0.0003.

(3) Conv-LSTM (Convolutional LSTM Network) is a
neural network architecture that combines the features of
Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM) networks, allowing it to handle spatiotem-
poral data relationships. The number of hidden layers in
LSTM is set to 128, kernel size to 3, batch size to 128, and
learning rate to 0.0003.

(4) Res-LSTM (Residual LSTM) [17] is a combination
model that integrates residual blocks and Long Short-Term
Memory (LSTM) networks. The number of filters for the first
residual block is set to 32, and for the second residual block
is set to 64. The LSTM hidden layer size is 128, batch size is
128, kernel size is 2, and learning rate is 0.001.

(5) SCINet (Sample Convolution and Interaction Network)
[43] utilizes multiple fully connected layers to decompose
time series for prediction. The convolutional kernel size is set
to 3, dropout to 0.2, and the learning rate to 0.0003.

(6) TADSTN (Topology Augmented Dynamic Spatial-
Temporal Network) [44] is a model that fully explores
spatial-temporal relationships. The convolution kernel is set
to 3x 5, and the learning rate is le 3.

(7) The TGALSTM-T variant model excludes the input
of topological structure and POI branch, while keeping
the hyperparameter settings consistent with the TGALSTM
model.

(8) The TGALSTM-No POI variant model excludes the
input from the POI branch, while keeping the hyperparam-
eters consistent with the TGALSTM model.

(9) The TGALSTM-No TOP variant model excludes
consideration of the topology structure, while keeping the
hyperparameters consistent with the TGALSTM model.

In the experiment, apart from the Res-LSTM model where
data preprocessing adopts Min-Max normalization, data
for other baseline models are preprocessed using Z-Score
standardization.

IV. PREDICTION RESULTS AND ANALYSIS

A. COMPARATIVE ANALYSIS OF INTEGRATED
PREDICTIONS

On the private dataset, the TGALSTM model exhibits the best
predictive performance.since the Res-LSTM and TADSTN

95204

models do not consider POI information, to ensure fairness
in the experiment, the TGALSTM-No POI variant model
is used to verify the effectiveness of the model. Similarly,
as the SCINet model does not take into account topological
structure and POI information, this paper employs the
TGALSTM-T variant model for comparison. From Table 4,
it is evident that the TGALSTM-No POI variant model
performs better than the Res-LSTM and TADSTN models
on all evaluation metrics; the evaluation metrics for the
TGALSTM-T variant model are also superior to those of
the SCINet model. Furthermore, the performance of the
TGALSTM-No TOP variant model is only slightly lower than
that of the TGALSTM model but surpasses the performance
of the TGALSTM-No POI variant model. This suggests that
the inclusion of POI information, as considered in this study,
can enhance prediction performance and is more critical than
the topological structure of the stations. The TGALSTM-
T variant model slightly surpasses both the TGALSTM-No
POI and TGALSTM-No TOP variant models across all
metrics, yet underperforms compared to the TGALSTM
model. This suggests that integrating topological structure
with POI information can enhance prediction accuracy
more effectively. Among the baseline models, the TCN
model performs the worst due to its inability to extract
spatial features and its limitation to capturing only local
patterns and features in the input sequence. Conversely,
the TCN-LSTM model significantly improves prediction
accuracy by combining the local features of TCN with the
long-term dependencies of LSTM. The Conv-LSTM model’s
performance also exceeds that of TCN because Conv-LSTM
can capture more spatial features.

In terms of predictive performance on the public dataset,
when no POI information is considered, the TGAL-
STM model also demonstrates the best performance. The
TADSTN model’s performance is slightly below that of
the TGALSTM model. Additionally, the performance gap
between Conv-LSTM and Res-LSTM is relatively small, with
the Res-LSTM model slightly outperforming Conv-LSTM
in spatiotemporal sequence modeling. Furthermore, the
Res-LSTM model outperforms the SCINet model, likely
because the SCINet model does not adequately account
for spatial dependencies during its predictions. Finally, the
performance of the TCN-LSTM model remains superior to
that of the TCN model.

In summary, Table 4 and Table 5 present the performance
of the TGALSTM model and other baseline methods
in short-term passenger flow prediction on both private
and public datasets. It is evident that the TGALSTM
model achieves the best predictive performance on both
datasets, validating the effectiveness and robustness of
the model. Additionally, when comparing the performance
of TCN-LSTM and Conv-LSTM on both datasets, the
TCN-LSTM model outperforms Conv-LSTM on the private
dataset, while the reverse is observed on the public dataset.
The decrease in sample size may be the reason for this
discrepancy.
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TABLE 4. Private dataset.

Model Temporal Topology POI RMSE MAE WMAPE(%)
TCN v v v 38.613 22.828 12.31
TCN-LSTM v v v 29.436 17.999 9.71
Conv-LSTM v v v 30.737 18.330 9.88
Res-LSTM v v X 30.187 18.612 10.03
SCINet v X X 31.288 18.351 9.89
TADSTN v v X 30.633 18.516 9.98
TGALSTM-T v X X 29.169 17.589 9.48
TGALSTM-No v v X 29.292 17.798 9.59
POI
TGALSTM-No v X v 29.048 17.672 9.53
TOP
TGALSTM v v v 28.823 17.550 9.46
TABLE 5. Public dataset.
Model Temporal Topology POI RMSE MAE WMAPE(%)
TCN v v X 50.415 32.119 18.17
TCN-LSTM v v X 29.117 18.059 10.12
Conv-LSTM v v X 28.794 17.433 9.81
Res-LSTM v v X 28.366 16.631 9.35
SCINet v X X 29.147 16.972 9.59
TADSTN v v X 27.851 16.977 9.61
TGALSTM v v X 27.119 16.105 9.03
TABLE 6. Private dataset.
Model Single-step Two-step
RMSE MAE WMAPE(%) RMSE MAE WMAPE(%)
TCN 38.613 22.828 12.31 38.899 31.055 14.42
TCN-LSTM 29.436 17.999 9.71 30.272 20.687 11.53
Conv-LSTM 30.737 18.330 9.88 30.868 20.902 11.56
Res-LSTM 30.187 18.612 10.03 33.212 23.160 12.40
SCINet 31.288 18.351 9.89 28.233 19.258 11.35
TADSTN 30.633 18.516 9.98 31.638 22.822 11.62
TGALSTM-T 29.169 17.589 9.48 28.374 20.353 12.12
TGALSTM-No 29.292 17.798 9.59 26.193 18.861 11.01
POI
TGALSTM-No 29.048 17.672 9.53 29.595 20.948 11.36
TOP
TGALSTM 28.823 17.550 9.46 27.559 19.446 10.72
TABLE 7. Public dataset.
Model Single-step Two-step
RMSE MAE WMAPE(%) RMSE MAE WMAPE(%)
TCN 50.415 32.119 18.17 85.495 67.310 17.28
TCN-LSTM 29.117 18.059 10.12 47.230 29.870 12.21
Conv-LSTM 28.794 18.330 9.81 48.468 29.441 11.44
Res-LSTM 28.366 16.631 9.35 41.986 26.805 11.65
SCINet 29.147 16.972 9.59 39.291 24.526 9.65
TADSTN 27.851 16.977 9.61 39.565 25.241 9.86
TGALSTM 27.119 16.105 9.03 37.580 24.116 9.80

B. ANALYSIS OF PREDICTION AT DIFFERENT TIME STEPS

To comprehensively assess the models’ performance in
various prediction tasks and gain a better understanding
of their applicability and robustness, this study conducts
multi-step forecasting on two datasets. The primary evalu-
ation strategy involves dual-step prediction, which enables
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a thorough examination of the models’ predictive capability
for multiple future time steps. Taking MAE and WMAPE
metrics as examples, as shown in Table 6 and Table 7,
it is evident that the predictive accuracy of each model
declines to varying degrees in multi-step prediction tasks.
Particularly, there is a substantial drop in performance
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FIGURE 8. Prediction Results for Different Stations.

when conducting multi-step prediction on the public dataset,
likely due to the absence of POI information in the public
dataset. Considering the RMSE metric, overall, the predictive
performance of each model decreases in dual-step prediction
tasks. However, on the private dataset,The RMSE metric of
the TGALSTM-T variant model improved from 29.169 to
28.374, the TGALSTM model decreases from 28.842 to
26.202, and that of the TGALSTM-No POI variant model
decreases from 29.292 to 26.193. This suggests that the model
is more sensitive to single-step anomalous changes but more
robust to anomalous changes in dual-step time series.

C. VISUALIZATION AND ANALYSIS OF PREDICTION
RESULTS FOR DIFFERENT TYPES OF STATIONS

To comprehensively assess the models’ performance, this
study evaluates the single-step prediction scenario using five
types of stations in the private dataset. Specifically, the
analysis focuses on stations surrounding commercial areas,
hub areas, scenic spots, campuses, and office areas, predicting
and analyzing their station’s time steps for five days to better
understand the models’ performance in different scenarios.

As shown in Fig. 8, this paper visualizes the prediction
results for five stations. Overall, the predicted values closely
match the actual passenger flow values for most time periods
at each station, indicating the model’s robust predictive
performance across different types of stations. Based on
POI data, it is evident that Yuantong Station is surrounded
by numerous companies and restaurants, indicating its
classification as an office area type station. The station
notably experiences morning and evening peaks, with a peak
value of approximately 500 passengers. Comparing the actual
and predicted passenger flows over five days, the model
proposed in this paper demonstrates exceptional predictive
performance.

Xinjiekou Station is situated in the heart of the commercial
district, surrounded by numerous shopping malls and enter-
tainment facilities, with a peak passenger flow reaching up to
3000 people per time step. Nanjing South Station, serving as
the city’s hub station, exhibits a continuous growth trend in
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passenger flow without a distinct morning or evening peak.
Its daily peak passenger flow is approximately 1500 people.
Both Nanjing South Station and Xinjiekou Station are typical
bustling stations, experiencing high passenger flows daily.
The model demonstrates high accuracy in predicting large
passenger flows based on the forecast results.

Yangshan Park Station is situated in Xianlin University
City, surrounded by numerous universities, thus classified
as a campus-type station. Generally, the station experiences
relatively low passenger flow volume, displaying distinct
morning and evening peak features, but with significant
fluctuations during non-busy periods. Jiming Temple Station
is surrounded by two renowned scenic spots, Xuanwu Lake
and Jiming Temple, hence categorized as a scenic area-
type station. The overall inbound passenger flow at this
station does not exhibit particularly significant regularity,
with frequent instances of sudden passenger flow. The model
demonstrates its capability to effectively capture changes in
passenger flow, indicating its adaptability to the passenger
flow characteristics of both campus and scenic area stations.

To further validate the effectiveness of the model, Fig. 9
demonstrates the prediction accuracy of the model at five
stations of different types. The results indicate that the
model achieves prediction accuracies close to 90% for high
passenger flow at Xinjiekou Station and Nanjing South
Station. Moreover, the prediction accuracy at Yuantong
Station and Jiming Temple Station also exceeds 80%. Lastly,
the prediction accuracy at Yangshan Park Station surpasses
70%. These results suggest that the model performs optimally
at commercial and hub area stations, while also exhibiting
good predictive performance at other station types.

V. CONCLUSION

This paper introduces a spatio-temporal integrated predic-
tion network model (TGALSTM) that incorporates station
attributes (POI information). The basic idea is to utilize
historical passenger flow data, incorporating station topology
and surrounding environmental information into the model
input. Through the GAT network module, spatial features
are fully explored, and improved TCN is used to extract
local temporal features. Finally, weighted feature fusion
is applied to the attention mechanism of the LSTM net-
work to complete the passenger flow prediction task. The
model is validated on two datasets. The results indicate
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that compared to baseline models, whether for single-step
or multi-step prediction, the TGALSTM model exhibits
higher accuracy. Additionally, through single-step prediction
evaluations of five different types of stations, the TGALSTM
model demonstrates outstanding performance in commercial
areas, hub areas, scenic spots, campuses, and office areas.
By comprehensively utilizing POI data, the model accurately
captures the passenger flow patterns of various types of
stations, particularly excelling in predicting peak periods
and sudden surges in passenger flow, reflecting the model’s
robustness. However, the proposed model has not yet been
applied to important holiday scenarios, and future research
will further explore predictions during such periods.
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