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ABSTRACT The rapid identification of landslides in mountainous terrain through remote sensing imagery
after earthquakes or heavy rainfall is crucial for assessing the severity of the situation and providing
timely assistance for post-disaster rescue operations. However, traditional manual interpretationmethods and
computer vision techniques tend to be inefficient and time-consuming. To address this problem, we propose a
novel algorithm called LSI-YOLOv8, which builds upon the lightweight YOLOv8 to enable fast and accurate
landslide identification using remote sensing imagery. In this study, we introduce optimization techniques
integrated into the YOLOv8 model. Firstly, we incorporate an expandable residual attention Dilation-wise
Residual Segmentation (DWRSeg) module to reconstruct its neck structure, reducing parameters and
computational load. Additionally, we enhance the positioning ability of the model by replacing the bounding
box loss function Complete Intersection over Union (CIoU) with Efficient Intersection over Union (EIoU),
optimizing it to improve computing speed. Through comparative experiments with other state-of-the-art
models, the accuracy of our LSI-YOLOv8 significantly outperforms Mask-RCNN, YOLOv5, YOLOv7,
YOLOv8, and YOLOv9 model, with mAP@0.5 being 9.0%,7.7%, 4.0%, 6.3%, and 2.9% higher than
other models, while mAP@0.5:0.95 is 3.1%,3.6%, 2.7%, 4.8%, and 0.3% higher than others, respectively.
Furthermore, the detecting speed of the LSI-YOLOv8 model is 73.2 f/s, which is notably faster by 15.5 f/s,
3.5 f/s, 5.1 f/s, 5.9 f/s, and 4.3 f/s respectively, compared to Mask-RCNN, YOLOv5, YOLOv7, YOLOv8,
and YOLOv9. The proposed method provides valuable insights for advancing landslide identification
methodologies. The focus of subsequent work will be more on multi-source data fusion, such as Digital
Elevation Model (DEM) data and Synthetic Aperture Radar (SAR) data to remove the influence of some
background information to improve the accuracy of landslide identification.

INDEX TERMS Landslide identification, remote sensing imagery, deep learning, LSI-YOLOv8, DWR
segmentation, EIoU.

I. INTRODUCTION
Over the past few decades, there has been a significant
increase in the incidence of geological disasters worldwide.

The associate editor coordinating the review of this manuscript and

approving it for publication was Donato Amitrano .

This increase can be attributed to frequent human activity,
natural actions like earthquakes and river erosion, and climate
change, such as extremely heavy rainfall, especially in moun-
tainous regions [1]. In China, landslides are themost common
geological disasters, posing a threat to the safety, sur-
vival, and sustainable development of the national economy.
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With the rapid advancements of modern technology, these
methods such as GNSS [2], [3], InSAR [4], [5], [6],
LiDAR [7], [8] and high resolution optical remote satellites
or drones [9], [10], have demonstrated promising results in
monitoring and interpreting landslides and geological disas-
ters within the local or small regions. However, it is very
important to identify landslides quickly and accurately, deter-
mine their geographical location and evaluate their impacts
from large regions after a heavy disaster. This information is
vital for prompt local emergency rescue operations and min-
imizing further losses. Furthermore, the rapid and accurate
identification of large-scale landslides from satellite or drone
remote sensing imagery following earthquakes or heavy rain-
fall enables real-time monitoring and management in regions
affected by severe weather or complex mountainous terrain.
This technology also aids in statistical analysis of landslide
disasters, allows for quick updates to landslide inventories,
and enhances the precision and effectiveness of disaster relief
efforts for affected communities.

Traditionally, field investigation is a commonly used and
reliable method for exploring landslides. However, it has
several limitations including a limited field of view, low
efficiency, high cost, and high risk. With the advancement of
remote sensing technology, remote sensing images became
available and have become a valuable tool for interpret-
ing geological disasters like landslides [11]. Currently, there
are three main methods for identifying landslides from
remote sensing images: visual interpretation [12], pixel-
based analysis [13] and object-oriented analysis [14]. Visual
interpretation, although prone to being influenced by expert
experience and personal subjective impressions, is often used.
However, it suffers from drawbacks such as low recogni-
tion efficiency, lengthy duration, weak pertinence, and the
potential for omitting important information when dealing
with large-scale areas [15]. One obstacle to the practical
application of pixel-based classification is the unsatisfactory
results obtained from pixel-by-pixel analysis. This can often
be attributed to the fact that the image’s geometric and con-
textual information is largely ignored [16]. In the process of
object-oriented image segmentation, the segmented landslide
objects may include other features. The threshold settings of
the extraction rules involve subjective factors. Additionally,
the segmentation process of object-oriented image method
and the subsequent calculation of the topological relation-
ships between the objects can consume significant computer
memory and time [17]. However, landslide identification as
an image processing problem has been extensively studied
using statistical and machine learning methods, resulting in
relatively satisfactory outcomes [18].
Considering landslide identification as an image pro-

cessing problem, statistical and machine learning meth-
ods have been widely utilized and have shown promising
results [19]. Various machine learning algorithms such
as Artificial Neural Network (ANN) [20], Support Vec-
tor Machine (SVM) [21], Random Forest (RF) [22],

eXtreme Gradient Boosting (XGBoost) [23], among others,
have been employed. However, these traditional machine
learning methods necessitate manual construction and selec-
tion of feature layers during landslide feature processing,
posing a challenging task. Moreover, the selected features
may not generalize well beyond the test area [24]. In recent
years, there has been significant advancement in target iden-
tification through the adoption of deep learning technology.
This transition has shifted from conventional feature-based
manual algorithms to automatic identification methods based
on deep neural networks [25]. Deep learning algorithms
can be broadly categorized into two methods: (1) two-stage
methods, which involve identifying multiple target candi-
date areas in the image and then classifying and regressing
the boundaries of each candidate area. Notable two-stage
algorithms include region based Fast R-CNN, region-based
fully convolutional network (R-FCN), andmask region-based
Mask R-CNN. (2) Single-stage algorithms directly locate
and classify all detected targets across the entire image
without explicitly marking candidate areas. Well- known
algorithms in this category include the You Only Look
Once (YOLO) [26] series, Single Shot MultiBox Detec-
tor (SSD) [27], and RetinaNet [28]. Both methods offer
distinct advantages, with the single stage algorithm being
faster and the two-stage algorithm demonstrating higher
accuracy.

Meanwhile, recent advancements in deep learning tech-
niques have shown significant progress in remote sensing
image processing, leading researchers to explore the applica-
tion of deep learning for landslide identification. For instance,
Yu et al. [29] proposed an intelligent landslide identifi-
cation method that combines a deep convolutional neural
network (CNN) and an improved region growing algorithm
(RSG_R), achieving the identification accuracy of 94.74%.
Wu et al. [30] combined SMOTE with convolutional neural
networks and reported an overall accuracy of 84.59% in
landslide susceptibility assessment. Xiaoting et al. [31] used
the Faster R-CNN algorithm to build an automatic landslide
hazard identification model based on the Gaofen-1 image.
The final test results showed that the AP value reached
92.42%. Another approach by Jiang et al. [32] used the
Mask R-CNN method to simulate difficult samples under
complex backgrounds, and the model identification accuracy
reached 92.31%. However, it should be noted that the CNN
model may take longer to process for large data sets and may
require further structural adjustments. Pang et al. [33] devel-
oped a neural network model using the YOLOv3 algorithm
specifically for landslide identification from remote sensing
satellite image features, achieving an average accuracy of
0.98 for co-seismic landslide identification. Wang et al. [34]
improved upon the YOLOv5 framework by enhancing the
feature splicing method and introducing adaptive spatial fea-
ture fusion (ASFF) and the convolutional block attention
module (CBAM), resulting in a 1.64% improvement in model
performance. Overall, these studies and their methods have
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demonstrated stable and reliable performance in landslide
identification tasks.

However, despite the contributions of the aforementioned
study to landslide identification tasks using remote sensing
images, deep learning methods for landslide identification
till face challenges. These challenges include missed detec-
tion and incorrect identifications, which highlight the need
for further improvements in accurately extracting landslide
spatial information. While single stage methods offer slightly
lower accuracy compared to two-stage approaches, they
tend to have faster processing speeds. This speed advan-
tage allows for the separation of specific categories and
estimation of boundaries. Additionally, in the case of mas-
sive landslides triggered by heavy rainfalls or major seismic
events, it is crucial to quickly and accurately detect and
map regional landslides for disaster relief and statistical
analysis during emergencies after a heavy disaster. In this
context, single-stage detectors with their significantly better
identification speeds and efficiency are more suitable for
real-time identification in emergency scenarios. As a classic
single-stage identification algorithm, the YOLO algorithm
has evolved to YOLOv8, which is also the stable and offers
significant improvements in both identification accuracy and
speed [35]. Moreover, there have been limited studies that
have utilized YOLOv8 for landslide identification. There-
fore, we have decided to optimize the model using the
YOLOv8 framework to further enhance the accuracy of the
algorithm.

In response to the aforementioned issues, an identifica-
tion model called LSI-YOLOv8 is introduced for the rapid
identification of landslides using post disaster remote sensing
images. This model enhances both the accuracy and effi-
ciency of landslide identification. The main contributions of
this paper are considered as follows:

• The DWR Segmentation (DWRSeg) [36] module was
introduced into the C2f module to reduce the number of
parameters in the model and enhance its generalization abil-
ity. The inclusion of C2f-DWR enables better adaptation to
diverse input data, improving the model’s expression ability
and performance. This allows the network to flexibly adapt
to features of varying scales, accurately identify and segment
objects in images, and optimize the identification accuracy of
the model.

• To enhance the convergence speed and positioning accu-
racy of the algorithm, we will utilize the Efficient Intersection
over Union (EIoU) [37] method to replace the original bound-
ing box regression loss in the model. The EIoU loss directly
minimizes the disparity inwidth and height between the target
box and anchor box, leading to faster convergence speed and
improved positioning results.

• Extensive experiments were conducted on real remote
sensing datasets to evaluate the proposed method. The
experimental results confirm its superiority. Additionally,
detailed ablation experiments were performed to analyze the
impact of different settings of loss functions and parameter
values.

II. METHODOLOGY
Real time object identification has become a crucial element
in numerous applications across various fields, including
autonomous vehicles, robotics, video surveillance, and aug-
mented reality [38]. Among the different object identification
algorithms, theYOLO framework has gained prominence due
to its impressive combination of speed and accuracy. It allows
for the quick and dependable identification of objects in
images.

A. BASIC YOLOV8 MODEL
The YOLO model has made significant advancements in
the field of computer vision. Consequently, researchers have
continuously improved and expanded upon this method by
introducing various classical models. Among the exceptional
models in the YOLO series (such as YOLOv5 and YOLOv7),
YOLOv8 stands out as an advanced and cutting-edge model
that offers superior identification accuracy and speed [39].
The YOLOv8’s basic structure, which consists of an input
segment, a backbone, a neck, and an output segment. The
input segment performs mosaic data augmentation, adaptive
anchor calculation, and adaptive grayscale padding on the
input image. The backbone network and neck module are the
central structures in the YOLOv8 network. The input image
undergoes processing by multiple Conv and C2f modules
to extract feature maps at different scales. The C2f module,
an improved version of the original C3 module, functions
as the primary residual learning module. It incorporates the
benefits of the ELAN structure in YOLOv7 [40], reducing
one standard convolutional layer and making full use of
the Bottleneck module to enhance the gradient branch. This
approach not only preserves the lightweight characteristics
but also captures more abundant gradient flow information.
The output feature maps are then processed by the SPPF
module, which employs pooling with varying kernel sizes to
combine the feature maps before passing the results to the
neck layer.

B. IMPROVED YOLOV8 MODEL: LSI-YOLOV8
The YOLOv8 is a state-of-the-art object identification model
that considers the multiscale nature of objects. It incorporates
three scale-identification layers to accommodate objects of
different scales. However, the data obtained through remote
sensing for landslide identification poses challenges due to
complex background and a heavy workload for identifying
landslides, especially in drone imagery. Consequently, the
identification structure of YOLOv8 fails to meet the demands
for quick and precise landslide identification. To address
these challenges, this paper proposes a solution that builds
upon YOLOv8 as the base model and optimizes it through
improvements in the loss function, attention mechanism,
and multi-scale feature fusion. To achieve rapid and high-
accuracy recognition, improvements have been made to the
YOLOv8 model. The specific enhancements are as follows:
Firstly, considering the varying shapes and sizes of targets
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in remote sensing images, the aspect ratios of bounding
boxes often differ significantly. To address this, an additional
penalty term called EIoU is introduced based on Complete
Intersection over Union (CIoU) [41]. The EIoU separates the
aspect ratio image factors of the predicted frame and the real
frame, and calculates the length and width information of
each frame individually. This solves the issue of proportional
changes in aspect ratio that CIoU fails to handle. In this
article, CIoU is replaced with EIoU. Secondly, the back-
ground of remote sensing images is often complex, and the
identification target occupies only a small area in the image.
This leads to a large proportion of redundant features during
image iteration. To enhance the selectivity of the model,
considering that the dataset consists of low-resolution and
high-complexity images, we propose the introduction of the
DWRSeg module in C2f. The DWRSeg module utilizes an
adaptive weight allocation strategy to dynamically adjust the
weights of the convolution kernel based on the characteris-
tics of the input data. This approach improves the model’s
performance by making it more flexible in adapting to dif-
ferent input data. Lastly, a landslide identification method
called LSIYOLOv8 is designed to achieve a balance between
lightweight implementation and algorithmic performance.
The overall enhancements shown as Figure 1 in red rectangle.

FIGURE 1. The network structure of LSI-YOLOv8.

1) EIOU LOSS FUNCTION
The Yolov8 utilizes the CIoU as the bounding box regression
function, which is an indicator employed to calculate the sim-
ilarity between bounding boxes in target identification. CIoU
is an improvement over Intersection over Union (IoU) [42],
which is traditionally used to measure the degree of overlap
between predicted boxes and ground-truth boxes in object
identification tasks. However, IoU only considers the position
information of the box and neglects the size and aspect ratio
of the box. Consequently, there are cases where IoU fails to
accurately reflect the similarity between two boxes. On the
other hand, CIoU incorporates the center point distance,

aspect ratio difference, and box size into its calculation. Given
a predicted box B and a target box Bgt, b and bgt denote
the central points of B and Bgt respectively. The CIoU loss
function is defined as follows.

LCIoU = 1 − IoU +
ρ2(b, bgt)

c2
+ αv (1)

α =
v
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Since v only reflects the discrepancy of aspect ratio, rather
than the real relationship between the predicted boxes of the
real box, CIoU may optimizes the similarity in an unreason-
able way. To address this problem, we further change CIoU
to a more efficient version of IoU, namely EIoU, which is
defined as follows.

LEIoU = LIoU + Ldis + Lasp (6)

LEIoU = 1 − IoU +
ρ2

(
b, bgt

)
(wc)2 + (hc)2

+
ρ2

(
w,wgt

)
(wc)2

+
ρ2

(
h, hgt

)
(hc)2

(7)

We divide the loss function into three parts: the IoU
loss LIoU, the distance loss Ldis and the aspect loss Lasp
(Overlapping area, center point example, aspect ratio). The
height-width loss directly minimizes the height and width
differences between the predicted target bounding box and
the real bounding box, enabling faster convergence speed and
more enhanced localization results.

2) DWR SEGMENTATION
The backbone network and neck architecture of YOLOv8
may have been influenced by the design concept of Effi-
cient Layer Aggregation Networks (ELAN) from YOLOv7.
Additionally, the C3 structure of YOLOv5 has been replaced
by a C2f structure to enhance gradient flow, with adjust-
ments made to channel numbers for different scale mod-
els. By incorporating additional branches and layer links,
YOLOv8 can capture more comprehensive gradient flow
information without compromising its lightweight nature.
The C2f module is a specialized convolution module that
merges feature maps of varying scales, thereby enhanc-
ing the model’s receptive field and identification accuracy.
In YOLOv8, the C2f module has been used in the iden-
tification head to merge feature maps of different scales,
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enhancing identification accuracy. However, the C2f module
(as shown in the Figure 2) also introduces additional compu-
tational complexity to themodel, leading to increased training
and time costs. Additionally, it also increases the number
of parameters in the YOLOv8 model. Therefore, we replace
some c2f modules with DWR modules to reduce the overall
complexity and parameter count of the model.

FIGURE 2. C2f module structure.

As known, the attention mechanism in image processing
is designed to highlight key information by assigning higher
importance to specific areas. This facilitates the fusion and
interaction of information across different levels or scales,
selectively boosting feature channels that are rich in target
information. Ultimately, this enables the model to prioritize
important areas and minimize the influence of background
information [43].

Here, the DWRSeg network utilizes an attention mecha-
nism, incorporating a novel Dilation-wise Residual (DWR)
module and a Simple Inverted Residual (SIR) module for
both high and low levels. The overall architecture, depicted
in Figure 3, is characterized by its simplicity and effi-
ciency. This network follows an encoder-decoder setup, with
the encoder comprising four stages: the stem block, the
low stage of the SIR modules, and two high stages of
the DWR module. The DWR module is structured in a
residual fashion, employing a two-step method within the
residual to efficiently gather multi-scale contextual informa-
tion and fuse feature maps with multi-scale receptive fields.
By decomposing the previous single-step multi-scale contex-
tual information acquisitionmethod into a two-step approach,
the acquisition difficulty is reduced. The Simple Inverted
Residual (SIR) module, derived from the DWR module,
is tailored to maintain high feature extraction efficiency by
meeting the requirement for a smaller receptive field size
in the lower stage. The role of multi-rate deep expansion
convolution in feature extraction is from difficult to simple:
from obtaining as much complex contextual information as
possible from complexly expressed feature maps to perform-
ing simple morphological filtering of feature maps with the
desired expansion rate for each succinct expression. Simple
region featural maps form clear, simplified learning expan-
sion. The goal of deep convolutionmakes the learning process
more organized.

III. RESULTS AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
To assess the performance enhancements, we utilized
PyTorch as the deep learning framework and employed

FIGURE 3. DWR segmentation model structure [36].

YOLOv8s as the baseline network model. The hardware
platform and environmental parameters utilized during the
experimental training phase are detailed in Table 1.

TABLE 1. Configuration of experimental environment.

Consistent hyperparameters were also applied throughout
the training process across all experiments. Table 2 displays
the precise hyperparameters employed during the training
process. The practice code for YOLOv8 can be found at
https://gitee.com/.

TABLE 2. Configuration of experimental training process.

B. LANDSLIDE IMAGE DATAEST
In this experiment, the remote image of landslides primarily
originates from the Bijie Area in the northwest of Guizhou
Province, China. Bijie City is situated in the transitional
slope zone between the Qinghai-Tibet Plateau and the eastern
highlands, making it one of the regions most affected by
landslides in China. These landslides frequently occur in
mountainous areas abundant in vegetation, road slopes sus-
ceptible to landslides, and locations with significant human
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engineering activities, often triggered by heavy rainfall. In the
transition from spring to summer each year, heavy and
extremely heavy rains in this region significantly increase,
leading to a surge in mountain landslides and other geolog-
ical disasters. The government annually invests substantial
manpower and material resources in conducting surveys and
censuses of geological hazards in the area to compile a com-
prehensive database. Traditional manual geological hazard
surveys are time-consuming and labor-intensive. There is an
urgent need to leverage satellite remote sensing and other
technologies to detect landslides and other geological hazards
in large-scale remote sensing images. This will enhance the
efficiency of geological hazard surveys and contribute to the
digital transformation of the process.

Currently, the Bijie Landslide Dataset [19] is open-source
into research community, and now has been freely accessed
and downloaded as following link (http://study.rsgis.whu.edu.
cn/pages/download/). The data set consists of 770 positive
sample images containing landslides and 2003 negative sam-
ple images excluding landslides collected by the TripleSat
series satellites from May to August 2018. The ground
resolution of the image is 0.8 meters. During experimental
preprocessing, the slice size is set to 256 × 256 and the label
name is ‘‘landslide’’. Considering practical factors, image
augmentation (rotation, flipping, brightness enhancement,
contrast enhancement, introduction of Poisson noise, Gaus-
sian noise, salt and pepper noise) is applied to these images.

Conventionally, to accurately annotate landslide remote
sensing image samples and meet the training, testing, and
validation requirements of deep learning models, the research
dataset was divided into a training set, a test set, and a
validation set in a ratio of 8:1:1. Figure 4 and 5 show examples
of images from the training and validating set, respectively.

FIGURE 4. Landslide and non-landslide images in train dataset. (a) The
images of landslide;(b) The images of non-landslide.

C. EVALUATION METRICS
To test the identification performance of our improved
LSI-YOLOv8 model, we use precision, recall, F1-score,
mAP@0.5 and mAP@0.5:0.95 as evaluation metrics. The
calculation formula for the various evaluation are as

FIGURE 5. Landslide and non-landslide images in validated dataset.
(a) Landslide images; (b) Non – landslide images.

follows:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 = 2 ∗
Precision ∗ Recall
Precision + Recall

(10)

The F1 value is calculated as the arithmetic mean divided
by the geometric mean, and a higher value is considered
better. By considering the formulas of Precision and Recall,
it can be observed that when the F1 value is small, there is a
relatively higher increase in True Positive and a decrease in
false, resulting in an increase in both Precision and Recall.
Therefore, F1 effectively balances both Precision and Recall.

AP =

∫
1
0Precision (Recall) d (Recall) (11)

mAP =
1
N

∑
N
i=1 = APi (12)

The APi in Equation (12) denotes the AP value with cate-
gory index value i, and N denotes the number of categories
of the samples in the training dataset (in this paper, N is 1).
mAP@0.5 denotes the average accuracy when the IoU of the
identification model is set to 0.5, and mAP@0.5:0.95 denotes
the average accuracywhen the IoU of the identificationmodel
is set from 0.5 to 0.95 (with values taken at intervals of 0.05).

D. EXPERIMENTAL RESULTS
1) EIOU+DWR SEGAMENTATION
To validate the effectiveness of introducing EIoU, we main-
tained all other training conditions unchanged. We performed
comparative experiments on YOLOv8 using EIoU along
with other mainstream loss functions (CIoU, DIoU [41],
SIoU [44], GIoU [45]). The experimental results are pre-
sented in Table 3.
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TABLE 3. Comparison of identification results for different loss functions
introduced by YOLOv8.

According to the experimental results in Table 3, when
utilizing the EIoU as the bounding box regression loss, the
YOLOv8 model demonstrates a significantly high accuracy
in identifying the target, thereby enhancing the positioning
accuracy of YOLOv8. However, a challenge arises in terms
of the low recall rate, and lower mAP@0.5 value. To address
this issue, the C2f-DWR attention mechanism is introduced.
This mechanism ensures a high accuracy in the recognition
results, enabling the network to effectively adapt to features
of varying scales and achieve more precise object segmenta-
tion in images.

To evaluate the performance of the YOLOv8 with
DWRSeg module, we maintained consistent training con-
ditions while comparing it to the original YOLOv8 model.
We conducted comparative experiments on loss functions
(CIoU, DIoU, SIoU, GIoU, EIoU) in the improved YOLOv8
model with different improvement strategies. Comparative
results are detailed in Table 4. The findings indicate that the
accuracy of all loss functions with the attention mechanism
has also slightly improved. Particularly, when integrating
EIoU with DWRSeg, the model’s identification accuracy sig-
nificantly increased by 6.1%. Moreover, the recall increased
by 4.1% and the mAP@0.5 showed an improvement of 7.3%.
Consequently, the model achieved superior identification per-
formance.

TABLE 4. Comparison of identification results for different loss functions
introduced by the improved YOLOv8.

By comprehensively and intuitively analyzing the exper-
imental results presented in Figure 6, the performance and
comparison results of each improved method with YOLOv8
can be summarized as follows. The EIoU method achieves
a higher accuracy of 85.3% in the bounding box function
results under the YOLOv8 model, albeit with a relatively
low recall rate of 70.8%, resulting in an average accuracy
of 81.3% for the EIoU model. Conversely, the SIoU method

FIGURE 6. The normalization effect of experimental indicators.

exhibits a lower accuracy of 83.2%, while displaying a higher
recall rate at 77.8%. Overall, the SIoU method attains the
highest average precision of 84.0%, surpassing the EIoU
method within the YOLOv8 model. However, considering
the improved method that incorporating the C2f-DWRSeg
attention mechanism, the performance of each combination
for the YOLOv8 model has slightly increased. Notably, the
EIoU+DWRSeg method excels with an impressive accuracy
of 91.5%. Despite its generally lower recall rate of 74.9%, the
average accuracy (mAP@0.5) of 88.6% still outperforms the
average identification accuracy of alternative bounding box
loss functions.

2) DIFFERENT ATTENTION MECHANISM
In order to further evaluate the effectiveness of integrating the
DWRSeg module while maintaining the same Loss Function
of EIoU, three improvement methods from different attention
mechanism were selected for comparison: Asymptotic Fea-
ture Pyramid Network (AFPN) [46], Deformable Attention
(D-Attention) [47], and Diverse Branch Block (DBB) [48]
were tested on YOLOv8. The metrics involved in the table,
Frames Per Second (FPS): the number of frames transmitted
per second, that is, the network can detect how many images
per second. Giga Floating-point Operations PER Second
(GFLOPs): the number of billion floating-point operations
per second. The results, presented in Table 5, show that the
identification accuracy with the DWRSeg module outper-
forms the other enhancement modules. The DWRSegmodule
demonstrates an accuracy improvement of 11.1%, 7.2%, and
7.3% over other module, showcasing its superior recognition
capabilities. In the comprehensive accuracy evaluation, the
ranking is as follows: DWRSeg > D-Attention > DBB >

AFPN.

3) ABLATION EXPERIMENT
To assess the impact of various enhancement strategies out-
lined in this research, ablation experiments were conducted
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TABLE 5. Comparison results from different attention by the improved
YOLOv8.

on the baseline model utilizing the same of Bijie Land-
slide Datasets. The results of these experiments are detailed
in Table 6. The study primarily focused on improving the
baseline model (YOLOv8) by incorporating better modules
such as DWRSeg and D-Attention into the C2f module and
replacing CIOU with EIoU as the bounding box loss function
within the final loss function. The performance improve-
ments of each individual model component were analyzed,
including the baseline model, the enhanced DWRSeg model
(backbone), the enhanced EIoU model (loss function), and
the combined EIoU+ DWRSeg model (backbone + loss
function). Three evaluation metrics, including the identifi-
cation average accuracy of mAP@0.5, F1-Score, and FPS
(frames per second, which means the higher, the better),
were quantitatively assessed to observe the impact of these
enhancements.

TABLE 6. Ablation experiment of different components in LSI-YOLOV8.

Table 6 illustrates that the YOLOv8 model’s overall accu-
racy is improved by integrating both the EIoU and DWRSeg
modules. The ablation experiment emphasizes the impor-
tance and effectiveness of incorporating each module. It is
clear that EIoU and DWRSeg modules outperformed other
components. The combination of EIoU and DWRSeg mod-
ules maintain a high recognition speed (FPS:73.2 f/s) while
achieving the highest target recognition accuracy (mAP@0.5:
88.6%).

Figure 7 also demonstrates the comparison of accuracy
between the original and improved models. The analysis
of Figure 7 indicates that our LSI-YOLOv8s model pro-
posed in this study exhibits significantly higher values for

mAP@0.5 and mAP@0.5:0.95 in comparison to the original
YOLOv8s model.

FIGURE 7. A comparison was conducted to evaluate the mAP values of
the LSI-YOLOv8s model against the original. (a) mAP@0.5;
(b) mAP@0.5:0.95.

4) VISUAL INTERPRETABILITY
Deep learning models are commonly considered black-box
models, making it difficult to interpret their decision-making
and reasoning processes [35]. Hence, it is crucial to
thoroughly explore the interpretability of deep learning mod-
els to gain a clear understanding of their performance. In this
experiment, we chose to verify the LSI-YOLOv8 model and
the YOLOv8 model by examining their confusion matrices.

The confusion matrices of the two models are shown in
Figure 8. The confusion matrices indicate that both models
exhibit high rates of false negatives (i.e., misidentify targets
as background categories) and false positives. The original
YOLOv8 exhibited subpar identification performance for
landslide identification, achieving an accuracy rate of only
82.0% and higher misidentification rate of 18.0%. In contrast,
the LSI-YOLOv8 significantly enhanced the identification
accuracy of landslide, with improvement of 3.0% and reduc-
tion of misidentification rate 3.0%.

To explain the difference more intuitively, XGrad-
CAM [49] was often utilized to generate heat maps from
various models for visual displays. Heat maps are visual
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FIGURE 8. Confusion matrix of the YOLOv8 model and LSI-YOLOv8 model.
(a) Confusion matrix of YOLOv8; (b) Confusion matrix of LSI-YOLOv8.

representations that highlight the areas in the feature map
that the model emphasizes. The gradient value is obtained
by back-propagating the model’s output category confidence
through XGrad-CAM. In the heat map, pixels with higher
gradients in the feature map are depicted as darker shades of
red, indicating a stronger focus. Conversely, pixels with lower
gradients are represented by darker shades of blue.

The comparative experimental results for displays are
depicted in Figure 9. The findings suggest that the origi-
nal YOLOv8 model has limited attention when faced with
complex backgrounds and struggles to accurately identify
landslides. In contrast, our proposed LSI-YOLOv8 model
demonstrates a superior ability to filter out background noise
and gives priority to detecting landslides. The model’s focus
is primarily on the central point of the object, leading to more
accurate predictions of bounding boxes and a more thorough
identification of landslides. This methodology effectively
reduces instances of missed or incorrect identifications, ulti-
mately improving the overall performance of the model in
landslide detection.

FIGURE 9. XGrad-CAM rendering of different model validation datasets
(a) Origin images; (b) YOLOv8; (c)LSI-YOLOv8.

IV. DISCUSSION
To test the robustness of the proposed LSI-YOLOv8 model,
we aim to compare the accuracy of algorithms in different
models to determine their progress and complexity. Further-
more, we will assess howwell these models can generalize by
testing their performance on diverse datasets. This thorough
evaluation aims to confirm the effectiveness and versatility
of the proposed model, establishing a strong basis for future
enhancements and applications in the field.

A. COMPARISON OF VARIOUS MODELS
In order to enhance the demonstration of the LSI-YOLO
model, this experiment selected YOLOv5, YOLOv7, and
different versions of YOLOv8 to compare parameters, train-
ing time, and accuracy. For instance, the four versions of
YOLOv8 (YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l,
YOLOv8x) vary in parameter number from small to large.
The comparison results are illustrated in Fig. 10, indicat-
ing that the ‘n’ model in the YOLO series has a relatively
small number of parameters, ensuring high accuracy in detec-
tion. All four versions of the LSI-YOLOv8 model used in
this experiment exhibit efficient landslide identification and
detection capabilities, yielding rapid results for detection.

To further validate the effectiveness of the proposed
LSI-YOLOv8, this study conducts comparative experi-
ments with prominent other state-of-the-art models such
as Mask-RCNN [50], YOLOv5, YOLOv7, YOLOv8, and
YOLOv9 [51], known for their superior accuracy in other
domains. The outcomes of these comparative experiments
are detailed in Table 7. Mask R-CNN is a simple and
effective model with two-stage identification algorithm that
extends Faster R-CNN to detect objects and generate masks
for each instance. The YOLOv5 is a single-stage object
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FIGURE 10. Comparison between different YOLO models within the
validated dataset. (a) Parameters numbers; (b) Training Times.

TABLE 7. Comparison of identification results for different models based
on Bijie landslide datasets.

identification algorithm that segments the image into mul-
tiple grids, with each grid responsible for predicting one or
more objects. The network structure of YOLOv5 is fully
convolutional. YOLOv7 employs a unique design that trans-
forms the target identification task into a single convolution
operation, enabling effective identification of diverse targets,
particularly small ones. On the other hand, YOLOv9, as a
latest version of YOLO series model, incorporates advanced
techniques like the feature pyramid network and attention
mechanism, enhancing the accuracy of target identification
and demonstrating superior performance in detecting dense
targets.

According to the findings presented in Table 7, it can
be observed that Mask R-CNN exhibits the highest detec-
tion accuracy and is capable of accurately segmenting the

shape and size of landslides even in complex backgrounds.
However, it should be noted that the training time for Mask
R-CNN is relatively long and the detection time with low-
est FPS means the detection is not fast, which may hinder
rapid post-disaster analysis. The YOLOv5 demonstrates the
fastest training speed but lower average accuracy compared
to other YOLO models. Among the original YOLO mod-
els, YOLOv7 excels in identification accuracy, although its
recall rate, mAP@0.5, and mAP@0.5:0.95 metrics are sur-
passed by YOLOv9. Despite this, the overall accuracy of
YOLOv7 exceeds that of YOLOv8. While YOLOv8 does not
exhibit clear superiority in the model, its identification time
significantly outperforms other YOLO models. This study
focuses on enhancing overall identification performance
using YOLOv8 and introduces the LSI-YOLOv8 model. The
accuracy of LSI-YOLOv8 significantly outperforms other
Mask-RCNN, YOLOv5, YOLOv7, YOLOv8, and YOLOv9
model, with mAP@0.5 being 9.0%,7.7%, 4.0%, 6.3%, and
2.9% higher than other models, while mAP@0.5:0.95 is
3.1%, 3.6%, 2.7%, 4.8%, and 0.3% higher than others,
respectively. Furthermore, the detection speed of the LSI-
YOLOv8model is 73.2 f/s, which is notably faster by 15.5 f/s,
3.5 f/s, 5.1 f/s, 5.9 f/s, and 4.3 f/s respectively, compared to
Mask-RCNN, YOLOv5, YOLOv7, YOLOv8, and YOLOv9.

Based on the results presented in Table 7, it is evident
intuitively from Figure11 that both YOLOv5 (Fig.11c) and
YOLOv8 (Fig.11e) are prone to missing identifications in
complex backgrounds, with YOLOv5 exhibiting a higher
rate of missed identifications. In contrast, YOLOv9 (Fig.11f)
demonstrates the ability to accurately identify the shape and
size of landslides even in challenging backgrounds. How-
ever, the identification time of YOLOv9 is relatively long,
potentially impeding timely post-disaster analysis. While
YOLOv8 shows improved identification and recognition
compared to YOLOv7 (Fig.11d), it still faces challenges
in landslide identification in complex backgrounds, leading
to unclear localization and false identifications in landslide
identification scenarios. On the other hand, LSI-YOLOv8
(Fig.11g) achieves higher identification accuracy than other
YOLOmodels, albeit with a noticeable issue of identification
omissions.

B. COMPARISON OF VARIOUS DATASETS
To further validate the robustness of our approach,
we conducted generalization experiments using the origi-
nal YOLOv8 and the improved LSI-YOLOv8 on various
datasets comprising landslide images from open-source
community in recent years. Our experiment involved
four well-known landslide including Bijie Datasets [19],
two datasets (Moxi Town and Jiuzhai Valley) of CAS
Landslide Dataset [52] and Southwest landslide dataset [53]
(https://github.com/YhQIAO/LandSlide_Detection_Faster-
RCNN). These four datasets are detailed in the Table 8.
These experimental results effectively demonstrate the gen-
eralization ability of the improved model.
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FIGURE 11. Detect results of test dataset for six models. (a) Origin images; (b) Mask R-CNN; (c) YOLOv5; (d) YOLOv7; (e) YOLOv8; (f) YOLOv9;
(g) our LSI-YOLOv8.

TABLE 8. Comparison of identification results for different datasets.

TABLE 9. Comparison of identification results for different datasets.

The comparative experiments results, as presented in
Table 9, indicate that the improved LSI-YOLOv8 model out-
performed the original YOLOv8 in various datasets used in
similar configurations on three metrics, exhibiting the highest
accuracy for landslide recognition and algorithmic efficiency
from remote sensing imagery. However, the model perfor-
mance varied across different datasets; while Bijie Datasets
performed relatively well, the Southwest Landslide Datasets
showed the worst performance. These findings strongly high-
light the advantages of utilizing the number of sample images
and emphasize the importance of high-quality imagery. Over-
all, the experiments further validated the robustness of our
improved LSI-YOLOv8 model on various datasets from
remote sensing imagery.

V. CONCLUSION
In recent years, there has been a significant increase in land-
slide studies utilizing deep learning algorithms. These algo-
rithms have the advantage over traditional machine learning
methods as they can automatically extract the most efficient
features by leveraging deep convolutional layers from large
datasets. Unlike machine learning, deep learning eliminates
the requirement for manual construction and selection of
feature layers for land-slide feature processing. Furthermore,
deep learning is capable of handling larger sample sizes,
making it well-suited for landslide identification in larger
scenes [54].

To improve the efficiency of landslide identification in
complex backgrounds using remote sensing imagery and
reduce missed identifications, this study presents the LSI-
YOLOv8 model as an enhancement of the YOLOv8 model.
Several improvement methods are proposed for the YOLOv8
model in this study. Firstly, the EIoU loss function replaces
the original CIoU bounding box loss function to enhance
both the convergence speed and positioning accuracy of
the algorithm. Additionally, the DWRSeg module, based
on the original C2F module, is introduced. The C2F-DWR
module aims to reduce the model’s parameters while enhanc-
ing its generalization ability, making it more adaptable to
various input data and improving its overall performance.
The LSI-YOLOv8model demonstrates improved recognition
accuracy compared to the original YOLOv8 model, showing
a 4.8% enhancement in mAP@0.5 and a 6.3% improvement
in mAP@0.5:0.95. Moreover, the training time is reduced
by 0.07hours and the detection speed is notably faster by
5.9 f/s than the original YOLOv8. However, there are still
some undetected landslides, which can be attributed to factors
such as background complexity, long-distance image capture
leading to blurriness, and limitations in detecting landslides
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that closely resemble the surrounding environment despite
the enhanced capabilities of the LSI-YOLOv8 model.

Additionally, the proposed LSI-YOLOv8 model offers
valuable features including lightweight parameters and fast
recognition accuracy, making it suitable for deployment in
UAV remote sensing monitoring for landslide identification.
Compared to the original YOLOv8 model, the LSI-YOLOv8
model effectively reduces computational complexity and
improves identification speed. This enables rapid landslide
identification post-disaster and facilitates the planning of
evacuation routes. Moreover, the model can be trained using
a landslide database from various geological disasters to
enhance its accuracy and generalization capabilities. Addi-
tionally, it can be applied to identify other geological hazards
such as loess landslides and rainfall landslides.

Conclusively, this study presents LSI-YOLOv8, an en-
hanced model for landslide detection using YOLOv8,
designed for efficient and accurate identification in opti-
cal remote sensing images. Through innovative modifica-
tions, LSI-YOLOv8 surpasses the current state-of-the-art
approaches in both speed and precision of identification
landslides from remote-sensing imagery. However, there are
still limitations and opportunities for further investigation.
The current datasets are restricted to optical remote sens-
ing data, suggesting potential enhancement by incorporating
SAR training datasets. SAR data offers benefits in areas
with cloud cover or poor lighting conditions, improving the
adaptability and reliability of themodel. Future developments
could involve integrating factors such as DEM and spectral
characteristics to enhance accuracy by providing comprehen-
sive contextual information. By considering these aspects,
the goal is to enhance the model’s capability to detect subtle
terrain and surface variations, resulting in more accurate
predictions. In summary, while LSI-YOLOv8 represents a
significant advancement in landslide detection, there is scope
for refinement and expansion. Ongoing research in these
areas shows promise for the development of more precise and
dependable systems for landslide detection and response in
the future.
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