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ABSTRACT This paper evaluates the performance of six different machine learning (ML) algorithms for
classifying power quality disturbances (PQDs), with statistical features extracted using discrete wavelet
transform (DWT) as feature input. The statistical features have been extracted from coefficients of
multi-resolution analysis (MRA) using four different mother wavelets: Daubechies 4 (‘db4’), ‘haar’, Discrete
Meyer (‘dmey’), Coiflets 4 (‘coif4’). The performance analysis has been carried out with 5,500 synthetic
signals pertaining to eleven different PQDs generated in accordance with IEEE 1159-2019. Moreover, the
performance of the classifiers trained with synthetic signals has been investigated under the influence of
unseen noisy signals, hardware PQD signals obtained from the experimental setup, and real PQD events.
The analysis indicates that the performance of the extra tree (ET) classifier with the features extracted using
‘haar’ as a mother wavelet is superior and robust in comparison to other classifiers, viz k-nearest neighbor
(kNN), random forest (RF), decision tree (DT), logistic regression model (LRM), and gaussian naïve bayes
(GNB) with features extracted using different mother wavelets. Furthermore, the ‘haar-ET’ based technique
demonstrated remarkable performance in classifying PQDs, showing strong generalization to both unseen
hardware and noisy signals, and achieving consistent results when tested with real PQD events.

INDEX TERMS Power quality disturbances, discrete wavelet transform, machine learning, classification,
extra tree, random forest.

I. INTRODUCTION
Due to the grid integration of renewable energy sources,
sophisticated control systems, and rising electricity demand,
the modern electrical grid is going through a significant
transformation. These developments herald a more complex
and challenging era, promising a more efficient and sustain-
able energy landscape. The increasing incidence of PQDs is
one urgent issue that has drawn much attention. PQDs have
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become more frequent and complex as the grid adapts to
accommodate a variety of energy resources, posing a severe
threat to the stability and reliability of the power supply [1],
[2], [3].
PQDs pose a variety of complex problems. Voltage fluctu-

ations, frequency deviations, waveform distortions, and other
anomalies brought on by PQDs can potentially impair the
regular operation of electrical machinery and delicate elec-
tronic devices. These adversities can result in operational
inefficiencies, equipment damage, expensive downtime, and
jeopardized safety in crucial applications. PQDs can also
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increase energy losses, trigger erroneous alarms in protec-
tion systems, and affect the integration of renewable energy
sources.

Voltage sags and swells brought on by grid faults or unex-
pected changes in load, are among the most frequent PQDs.
Waveform distortion caused by harmonics, is a common PQD
that superimposes higher-order frequencies on the fundamen-
tal frequency of the power supply. Transients are sudden,
temporary deviations from the expected voltage and current
waveforms, such as impulsive and oscillatory disturbances.
Lighting systems are frequently affected by flicker, which is
characterized by noticeable variations in light output and may
be brought on by load fluctuations [4].

The aforementioned PQDs are distinct, have different
adverse effects on the load or grid [5]. In order to accurately
identify and minimize the adverse effects of these distur-
bances, it is necessary to develop quick and accurate PQDs
detection and classification technique [6].

PQDs are typically categorized using a two-step pro-
cess. Initially, the important characteristics or features are
extracted using complex analysis with the help of various
signal processing. Then, second step involves usingMLbased
classifiers to identify and categorize PQDs using the extracted
features. For feature extraction, several SPTs have been uti-
lized by researchers, which include Fourier transform (FT),
fast Fourier transform (FFT), short-time Fourier transforms
(STFT), wavelet transforms (WT), discrete wavelet trans-
forms (DWT), wavelet packet transform (WPT), Stockwell
transforms (ST), Hilbert-Huang transform (HT), and Kalman
filter (KF). The STFT is an extension of the discrete Fourier
transform (DFT). However, it has drawbacks when applied
to non-stationary and non-linear signals. The WT, in con-
trast, overcomes these STFT drawbacks by utilizing variable
windows tailored for high and low-frequency components,
thereby enhancing the time-frequency resolution. The ST,
which combines the discrete WT and STFT, is a very durable
tool. The S-transform’s retention of phase signal information,
integration of frequency-based resolution, and the preserva-
tion of the time-frequency representation of signals are some
of its key characteristics [7].
Artificial intelligence (AI) based techniques called intel-

ligent classifiers are commonly employed for automated
decision-making and categorization [8]. Various AI tech-
niques including artificial neural networks (ANN), probabil-
ity neural network (PNN), support vector machines (SVM),
kNN, DT, RF, fuzzy logic, and extreme learning machines
have been used for classifying PQDs. Each technique has
unique benefits and drawbacks, making it appropriate for
various situations. For instance, while PNNs are resilient to
noisy data, ANNs are highly adaptable and excel at pattern
recognition. SVMs are efficient at handling high-dimensional
data, but they might need a lot of computing power. Although
kNN is simple and fast, it may have difficulties with large
datasets. DT may create complex trees, which leads to over-
fitting, particularly handling the noisy data. Though it can

be computationally intensive, RF, a well-known ensemble
technique built on DT, aims to address the overfitting problem
by aggregating multiple trees, improving generalization and
robustness [9]. The specific PQ disturbance classification
requirements, dataset characteristics, and the available com-
putational resources should all be taken into account when
choosing a technique, alongwith the trade-offs between accu-
racy, interpretability, and efficiency.

A brief review on various signal processing and ML based
PQDs classification techniques is presented below. A DWT
and PNN based PQDs classification technique has utilized
‘db4’ as a mother wavelet for feature extraction and artificial
bee colony algorithm for optimal feature selection [10]. The
performance of the suggested technique is highly sensitive
to the higher noise levels. Authors in [11] have demon-
strated the distinctness of features extracted using DWT
with ‘db4’as mother wavelet. The authors have considered
real-time PQDs emerging due to converter operation, capac-
itor switching, and transformer energization. However, the
classification of PQDs has not been carried out using the
extracted features. The wavelet packet transform was applied
in [12] to obtain features from PQD events and given as
input to SVM for classification. Dual multiclass support
vector machines (MSVM) and tunable-Q wavelet transform
(TQWT) are combined to detect and classify PQDs [13],
showcasing the advantages of TQWT’s capacity to isolate
low-frequency interharmonics and extract pertinent features
for precise classification. In [14], statistical features were
extracted using the DWT with level-6 decomposition and the
‘db6’ mother wavelet. The non-dominated sorting genetic
algorithm II (NSGA-II) is then used for choosing the optimal
features given to ANN for classification. A combined dis-
crete gabor transform (DGT) and type-2 fuzzy kernel-based
SVM, method for identifying PQDs is presented in [15].
The technique for obtaining and selecting the best feature
based on the empirical wavelet transform (EWT) was intro-
duced in [16], where authors highlighted the performance
superiority of SVM over other classifiers with the selected
features. A hybrid algorithm using ST andHTwith DT for the
identification and classification of PQDs, have demonstrated
its effectiveness, particularly with noisy signals [17]. A novel
k-means-based apriori algorithm is implemented in [18] for
classifying PQD in a three-phase system. However, only five
PQDs classes were considered for the study. The application
of dual feed-forward neural network (FFNN) for classifying
single and combined PQDs utilizing a novel EWT based
adaptive filtering technique is presented in [19]. Authors
in [20] have reported the capabilities of convolutional neu-
ral network (CNN) for classifying the PQDs. The method
combines 1D and 2D CNN architectures and the performance
is consistent while maintaining a similar level of computa-
tional complexity. Recently, a deep learning neural network
based technique is presented in [21] for classifying real
PQDs in grid pertaining to four classes. A multidimensional
feature-driven ensemble model presented in [22] utilizes time
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domain, frequency domain and temporal features extracted
using bidirectional gated recurrent unit (BiGRU) and fully
convolutional networks (FCNs).

For efficient and reliable performance, the ML classifier
requires unique features that distinctly characterized different
PQDs. In the literature, DWT has been extensively utilised
to extract relevant features for PQDs classification. This is
due to its MRA capability, which enables the representation
of both high and low-frequency components in power quality
signals, essential for capturing the variety of disturbance char-
acteristics. The time-frequency localization of DWT allows
for effective feature extraction while preserving critical tem-
poral and spectral information. Therefore, the proposed work
utilizes DWT for the feature extraction from PQDs. The chal-
lenges associated with DWT are the choice of an appropriate
mother wavelet and the level of decomposition. Therefore,
careful selection is required to ensure unique and reliable
feature representation.

Many of the existing techniques for classifying PQDs
have not considered various important factors for the study.
Such techniques rely on synthetic or simulated data, which
might not accurately reflect the complexity of PQDs in the
real world [14], [23], [24]. Additionally, some techniques
call for complex pre-processing steps or manual feature
engineering, which limits their scalability and make them
inaccurate [25], [26]. Moreover, instead of a single classi-
fier [10], [18], [27], the performance of multiple classifiers
needs to be evaluated with the extracted features to identify
the best-suited model for classifying diverse PQDs. Con-
sidering the shortcomings of the aforementioned methods,
the proposed study aims to develop an accurate and robust
PQDs classification technique having superior generalized
capabilities. In the proposed work, various mixed-order
statistical features have been extracted using DWT for clas-
sifying eleven different types of PQDs. The performance
evaluation of six different ML algorithms with features
extracted using four mother wavelets has been carried
out.

The key contributions of this paper are as follows:
• Statistical features extraction from the wavelet coeffi-
cients with four different mother wavelets: ‘db4’, ‘haar’,
‘dmey’, and ‘coif4’ have been used to ensure compre-
hensive feature representation.

• Four different datasets were used for the performance
evaluation: synthetic signals, unseen noisy signals, hard-
ware signals captured using an experimental setup, and
real PQD event signals.

• The performance evaluation of kNN, LRM, DT, RF,
ET, and GNB classifiers with the proposed statistical
features to classify eleven different types of single and
multiple PQDs is carried out.

• The robustness, adaptability, and generalized capabil-
ities of the model is demonstrated by assessing its
performance with unseen noisy signals, hardware sig-
nals, and real PQD event signals, despite being trained
on noiseless synthetic signals.

The rest of the paper is structured as follows: Section II
describes the methodology, the proposed method is discussed
in Section III, Section IV presents the results and discussion,
and the conclusion is drawn in section V.

II. METHODOLOGY
The methodology is divided into two main parts: DWT
and MRA, and ML Classifiers. The following subsections
provide a comprehensive overview of these techniques and
approaches.

A. DWT AND MRA
The wavelet transform is an effective tool for identifying
and categorizing power quality disturbances as it can handle
non-stationary signals [28]. The WT functions across the
frequency and time domains by employing an adjustable
wavelet (ψ), as demonstrated by its ability to analyze signals
in both domains [29]. Following is a mathematical equation
of temporal-frequency plane [30],

γ (s, τ ) =

∫
x (t) ψ∗

s,τ (t) dt, ψs,τ (t) =
1

√
s
ψ

(
t − τ

s

)
(1)

where (s, τ ): a scale – translation plane, and x(t): the signal
analyzed. It should be noted that performing WT needs sub-
stantial calculations because it must be done at every location
along the s − τ plane. The mother wavelet (ψ) is squeezed
to test over different levels. DWT is an effective variant of
WT where the parameter ’γ ’ in eq. (1) is computed at select
locations within the s− τ plane.
In this context, the s− τ plane is discretely sampled using

a dyadic grid, similar to MRA principles, where s = 2j and
τ = 2jk , with j and k being integers. To handle the lower
frequency spectrum in MRA, the second function called the
scaling function (8) is used in addition to wavelet (9). These
functions, when employing dyadic sampling, are defined by
the following equation [4]:

ψj,k (t) = 2−(j/2)ψ(2−jt − k) (2)

φj,k (t) = 2−(j/2)φ(2−jt − k) (3)

In practical terms, the implementation of DWT resembles
a strategy akin to ‘sub-band coding’. This involves break-
ing down a signal iteratively into different scales or levels
using a filter bank. Within each scale or level, the signal
undergoes filtration utilizing a combination of high-pass (g)
and low-pass (h) filters, resulting in outputs categorized as
‘‘detail’’ and ‘‘approximation’’, respectively. At each level,
the signal undergoes down-sampling by a factor of ‘‘2’’,
and the approximation component is selected for subsequent
decomposition. The recursive equations that govern the detail
dj (k) and approximation aj(k) components of the jth level are
as follows:

dj(k) =

∑
n
g(n)aj+1(2k + n) (4)

aj(k) =

∑
n
h(n)aj+1(2k + n) (5)
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FIGURE 1. Decomposition of signal using DWT up to nth level.

Fig. 1 represents theMRA of the time domain signals using
DWT up to the nth level of decomposition. The signal passes
through a set of high-pass and low-pass filters at each stage to
provide the detail and approximate coefficient of each level.
These coefficients can also be used to obtain relevant details
for further investigation.

B. CLASSIFIERS
The fundamental classification task in ML is to categorize
an input data point into one of many predefined categories
or classes. This process involves discovering patterns and
relationships within the data, allowing the model to predict
or take action regarding unforeseen circumstances reliably.
Automating this classification process with the help of ML
algorithms opens up various possibilities, including the detec-
tion of PQDs. The classification algorithms considered in this
study are briefly presented below.

1) kNN
Due to its adaptability and accessibility of use, the kNN
algorithm is a popular MLmethod. Since kNN does not make
any assumptions about the data distribution, it may be used
for tasks like regression and classification on a variety of
datasets that contain both numerical and categorical charac-
teristics. kNN offers flexibility since it is a non-parametric
approach that doesn’t rely on preconceived notions about the
underlying data structure. One feature that distinguishes it
from other algorithms is its resilience to outliers [31].

This algorithm determines Euclidean distance between k
neighbors that are closest to a given data point. A majority
vote or an average procedure is then used to determine the
class or value of the data item [32].

2) LRM
A linear model called LRM is employed in categorization.
It makes use of the logistic function to calculate the like-
lihood that an instance belongs to a specific class [33].
By nature, LRM is a binary classification technique that esti-
mates the likelihood that an instance falls into a certain class.
On the other hand, it may be expanded to address multiclass
classification issues by utilizing methodologies such as one-
versus-one (OvO) or one-versus-rest (OvR) [34].

3) DT
Encapsulating a sequence of decisions and their possible
results, a DT is a hierarchical, tree-like structure. Every node

within the tree serves as a point where a decision is made,
and the branches extending from it illustrate the potential
outcomes that follow. Ultimately, the terminal leaves of the
tree encapsulate conclusive decisions or predictions. The
tree is built via recursive data partitioning, with core nodes,
branches, and leaf nodes representing dataset properties,
decision rules, and outcomes, respectively [35]. The DT starts
at a root node and grows into branches to build a complete
tree-like structure [36].

4) RF
In ML, RF is a potent supervised learning technique that
excels at classification and regression tasks. It builds an
ensemble of DT trained on different subsets of the dataset and
uses their average predictions as a meta-estimator to improve
overall accuracy and reduce overfitting. Using the bagging
approach, which involves training each DT on a subsample
taken with replacement from the original dataset, this ‘‘for-
est’’ of DT is created. Based on the idea of ensemble learning,
the ensemble technique combines predictions from several
models to improvemodel performance and solve complicated
issues [37]. The main advantage of RF is in its capacity to
build a variety of DTs and aggregate their results via majority
vote, producing reliable predictions.

5) ET
An ensemble learning method called the ET classifier
is similar to the RF, but differs in how it builds DTs inside
the forest. In this approach, every DT is constructed using the
whole original training sample, and at every test node, the
tree is supplied with a random subset of k characteristics to
consider for reaching a choice. Each DT is prompted by this
feature subset to choose the optimal feature for the data split
separately using a given mathematical criterion, which is the
gini index. Several decorrelated DT are produced by using a
random sample of features, which increases the variety of the
ensemble [38].
The classification process of ET classifier is as follows:

suppose X represents the input feature matrix of size l × m,
where l is the number of samples andm is the total number of
features. Every column denotes a feature, and every row, xi,
indicates a sample. Let z be the corresponding target vector
of size p × 1 for classification. Given a set of decision trees
T = {T1,T2,T3, . . .TM , }, the prediction of the ET classifier
is given by:

˙̂zi = mode (T1 (xi) ,T2 (xi) ,T3 (xi) , . . .TM (xi)) (6)

where ẑi is the predicted output for sample xi and M denotes
the number of trees in the ensemble.

ET, in particular, presents a novel feature selection proce-
dure for building forests. It determines the normalized overall
decrease in the selected mathematical criterion by computing
the gini importance for every feature. This enables users to
choose features by arranging them according to their gini
importance in descending order and then choosing the top k
features according to their preferences. ET, in contrast to RF,
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uses random sampling for every tree without replacement,
producing distinct datasets for a variety of decision tree train-
ing scenarios. Its unique quality also resides in the random
feature splitting value selection, which helps to generate
diverse and uncorrelated DTs in the ensemble [32].

To the best of our knowledge, the application of ET clas-
sifier has not been reported in the literature for classifying
PQDs.

6) GNB
Based on Bayes’ theorem, the GNB method is an effective
tool for handling classification issues, especially when deal-
ing with high-dimensional datasets like text categorization.
GNB is well-known for being straightforward and efficient.
It can build ML models fast enough to generate predictions.
GNB is a probabilistic classifier that uses characteristics
to determine probability of an object. It is used in several
fields, such as article classification, spam filtering, and ana-
lyzing sentiment. It applies the Bayes theorem to handle
categorization problems utilizing past information to com-
pute a probability of hypothesis and uses that result as the
foundation for its decision-making [32]. Being a proba-
bilistic classifier, it predicts based on the probability of an
item.

III. PROPOSED TECHNIQUE
Fig. 2 illustrates the flow chart of the proposed method
for identifying and classifying PQDs. Additionally, a con-
cise explanation of each step is presented in the following
subsections.

A. PQDs DATA COLLECTION
It is quite challenging to acquire all real-time PQD event sig-
nals from the electrical network for categorization research.
Therefore, in the proposed work, various PQD signals have
been generated using the numerical models as mentioned in
Table 1 [39]. It is essential that all generated PQD signals
strictly comply with definitions of IEEE 1159 [40]. This is to
ensure the validity and applicability of the research by closely
simulating actual PQD events in the electrical network. In the
presented work, all the PQD signals’ parameters have been
varied in accordance with IEEE 1159-2019.

In the proposed study, eleven distinct types of PQD sig-
nals have been generated using MATLAB. Each type of
signal denoted as a separate class includes CL1: normal,
CL2: sag, CL3: swell, CL4: interruption, CL5: impulsive
transient, CL6: oscillatory transient, CL7: harmonics, CL8:
flicker, CL9: notch, CL10: harmonics with sag, and CL11:
harmonics with swell. To ensure a balanced dataset, a total of
5,500 signals have been generated, with 500 unique signals
corresponding to each of the eleven classes. Special care has
been taken to ensure that each signal is unique within its
respective class. The normalized amplitude has been set to
1 per unit, and the fundamental frequency is fixed at 50 Hz.
Each signal has a 10-cycle length with 100 samples per
cycle at a 5 kHz sampling frequency. Fig. 3 represents the

FIGURE 2. Flow chart of the proposed method for PQDs classification.

waveforms of PQDs for CL2 to CL11. The aforemen-
tioned dataset is publicly shared on IEEE Dataport and
Harvard Dataverse, which provide accessible platforms for
researchers to access, analyze, and contribute to PQD
research [41], [42].

Apart from simulated signals, a total of 330 PQDs
pertaining to eleven classes have been recorded using
an experimental setup in the laboratory. Furthermore,
recorded real PQD events data available on the IEEE
Dataport [43], [44] has been utilized to validate the perfor-
mance of the proposed approach. The detailed description
of the hardware and real PQD event data is discussed
in section IV.

The simulation of PQD signals that accurately reflect the
complexity and variety of actual disturbances that occur
within power grids is made possible by the meticulous varia-
tion in the generated data.

B. FEATURE EXTRACTION
In the proposed work, feature extraction has been accom-
plished using a two-stage process. Firstly, wavelet coef-
ficients have been extracted using DWT-MRA analysis.
Secondly, various statistical features have been obtained from
the wavelet coefficients. The detailed process is described
below.
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TABLE 1. Numerical model equations of PQDs.

FIGURE 3. PQDs Waveforms: (a)Sag, (b)Swell, (c)Interruption,
(d)Impulsive Transient, (e)Oscillatory Transient, (f)Harmonics, (g)Flicker,
(h)Notch, (i)Harmonics with Sag, and (j)Harmonics with Swell.

1) DWT-MRA
In the proposed work, DWT has been used to extract relevant
information from various PQDs signals. A crucial step in

extracting features from raw signals is choosing the mother
wavelet. The proposed research has chosen four different
mother wavelets – ‘db4’, ‘haar’, ‘dmey’, and ‘coif4’. These
mother wavelets are popular and find wide applications
because of their unique characteristics and suitability for cap-
turing various features in PQD signals. The ‘haar’ wavelet is
valued for detecting sudden disturbances due to its usefulness
in revealing abrupt signal changes and simplicity. The ‘db4’
is preferred for its balanced representation of oscillatory and
transient components. The ‘dmey’ wavelet is chosen because
of its capabilities to capture granular signal details at various
scales. The ‘coif4’ wavelet is effective in analyzing signals
with smooth variations, and it has the capability to provide
a good balance between time and frequency localization
accurately for both high and low-frequency components in
a signal [45].

The PQD signals are subjected to level 4 decomposi-
tion using the chosen wavelets for thorough analysis. Four
detailed coefficients D1, D2, D3, andD4, and one approxima-
tion coefficient A4, corresponding to the final multiresolution
decomposition, are extracted. These coefficients form the
basis for subsequent feature extraction procedures, making
it possible to extract and characterize important information
from PQD signals efficiently. Extracted coefficients from the
PQD signal using the ‘haar’ mother wavelet are illustrated in
Fig. 4 for CL9: notch disturbance.

2) STATISTICAL FEATURE CALCULATION
The extraction of distinct features from PQD signals is essen-
tial for efficient classification and identification tasks. These
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FIGURE 4. Detailed and approximation coefficient extracted using ‘haar’
mother wavelet for CL9: Notch.

features serve as vital inputs for AI classifiers that help to
distinguish between different PQDs. The DWT-derived coef-
ficients have beenmeticulously analyzed as part of the feature
extraction process to extract relevant information from the
PQD signals. The statistical features obtained from the afore-
mentioned wavelet coefficients include root mean square
(RMS), mean, standard deviation, variance, range, skewness,
kurtosis, average deviation, entropy, min, max, and energy as
expressed mathematically in Table 2.

The visualization of the features in higher dimen-
sional space is not feasible. A non-linear technique called
t-distributed stochastic neighbor embedding (t-SNE) pre-
serves the local patterns and groups of the original
high-dimensional data while projecting it into a space with
fewer dimensions. This technique is useful for visual inspec-
tion because it allows for the investigation of resemblance
and relationships between various features [46]. The t-SNE
approach is used in the proposed work to aid in the visual
representation of complex statistical feature sets derived from
various wavelet coefficients. This offers insights into the
vividness between the feature spaces generated by the various
wavelet families. Fig. 5 shows the t-SNE plot for feature
extracted with (a)‘db4’, (b)‘haar’, (c)‘dmey’, and (d)‘coif4’
as mother wavelets for different eleven PQD classes. The
t-SNE plot illustrates the feature distribution across differ-
ent classes of PQD data, revealing distinct clusters in the
two-dimensional space for each class.

C. CLASSIFICATION
The statistical features discussed in the previous subsection
have been normalized and given to different ML algorithms
for classifying PQDs. The performance of kNN, DT, ET,
LRM, RF, and GNB classifiers has been evaluated with the
proposed features. Out of a total of 5,500 cases corresponding
to eleven PQD classes, 4,400 (80%) cases have been used to
train the model. The testing is performed on the remaining
1,100 (20%) cases. The classification has been carried out

TABLE 2. Statistical features.

using the Python 3.10.9 environment with the system having
specifications as an Intel® CoreTM i7 8th generation CPU,
16GB of RAM, and a 2GB NVIDIA GeForce 940MX graph-
ics processing unit (GPU).

Each classifier requires some hyper-parameter settings
for classification. The classier performance is significantly
impacted by the choice of the hyper-parameters. In the pro-
posed work, grid search cross-validation (Grid Search CV)
technique has been used for hyper-parameter tuning of all the
classifiers. Grid Search methodically investigates a variety of
hyper-parameters to enhance the performance of the classi-
fier. A five-fold CV is used to tune the parameters during the
training of the classifiers. The best hyper-parameters for the
classifiers obtained through the Grid Search CV technique in
the proposed work are mentioned in Table 3.

The training and testing process is carried out uniformly for
all classifiers, enabling a thorough evaluation and comparison
of their performance in PQD classification and identification
tasks.

IV. RESULTS AND DISCUSSION
The performance of the proposed technique is evaluated
with noiseless and noisy synthetic signals, hardware signals
obtained from experimental setup, and real PQD events.
The performance analysis is presented in the following
subsections.

A. PERFORMANCE WITH NOISELESS SIGNALS
In this section, the performance of the classifiers with the
noiseless (NL) signal is presented. As described in the
previous section, the statistical features extracted from coef-
ficients of MRA of PQD signals considering mother wavelets
‘db4’, ‘haar’, ‘dmey’, and ‘coif4’ have been used for the
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FIGURE 5. t-SNE visualizations of statistical features extracted using (a)db4, (b)haar, (c)dmey, and
(d) coif4 mother wavelet for various PQDs.

TABLE 3. Hyper-parameters of the classifiers.

performance assessment of the classifiers. Six different clas-
sifiers have been trained using the extracted features with
80% of the total PQD cases, and the remaining 20% cases
have been used for performance evaluation of the trained
classifiers.

The performance of classifiers in terms of cross validation
(CV) mean score, training and testing accuracy is mentioned
in Table 4 for different mother wavelets. From Table 4, it is
evident that the kNN performs consistently across all mother
wavelets in terms of CV mean scores and testing accuracies,

demonstrating robustness to the choice of wavelet transform.
Nevertheless, when compared to other classifiers, the perfor-
mance is poor. The LRM classifier demonstrates excellent
generalization by performing consistently and reliably across
all mother wavelets with high CV scores. The performance
of DT is at par with the kNN, but the testing accuracy varies
between wavelet transforms, suggesting its sensitivity to the
choice of mother wavelets.

The performance of RF and ET classifiers is consistent
and identical for different choices of wavelet. Out of all
the classifiers, the performance of GNB is inferior in the
PQD classification context, and its CV mean scores and test
accuracies are lower than those of other classifiers with the
proposed features.

Further, Fig. 6 illustrates the class-wise performance of the
classifiers with differentmother wavelets. In particular, all the
classifiers demonstrate remarkable 100% accuracy for CL1:
normal, CL7: harmonics, and CL11: harmonics with swell.
Whereas, in classifying CL2: sag and CL4: interruption, the
performance of all the classifiers has been sensitive to the
choice of mother wavelet except for LRM. The difficulty in
discrimination between CL2: sag and CL4: interruption is
also evident from the t-SNE plot represented in Fig. 5.
Fig. 7 summarizes the test performance of classifiers with

different mother wavelets. It is notable from Table 4 and
Fig. 7 that the LRM classifier has identical performance with
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TABLE 4. Performance of the classifiers with different mother wavelets with noiseless data.

FIGURE 6. Class wise accuracy of the classifiers with feature sets of (a)‘db4’, (b)‘haar, (c)‘dmey’, and (d)’coif4’.

the features extracted using ‘db4’, ‘dmey’, and ‘coif4’ as the
mother wavelet. However, the performance of LRM has been

lower in comparison to RF and ET classifiers with the ‘haar’
mother wavelet.
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FIGURE 7. Performance of the classifiers with different mother wavelets.

The overall performance of RF and ET classifiers has
been consistent in classifying different PQDs with features
extracted using ‘haar’ as the mother wavelet with an overall
accuracy of 99.81%.

B. PERFORMANCE WITH NOISY SIGNALS
The robustness of the presented method in the presence of
noise has been evaluated by introducing noise to the sepa-
rately generated PQDs. To carry out a thorough evaluation,
a set of 1,100 new PQD signals corresponding to eleven
classes (100 signals for each class) has been generated.
Various levels of white Gaussian noise with signal-to-noise
ratio (SNR) of 50 dB, 40 dB, 30 dB, and 20 dB have been
deliberately introduced to 10% of the signals in each class
randomly. This experimental design provides an essential val-
idation of the classifier’s performance under the uncertainty
of noise-induced signals in real-world applications. The
statistical features were extracted in a similar manner as dis-
cussed previously using four different mother wavelets. The
classifier models trained with noise-less signals (described in
the previous sub-section) have been tested with newly gener-
ated PQDs consisting of random noise signals in each class.
Hence, the performance of the classifiers in the presence of
random noise signals has been evaluated with a totally unseen
dataset. The results of this thorough evaluation have been
presented below.

The performance in terms of classification accuracy of
the classifiers for classifying PQDs with noise is shown in
Fig. 8. It is evident from Fig. 8 that the performance of all
the classifiers has significantly declined with an increase in
noise level for the features extracted using ‘db4’ and ‘dmey’
mother wavelets. The LRM classifier has shown consistent
performance with the ‘coif4’ mother wavelet up to 30 dB
SNR; however, at lower SNR (20 dB), the performance has
significantly declined.

The performance of the classifiers is less susceptible to
noise when features are extracted using the ‘haar’ mother
wavelet. Overall, ET and RF outperformed other classifiers
with features extracted using the ‘haar’ mother wavelet for
different noise levels in the signals. The classifier’s perfor-
mance in the presence of noise signals is in concurrence with
the performance under noise-less signals.

FIGURE 8. Performance of classifiers with feature extracted using
(a) ‘db4’, (b) ‘haar’, (c) ‘dmey’, and (d)’coif4’ mother wavelet under noisy
condition.

FIGURE 9. Experimental setup to generate PQDs.

The above discussion demonstrates that selecting the
mother wavelet is crucial in PQD classification. The perfor-
mance of the classifiers is highly sensitive to the choice of
mother wavelet while classifying PQDs in the presence of
noise.

C. PERFORMANCE WITH HARDWARE SIGNALS
The efficacy of the proposed method has been tested for PQD
signals obtained from hardware set up in the laboratory. Fig. 9
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FIGURE 10. The signal generated using experimental setup (a)interruption, (b)swell, (c)oscillatory transient,
(d)harmonics, (e)harmonics+sag, and (f)harmonics+swell.

depicts the laboratory hardware set up utilized to generate
various PQDs. In order to accurately represent the dynamics
of real-world PQDs, numerical models for PQDs have been
deployed using MATLAB.

A dataset of 330 signals comprising of 11 different classes
with 30 signals of each class was subsequently generated
using dSPACEDS1104RDControl-Desk. These signals were
generated using the DAC output of the DS1104RD board, and
recorded with YOKOGAWA DLM2024 Mixed Signal Oscil-
loscope (MSO). Notably, each signal is recorded for 10 cycles
with 125 samples per cycle sampling rate. Fig. 10 represents
various PQD waveforms of hardware signals captured using
the MSO.

The statistical features have been extracted in a similar
way as described in section III. Considering the performance
analysis presented in previous sub-sections, it is clear that

the performance of LRM, RF, and ET classifiers is better in
comparison to the other classifiers with the proposed features.
As a result, an evaluation with hardware signals is carried
out with LRM, RF, and ET classifiers only. It is noteworthy
that all classifiers have been trained on only simulated data
and tested with unseen hardware signals. The purpose of this
thorough assessment is to confirm the generalized capabili-
ties and robustness of the suggested classification framework.
This methodology serves as a strong demonstration of the
practical applicability of the proposed approach. Table 5
represents the performance in terms of class-wise accuracy
for the classifiers with different mother wavelets.

Compared to the LRM and RF classifiers, the ET classi-
fier performed better with all mother wavelets in classifying
hardware PQD signals, as depicted in Table 5. Overall, the
ET classifier with the ‘haar’ mother wavelet demonstrated
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TABLE 5. Performance of classifiers with hardware signals.

FIGURE 11. Confusion matrix for ET classifier with ‘haar’ wavelet for
hardware signals.

remarkable performance, achieving 98.79% classification
accuracy. The confusion matrix for the ET classifier with the
‘haar’ mother wavelet is shown in Fig. 11. The ET classifier
has correctly classified 326 out of total 330 hardware PQD
signals which validates the superiority of proposed classifi-
cation approach.

Furthermore, the performance of the classifiers in terms of
precision, recall, and F1 score of testing is tabulated in Table 6
for the ‘haar’ mother wavelet. The precision, recall, and F1

TABLE 6. Performance parameters of the ET classifiers with ‘haar’ mother
wavelet.

values are calculated as per the equations presented in [47].
Higher precision signifies fewer false positives while higher
recall indicates fewer false negatives. Moreover, a higher F1
score signifies the ability of classifier to achieve both high
precision and high recall.

From Table 6, it is evident that ET classifier has achieved
highest precision (98.84%), recall (98.79%) and F1 (98.79%)
scores while classifying unseen hardware PQD signals,
demonstrating its superior and optimized performance among
all the classifiers considered in the present work.

D. PERFORMANCE WITH REAL PQD EVENT SIGNALS
To further assess the effectiveness of the proposed approach,
real PQD event signals collected from the electrical grid are
used for testing. This dataset comprises real-life PQD events
of 26 sag signals and 42 impulsive transient signals available
at [43], [44]. In this dataset, the signals having a fundamental
frequency of 50 Hz were captured at a sampling frequency
of 20 kHz. Prior to the feature extraction using DWT, the
real signals are normalized. The extracted features are used to
evaluate the performance of the LRM, RF, and ET classifiers
trained on synthetic PQD signals. The subsequent results
provide a detailed performance comparison. The results
obtained are presented in Table 7 in terms of the number of
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TABLE 7. Performance of classifiers with real PQD signals.

TABLE 8. Performance comparison with the existing techniques.

misclassification events. The performance of the ‘haar-RF’
and ‘coif4-ET’ approaches is identical. Whereas, the ‘haar-
ET’ approach has superior performance in classifying real
PQD events.

E. PERFORMANCE COMPARISON WITH EXISTING
TECHNIQUES
In this section, the performance of ‘haar-ET’ based scheme
is compared with other existing methods. Table 8 provides
a detailed summary of the comparison with other existing
methods. The existing techniques have utilized various fea-
tures and ML algorithms for classifying PQDs as mentioned
in Table 8.
The proposed method, which combines the features

extracted using DWT with the ‘haar’ mother wavelet and ET
classifier, exhibits superior performance in classifying PQDs
with a remarkable 99.81% accuracy for noiseless signals.
Moreover, it maintains a high accuracy of 96.18% even in
the presence of 20 dB of SNR. Notably, unlike other men-
tioned methods, noise signals were not part of the training

dataset in the proposed work. Furthermore, the performance
ofmany existing techniques has not been evaluatedwith hard-
ware signals. When tested with 330 unseen hardware PQDs
signals, the proposed technique demonstrated reliable perfor-
mance by accurately classifying 326 signals. Furthermore,
the promising performance with real PQD events highlights
the applicability of the proposed approach in real-world sce-
narios. Overall, the performance of the proposed ‘haar-ET’
based technique is superior to other mentioned existing tech-
niques for classifying PQDs.

V. CONCLUSION
This study conducts feature extraction and classification of
PQDs employing six distinct ML algorithms with DWT. The
proposed methodology entails the extraction of mixed-order
statistical features from PQDs signals utilizing four mother
wavelets, namely ‘db4’, ‘haar’, ‘dmey’, and ‘coif4’. Eval-
uation of algorithmic accuracy is performed on synthetic
datasets encompassing both noise-free and noisy signals.
Additionally, validation of the proposed algorithms is carried
out using signals obtained from the experimental setup aswell
as real PQD signals. The results indicate that the ‘haar-ET’
based approach consistently outperforms other considered
methods, achieving an accuracy of 99.81% on noise-free
signals. Furthermore, the adaptability and robustness of the
‘haar-ET’ method are evidenced by its accuracy of 96.18%
on unseen noisy signals with an SNR of 20 dB and 98.78% on
hardware signals. Also, the ‘haar-ET’ based scheme demon-
strated accuracy of 88.46% in the classification of real-world
sag and impulsive transient signals.

Although the ‘haar-ET’ methodology has demonstrated
superior performance with features considered in this study,
it is still important to explore future research directions.
Subsequent research endeavors may explore the applica-
tion of alternative mother wavelets, different feature sets,
and emerging ML classifiers to enhance the accuracy of
PQD classification. Expanding the dataset to include diverse
real-world PQD event scenarios will also help to generalize
the findings and improve the robustness of the PQD classifi-
cation algorithms.
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