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ABSTRACT Soil erosion poses significant ecological and economic challenges, necessitating precise and
effective identification methods. Traditional models frequently overlook the intricate relationships between
erosion factors and multispectral remote sensing data. To enhance these traditional methods, a novel dual-
input gated fusion Convolutional Neural Network (CNN) has been developed, integrating channel and
spatial attention mechanisms. This innovative model strengthens the connection between multispectral
images and erosion factors, improving the accuracy and generalizability of erosion predictions. The model
utilizes data collected from unmanned aerial vehicles (UAVs) equipped with high-precision multispectral
sensors. By processing both spectral images and erosion factor data, the model effectively captures complex
soil spatial distributions. The dual-input gated fusion mechanism allows the network to extract high-level
semantics while suppressing redundant information, ensuring robust performance even in heterogeneous
terrains. Experimental results indicate that this framework significantly enhances the performance of
traditional models, providing superior predictions for small and medium-sized areas. Experimental results
indicate that the presented framework can achieve better accuracy (96.92%) compared with other machine
learning approaches, such as Random Forest (89.64%), VGGNET (91.52%), and RESNET (90.18%).
Moreover, the proposed method can improve accuracy by 26.59% compared to the traditional RUSLE
model. This improvement is critical for applications in ecological restoration and sustainable development.
The integration of deep learning techniques with UAV-based data collection offers a powerful tool for
environmental monitoring and management.

INDEX TERMS Convolutional neural network, gated fully fusion, convolutional block attention module,
soil erosion, unmanned aerial vehicle.

I. INTRODUCTION
Soil erosion encompasses the deterioration, erosion, move-
ment and deposition of the surface layer of the land due to
natural elements such as water intrusion, wind intrusion and
frost. Soil erosion poses a threat not only to soils, freshwater,
oceans but also to food production and ecosystems [1]. Soils
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are intricately tied to human health and urban development
[2]. Severe soil erosion can lead to direct damage on urban
economies [3]. Studies have shown that the pace of soil
erosion far surpasses the pace of natural soil formation [4].
Therefore, reducing the speed of soil erosion and improving
the restoration and reconstruction of soil erosion hold
great significance to ecological restoration and sustainable
development [5]. The key step of solving soil erosion hazards
is to learn the law of spatial differentiation of soil erosion
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characteristics in the study area, accurately classify the
erosion type of the erosion area, and promptly implement
preventive measures to mitigate the erosion hazard.

Current research shows that remote sensing technology
has made significant progress in the field of soil detection
and research. Soil spectral images acquired by sensors
contain important insights into the soil environment, the
actual spatial distribution of the regional surface, etc., and
are an important source of data for soil erosion research.
The current mainstream erosion type classification schemes
are mainly linear classification models based on erosion
factors and image-based deep learning models. In complex
soil environments, universal linear classification models
usually need to be adapted to the local environmental
equations in the study area [6]. For example, Di Stefano [7],
Schurz [8], Gwapedza [9] and other scholars have adopted
correction, improvement, calibration and other schemes to
improve the applicability of soil erosion equations. In recent
years, with the continuous development of deep learning,
its special arithmetic characteristics make the model show
obvious performance advantages in processing complex
image semantic research. The deep learning model relies on
the input data for adaptive parameterization, is insensitive
to redundant data, and is able to receive more dimensional
data for operation. Considering that this study area is a
national coastal scenic area, its internal soil environment
is complex and the remote sensing data contains more
redundant information. Therefore, this study improved the
data processingmethod by applying a deep learningmodel on
the basis of a universal linear classificationmodel to complete
the classification of soil erosion degree.

The technical roadmap outlined in this paper, depicted in
Fig. 1, the methodologies takes into account data relation-
ships, enhances fitting capabilities, models more data using
deep learning networks, employs algorithmic adjustments
to boost the model’s classification performance in intricate
terrains, and establishes a more pragmatic soil erosion
classification model. This paper introduces an improved
convolutional neural network framework–a dual-input gated
fusion convolutional neural network based on Convolutional
Block Attention Module (CBAM) to jointly model erosion
factors and multi-spectral images. Specifically, important
features hidden in the two parts of the data are found in
both dimensions, spatial and channel, and the dual-input
gating mechanism is applied to simulate the interactions
between the two sets of features to simulate a more realistic
soil erosion scenario and improve the accuracy of the
model. The contributions of this work can be summarized as
follows:

1) An improved data processing method based on deep
learning approach for soil erosion factors and multi-
spectral remote sensing data.

2) Utilizing the Convolutional Block Attention Module
(CBAM) mechanism enhances hidden features in soil
erosion data at spatial and channel scales, while intro-
ducing an improved Dual Input Gate-controlled Full

Fusion (GFF) module to simulate complex interactions
between erosion factors and multispectral images.

3) In a specific case study, modeling was conducted on
2.9% of sample data within the study area, resulting in
the overall identification of soil erosion levels in the
research area.

The rest of the paper is organized as follows. Section II
describes the related work. Section III presents the model
applied in this research, including the attention mechanism
and the gated fusion mechanism. Section IV evaluates the
performance and efficiency of the model, and Section V
summarizes the findings of this paper.

II. RELATED WORKS
In the initial stage of soil erosion research, soil researcher
Wischmeier and Smith proposed an integrated approach to
combine multiple erosion factor variable prediction models,
establish the classical universal Soil Loss Equation (USLE)
[10]. Renard developed the revised universal soil loss
equation (RUSLE) [11], [12]. In addition, there is the Revised
Wind Erosion Equation (RWEQ) [13].The equation took
into account the relationship between the five major erosion
factors, include rainfall erosivity [14], soil erodibility [15],
sloped terrain [16], fractional vegetation cover [17] and
soil and water conservation measures [18], which has been
successfully applied to soil erosion studies in the eastern
United State. Subsequently, the United States Department
of Agriculture (USDA) introduced the official computational
model known as Water Erosion Prediction Project (WEPP)
[19], which incorporates more soil factors, further improving
the accuracy of predictions. In subsequent studies, it was
found that the resolution of remote sensing images directly
affects the calculation accuracy of erosion factors, that is,
on the spatial scale, the higher the resolution, the more soil
details are included [20], and the corresponding accuracy and
credibility of soil erosion prediction will be improved [21],
[22], therefore, remote sensing technology has been widely
used in soil research by many scholars. For example,
M. Duan et al. combined remote sensing images and soil
texture characteristics to produce a high-precision soil type
map in the study area [23], and Zhang JR et al. calculated
soil salinity content under different vegetation covers based
on remote sensing image data [24]. Furthermore, Kurihara,
Junichi et al. improved the accuracy of rice yield prediction
in different environments based on remote sensing [25].
As machine learning continues to evolve, it is playing an

extremely important role in many research directions in the
field of soil science [26]. For example, Fang et al. used the
Long Short-TermMemory (LSTM) network in deep learning
to estimate the value of the Soil Moisture Active Passive
(SMAP) [27]. Yamaguchi et al. built a rice leaf area index
(LAI) prediction model based on deep learning [28]. Odebiri
et al. applied deep learning frameworks to study remotely
sensed Soil Organic Carbon (SOC) data [29]. Ren et al.
apply deep learning models in the research on daily sea ice
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FIGURE 1. Technical roadmap.

concentration prediction in the Arctic region [30]. In recent
years, Convolutional Neural Networks (CNN) have also
made significant progress in the research of hyperspectral
image classification [31]. The combination of CNNs and
UAV remote sensing is often used to build high-precision
models. Pottker et al. used CNN for classification to achieve
plant community mapping [32]. Lanjewar et al. used deep
learning CNN to classify soil types [33]. Zhao et al. com-
pleted high-precision vegetation type classification through a
CNN model [34]. Whitehurst et al. employed CNN model to
find traces of flood-induced erosion of the foundation from
high-resolution drone images [35]. In practical applications,
hyperspectral remote sensing data in space and channel,
there are deeper features. Therefore, more and more scholars
considered applying more complex convolutional neural
networks. For example, Garajeh et al. proposed a new Deep
Learning Convolutional Neural Network (DL-CNN) model
to implement Soil Salinity (SSD) evaluation [36]. Xingmei
et al. detected and counted of maize leaves using a two-stage
deep learning model [37]. Han et al. proposed an Adaptive
Multi-Source Data Fusion Network (AMSDFNet) based on
deep learning to reduce labor costs in geological surveys and
mapping [38]. In addition, Lee et al. proposed to a Contextual
Deep CNN model to enhanced classification performance
by extracting the Spatial-spectral feature of hyperspectral
images [39]. Wang et al. Classification of individual cattle
based on open pose mask R-CNN (OP-Mask R-CNN) [40].
Daanouni et al. Neural Structure Learning and a Multi-Head
Attention (MHA) based cnn structure (NSL-MHA-CNN) for
robust diabetic retinopathy prediction [41]. And Daoquan
et al. traffic image classification using an Attention and
Big-Step Convolutional Neural Networks (ABS-CNN) [42].
As shown in Table 1, the applicability of deep learning

methods is broader, and the application scenarios are
more diverse. Studies have shown that in universal linear
classification models, not all spectral data have been fully

utilized, and multiplication operations ignore the interrela-
tionships between data dimensions. Additionally, the fixed
parameters in the calculation formula need to be adjusted
based on human knowledge, limiting the progress of actual
research. To overcome the limitations in data calculation,
this paper constructs a multimodal joint deep learning model.
Building on the universal linear classification model data,
it comprehensively demonstrates the impact of multi-spectral
remote sensing data on soil erosion research, models the
interrelationships between data, and adaptively improves
parameters.

III. METHODOLOGY
In order to comprehensively demonstrate the impact of
multi-spectral remote sensing data on soil erosion research,
and to efficiently and dynamically allocate weight parameters
to each spectral channel, as well as to investigate the
interaction among different channels on the classification
results, this paper proposes a DGCS-CNN model based
on a dual-input convolutional neural network for jointly
modeling multi-spectral images and soil erosion factors.
In this model, the dual-input convolutional network receives
the multi-spectral images and soil erosion factors, the gating
fusion module is used to extract high-level semantics and
suppress redundant information in the network, while the
attention module is employed to compute the interaction
between data, further enhancing the representation of feature
information. To explore the value of the model in real-
world applications, this paper applies the DGCS-CNNmodel
in a coastal soil erosion prevention area. The scenic area
contains an ecological protective wetland, several national
marine parks and few many construction sites under planning
and is connected to the main urban area. As the regional
urbanization has been on the rise in recent years construction
land has gradually expanded, and land use has tended to be
intensive, which has changed the original soil environment,
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TABLE 1. References collation.

FIGURE 2. Research flowchart.

resulting in ecological risks such as soil pollution and soil
erosion. Therefore, the study of soil erosion in the region
holds exceptional importance.

The research process in this article is shown in Figure 2.
First, the specific operation process of P4M UAV data
collection in the research area, as well as the processing
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process of multispectral data and erosion factor data, are
described. According to the survey results of the field survey,
the data were divided and marked, and then the processed
two sets of data were input into the DGCS-CNN model.
The parameter settings of each architecture of the model,
as well as the attention mechanism and the gating full fusion
mechanism, were introduced, and the applicability analysis
of the soil erosion prediction model was introduced. Finally,
the model is tested, the model with the best performance
is selected, and the model is applied to complete the soil
erosion inversion of the whole study area to obtain the erosion
distribution map.

A. DATA COLLECTION
The collection of data in this study comes from UAV remote
sensing. The drone selected for the flight test mission is a
Phantom 4 Multi-spectral (P4M) UAV, which is equipped
with a high-precision digital remote sensing sensor and a
Real-Time Kinematics (RTK) module. The sensor boasts a
visible lens and five narrowband spectral lenses, as outlined
in the specification data displayed in Figure 3. In the
experiment, the relative flight altitude of P4M was set to
100 meters to ensure the accuracy of the data. To ensure
the integrity of the stitched images and the reliability of
interpretation, the heading overlap rate is set to 80%, and
the side overlap rate is set to 70%. In the actual mission, the
total flight time was 20 hours, the cumulative flight distance
was 286 miles, and 148,680 images were taken. In addition,
to provide sample data for the identification model, after
completing the UAV flight mission, field research work is
carried out synchronously, sampling points are randomly
arranged, and the actual soil erosion of sampling points and
accurate latitude and longitude coordinates are recorded.

FIGURE 3. Sensor information for a P4M multispectral camera.

Based on the DEM data collected by P4M and the soil
information data in the study area, five soil erosion factor
data points of R, K, LS, C, and P were calculated in turn, the
equations are shown in table 2. As shown in Equation (1),
the R factor refers to the rainfall erosion coefficient, the
parameter a in the equation is adaptively selected according
to the latitude and longitude position of the region, Pn.
represents the Nth month of rainfall in the study area.
In Equation (2), the K factor refers to the erosion of the
soil, where SAN is the sand content, SIL is the soil content,
CLA is the clay content and C is the soil organic nitrogen
content. In Equation (3), the LS factor is a composite factor

of slope and slope length at the soil location. In the formula,
L represents the slope length, and θ represents the slope.
There are various ways to calculate L, and the reflux area
method is used in this experiment. In Equation (4), the C
factor was called sensitive factor in the prediction of soil
erosion, where FCV represents the percentage of vegetation
cover. In Equation (5), Soil and water conservation measures
factor P, the value of P of each point in the area corresponds
to the land use type of the point. The value range of the P
value was between 0 and 1, where 0 means that there was no
erosion at the location, and 1 means that no soil and water
conservation measures have been taken at the location.

Considering the actual situation of the study area, this
study determines the parameters of each factor calculation
formula. In addition, according to the location and label of
the sampling point recorded during the field survey, all the
sample data are annotated, as shown in Figure 4, where the
location of the sampling point is the latitude and longitude
location information of the surveyed area, and the label is
the true soil erosion degree of the sampling point which is
used as classification model output. The classification and
classification criteria of soil erosion in the study area were
served as a reference, and multidimensional factors such as
remote sensing data, DEM, and soil utilization type were
extensively studied and analyzed. Finally, the soil erosion
intensity in the study area was categorized into three levels;
slight erosion, light erosion, and moderate erosion. In this
paper, 432,063 photos were extracted and cut into 20 ×

20 pixels images in the study area, of which 12000 photos
were labeled as the dataset of the. The area of the dataset
was approximately 2.77% of the total study area, with the
proportions of the three erosion levels in the dataset being
28.9%, 39.6%, and 31.5%. In addition, to evaluate the
performance of the model, the dataset is split into training
dataset, validation dataset, and test dataset with a ratio of
7:1:2, where the test dataset does not participate in training
and is only used to evaluate performance.

FIGURE 4. Sample data notes, (a) slight erosion, (b) light erosion and
(c) moderate erosion.

B. MODELING
The CNN model is one of the most widely used algorithms
of deep learning, and it is designed for efficiently processing
grid-like data such as images with inductive bias. In this
experiment, the spectral information and erosion factor of
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TABLE 2. Soil erosion factor and equations [43].

soil erosion are multi-channel image data, and CNN models
can consumes the data as the input of the model and extract
the characteristics of soil erosion through a convolution
operation, while retaining the spatial invariance of erosion
area. In addition, the CNN model employs the parameter
sharing operation mechanism to reduce the number of param-
eters compared with fully connected neural network and
reduce the complexity of feature extraction and classification.
Additionally, there are rich resources of pretrained CNN
backbones on large amount of images and the model can
easily adapt to the new domain with limited labeled samples.
In summary, the CNN model is selected to build the erosion
classificationmodel throughout the experiment. The structure
of the proposed new architecture DGCS-CNN model is
shown in Figure 5. First, the dual-input convolutional neural
network was set up to receive multi-spectral data and erosion
factors, the input embedding layer size of multi-spectral
images was set to 20 × 20×8, and the size of the erosion
factors was 20× 20 × 5. Three convolutional layers and
three pooling layers were configured in the convolution
module, two subsequent fully connected layers were designed
to improve the classification accuracy, and the last fully
connected layer was designed to output the prediction results
of the DGCS-CNN model. Compared with conventional
design of CNN models, we also added two modules: CBAM
and GFF to improve the model performance for this specific
task.

1) CONVOLUTIONAL BLOCK ATTENTION MODULE
The Convolutional Block Attention Module (CBAM) is
an improved attention-based module on CNN architecture.
Previous work only focuses on the channel attention while
CBAM introduced a combination of channel attention
module and spatial attention module and achieved impressive
performance on computer vision tasks. CBAM leverages a
calculation process involving the feature attention matrix
and the input feature map. These are sequentially multiplied
along two independent dimensions: the channel level and

FIGURE 5. Model structure diagram.

the spatial level, thereby facilitating comprehensive feature
optimization.

The architecture of CBAM is shown in Figure 6, which
integrates the channel attention module and the spatial atten-
tion module.Specifically, in the channel attention module,
as shown in Equation (6), the input multi-dimensional remote
sensing images F, after passing through two parallel max
pooling layers and average pooling layers, and twomultilayer
perceptron (MLP) layers with activation functions, and then
the output feature Outc(F) and input F are summed by
elementwise weighting, as shown in Equation (7), to obtain
the output of the channel attention module F ′.

FIGURE 6. CBAM module.
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In the spatial attention module, as shown in Equation (8),
F ′ is taken as input, and then after the max pooling layers, the
average pooling layers and convolution operations in turn, the
spatial attention matrix Outs(F ′) is obtained, and the output
F ′′ of CBAM is obtained by multiplying the input data again,
as shown in Equation (9).

Outc(F) = Sigmoid(MLP(AvgPooling(F)

+MLP(MaxPooling(F)))) (6)

F ′
= Outc(F)

⊗
F (7)

Outs(F) = Sigmoid(Conv2d([AvgPooling(F);

MLP(MaxPooling(F))])) (8)

F ′′
= Outc(F′ )

⊗
F (9)

The data used in this experiment are multi-channel spectral
data. At the channel level, for any location point in the study
area, the weight distribution of the point in each spectrum
should not be averaged and should be weighted based on the
impact of each channel on the feature. In practical applica-
tions, it is desired that the network would pay more attention
to the essential channels to improve the expression ability,
and the CBAM module starts from the relationship between
each channel, comprehensively considers the characteristics
of each channel, finds the channel that is more meaningful for
classification, and focuses its attention on the channel. At the
spatial level, the spatial scale of UAV remote sensing images
is at the centimeter-level, and the orthophoto of the study area
contains all the detailed information of the area, such as a tree,
and a very small amount of vegetation. Therefore, the CBAM
module is used to extract important features from the spatial
scale of the image, and further highlight the important In this
study, the input data channel has high dimensions and rich
information contained in the image, so the CBAM module
is introduced to strengthen the channel with high weight
allocation, weaken the channel with low weight allocation,
and strengthen important features and interference features
in complex remote sensing images, to assist the model to pay
attention to key information.

2) GATED FULLY FUSION
In the DGCS-CNN model, the GFF module is employed
to fuse spectral images and erosion factors on soil ero-
sion prediction at early stages. CBAM focuses more on
extracting high-level features in the data without considering
the interactions between spectral and factors. In fact, the
multi-spectral imaages reflect objective information at the
spatial scale of the study area, while erosion factors focus
more on actual soil erosion sensitivity, and all factors are
closely related to soil characteristic information. Therefore,
it is necessary to explicitly consider the influence of erosion
factors on the prediction results during parameter transfer.
The GFF module applies the feature fusion mechanism based
on additive operation and two gates to filter the information
before fusion The module efficiently aggregates the features
and its architecture is shown in Figure 7.

FIGURE 7. GFF module structure diagram.

Specifically, the input data of GFF xS ,xI , come from the
output of the upper layer of CNN, xS the extracted features of
the spectral data, and xI the features extracted from the factor
data. The inputs xS and xI were successively operated byGi =

sigmoid(wi × xi) to obtain Gs, Gi, where ωi ⊂ (0, 1)(1×R)

is the weight parameter, which is the same dimension as the
input feature of the upper network, and the sigmoid function
was designed for parameterizing the input data. The spectral
gate GS and factor gate GI were set in the GFF to filter
the information from both side before fusion. As shown in
Equations (10) and (11),GS passes both spectral and factor
gates, while Gi only communicates with factor gates. a large
value of the elements of GI referes to higher weights of
elements in xI in the fusion.

Gs = (1 + Gs) (10)

GI = (1 − Gs)Gi (11)

xS and xI were multiplied by the corresponding gate
structure in turn to complete the feature fusion process, and
the fusion calculation is shown in Equation (12):

xout = f (GSxS + GI xI ) (12)

GFF inhibits the integration of invalid spectral information
into the output, by measuring the importance of the informa-
tion in the output, judging the impact of xI on the output,
in the fusion, reasonable control of the xS and xI ingress.
In summary, GFF uses two gates to model the complex
interactions of spectral images and factors on prediction,
and further improves the performance of the model by
measuring the complexity of the information and controlling
the extraction of information, and effectively alleviates the
data redundancy and noise information.
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IV. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of the DGCS-CNN model
proposed in this paper, experiments were conducted in
real-world data collected from soil erosion risk areas.
In this section, first describe the configuration of the
experiment and compare the common machine learning
models with deep learning models. In addition, to further
verify the performance of each module and the improvement
effect of prediction accuracy, this paper conduct ablation
experiments on CBAM and GFF modules. Throughout
the study, implement the experiment under an computa-
tion environment with Python3.8 and TensorFlow2.6. All
the models were trained on the server with two core
CPUs(Intel(R) Xeon(R) Silver 4210R), one GPU(NVIDA
GeForce RTX3090) and 256 RAM.

A. TRAINING AND VALIDATION
The experiment includes training dataset and validation
dataset with 8400 and 1200 sampling respectively. The
cross entropy loss function was selected during training.
The essence of the cross function is to measure the
distance of the probability distribution of ground truth
and predicted values, and the goal of minimizing the
cross-entropy loss provides reliable metrics for the update
parameters of thewhole network. Themodel achieves the best
parameters of the whole network gradually during training
process.

In the training process, this study employs the Adam
optimizer, which offers a comprehensively approach by con-
sidering the first-order moment estimation and second-order
moment estimation of the gradient. This enables each layer
to independently adjust the learning rates from the two
aspects of the mean and square of the gradient and improve
the convergence speed of the model. In addition, the grid
search method is applied to search the best combination of
hyper-parameters including the number, size and step size
of convolution kernels. The best configuration is determined
according to the convergence degree and evaluation on
validation dataset. Finally, the number of convolution kernels
in each layer of the network are set to 64, 128, and 256,
the sizes are 7, 5, and 3 respectively, and the step size is 1.
Two fully connected layers for receiving the GFF module
embedded in the size set to 800 and 3. The last fully connected
layer outputs three erosion classification levels.

To monitor the evaluation of model training, 50 epochs
of iterative training with 300 batches are employed. The
accuracy and loss during training are shown in Figures 8a
and 8b. During the training period, the loss of the validation
set decreases rapidly and reaches a plateau state, and the
accuracy gradually increases and tends to converge to a
plateau state. In the last 10 epochs of training, the accuracy
and loss value of the validation set remain stable, which
indicates that themodel converges and has good performance.
Therefore, the model trained after 50 epochs was selected as
the final model.

To further evaluate the performance of the model, a test
dataset with 2400 samples are fed into the model in
the experiment to evaluate the performance of the model.
Because the samples in the test dataset do not participate
in training, they can reflect the performance of model
recognition. Finally, the accuracy of the model in the test set
reached 96.9%. In addition, considering that the test dataset
is composed of a random sample of the dataset, the sample
size is usually unevenly distributed The confusion matrix of
the model is calculated and visually analyzed in the form of a
thermal map. As shown in Figure 9, it can be observed that the
highlighted parts of each classification in the thermal map are
distributed in the diagonal, so it can be judged that the model
has a good classification ability at this time for each category.

B. OVERALL PERFORMANCE
In this experiment, Random Forest (RF) classification model
is included as the baseline method. In the comparison
experiment VGGNET, RESNET, CBAM-CNN, and the
current mainstream method an Attention and Big Step
Convolutional Neural Network (ABS-CNN) are set up.
To ensure the fairness of the comparison, the training dataset
and test dataset of all models are the same.

It is worth noting that, compared to the baseline method set
in this paper, the accuracy of deep learning methods has sig-
nificantly improved. This is attributed to the complexity of the
study area’s environment, the presence of considerable noise
in the spectral data, and the erosion factors such as rainfall
erosivity and vegetation coverage factors, which vary with
climate change [44], climate change does not have a uniform
dimension and is almost unpredictable, which renders the
random forest algorithm unable to identify accurate feature
relationships for soil erosion classification, thus affecting
the classification accuracy. Therefore, the application of
deep learning algorithms with stronger fitting ability and
the capacity to suppress noise and redundant information
leads to a more noticeable performance enhancement in soil
erosion classification. In addition, the results of CBAM-CNN
and DGCS-CNN show that the two key components of
CBAM and GFF both improve the accuracy of the model to
varying degrees. This paper proposedmethod, compared with
the mainstream deep learning model ABS-CNN, has large
performance improvement. To explore the comprehensive
performance of each model, the accuracy, precision, recall,
and F1-Score of the machine learning model are calculated in
the test dataset, and the results are shown in Table 3. Precision
and recall are used as evaluation indicators of the actual
prediction ability of the model to measure the real prediction
ability of each category. When the precision and recall of the
model are high, it indicates that the real prediction ability of
the model for each category and the retrieval ability for the
real label are strong. In addition, this paper uses the F1-Score
to represent the balance point between precision and recall;
when the F1-Score is higher, the performance of the model is
better.
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FIGURE 8. Training history of the accuracy and loss.

FIGURE 9. Confusion matrix of prediction model with GFF module.

To visualize the performance comparison results of the
deep learning models, this study selected three representative
deep learning models, and draw the ROC curves of these
three deep learning models based on the test set, and
calculate the area under curve (AUC) of slight, light, and
moderate erosion in turn. As shown in Figure 10, the AUC
of slight, light and moderate erosion in the DGCS-CNN
model is significantly better the other models. This shows that
DGCS-CNN achieved a better performance in this task.

The above results show that the DGCS-CNN model
has higher accuracy and good classification performance.
However, compared with other models, the DGCS-CNN
model has the most complex network structure and requires
more computational resources. To explore the computational
feasibility of the model, this experiment calculates the time
required for the three models to complete the training task
and the inference task. As shown in Table 4, DGCS-CNN
takes the longest time for training, and the training time is
four times that of the vanilla CNN. However, in the area
of soil erosion research, the most time consuming part is

TABLE 3. Precision, recall, and F1-Score results.

postprocessing the data so that the training time may not
block the study in general and the training time is acceptable.
Meanwhile, the inference time of the three models is almost
the same, which indicates that the DGCS-CNN model has
huge value in real-world application.

TABLE 4. Training and inference time comparison.
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FIGURE 10. ROC curve and AUC of the model.

C. ABLATION STUDY
To further explore the performance of CBAM in capturing
high-order feature information, this study randomly selects
a subgraph in the training set and observes the changes in
the feature map before and after CBAM application. The
selected submap is labeled as Slight, which shows that there
are many tall trees on the surface of the soil covered, although
the soil consolidation effect of a single tree is limited, while
multiple trees planted together can effectively protect the
soil by preventing wind erosion, rain erosion, etc., so that
the degree of erosion is low. In addition, we expect the
model to pay attention to the characteristics of vegetation
in this subplot and the information contained in the soil
under the trees. As shown in Figure 11, by visualizing the
input and output images of CBAM, it can be observed that
CBAM captures the outline of the tree and the soil under
the tree, successfully finds the area of interest and enhances
the feature. The histogram in Figure 11 shows the sum of
the weight parameters of the corresponding network of each
channel of the spectral data calculated in the experiment,
in which the two channels with the highest weight distribution
NIR and B-V are selected in visible light and invisible light,
respectively, and channel R with the lowest weight among
all channels is selected for visual observation. In the figure,
NIR1, B−V1, R1 represents the raw data of the channel,NIR2,
B − V2, R2 represents the output after CBAM processing.
By observing the two output channels NIR2 and B−V2, it can
be found that the soil information in the output feature map
is given higher weight, and the soil under the tree and the
edge of the tree are more obvious, although the information
in the input RE1 channel is more blurred and does not map the
more obvious features, and after multiplying with the feature
attention matrix, the output R2 channel still pays attention to
the characteristics of the soil. In addition, the channel has less
useful information in the spectrum, the feature distribution
is not obvious, the impact on the classification results is
minimal, and the network parameters of this layer are also the
lowest. The results show that CBAM can efficiently capture
the most important information in the image.

D. RESULTS ANALYSIS
RUSLE is currently the most commonly used factoriza-
tion model for soil erosion research. Table 5 provides a

FIGURE 11. Visualization of the CBAM module.

performance comparison between the RUSLE model and
the DGCS-CNN model. In the case study discussed in this
paper, the RUSLE model had a recall rate of zero in the mild
and moderate categories, indicating its inability to accurately
classify the soil erosion intensity in the study area. The
DGCS-CNN model takes into account the internal relation-
ship between erosion factors and multispectral data, offering
a comprehensive understanding of the data dimensions. Deep
learning models boast complex network structures, a large
number of internal parameters, and enhanced fitting capa-
bilities. Furthermore, while factorization model calculation
parameters are fixed and require adjustment based on human
knowledge in different environmental conditions to enhance
classification accuracy, deep learning models can adapt and
learn different feature rules for distinct regions based on
environmental conditions. These models extract features
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layer by layer to achieve data classification with strong
adaptability and swift classification speeds.

TABLE 5. Precision, recall, and F1-Score results.

After a comprehensively analysis, the DGCS-CNN model
demonstrates a strong ability to provide accurate predictions.
Therefore, we proceeded to employ the DGCS-CNN model
to the remaining 97.1% (420,063 data points) of the area to
obtain the spatial distribution maps of the three soil erosion
prediction results in the study area. To enhance the detailed
observation of the distribution map, the image was processed
with pseudo-color as shown in Figure 12, and the three
erosion types of slight, light, and moderate were marked as
green, yellow, and brown, respectively.

Soil erosion is attributed to a combination of natural factors
and human factors. Natural factors lay the foundation of
soil erosion while human factors significantly accelerate the
process, including destruction of vegetation, overgrazing,
road construction, engineering construction, etc. As con-
struction sites expand, industrial production intensifies, and
engineering projects advance, the disturbance caused to land
and vegetation becomes more pronounced. This not only
exacerbates pre-existing soil erosion but also exerts a severe
toll on the ecological environment. The cumulative effects
of these activities are substantial, affecting the stability of
ecosystems and the overall environmental equilibrium.

As shown in Figure 12, the central area of the study
area is covered by a large area of trees, and the degree
of soil erosion is manifested as light. To further improve
its water and soil conservation capacity, a small area of
forest can be transformed into a multilayer structure of
mixed forest, such as the establishment of coniferous forest,
broad-leaved forest and shrub complex forest. Through the
multilayer forest structure, litter is protected, enhancing the
soil consolidation capacity and soil fertility of the area.
In mountainside areas with large slopes and exposed surface
vegetation, erosion is manifested as slight, and this area
can effectively control soil erosion by increasing barren
slope treatment and greening. Erosion in coastal areas
manifests as light and moderate, so more coastal sheltered
forests should be built and soil and water conservation
forests should be constructed, including natural forests and
plantations with high canopy density. Most of the moderate
erosion in the study area occurred around the building land.
Supervision and administrative departments shall make full
use of remote sensing, unmanned aerial vehicles, information

FIGURE 12. Inversion map of the DGCS-CNN model.

networks and other technologies to strengthen soil and
water monitoring. To ensure the implementation of soil and
water conservation measures in industrial production and
construction activities, and to restrict or prohibit industrial
production and construction activities that may cause soil
erosion in important ecologically fragile and sensitive areas.

V. CONCLUSION
In this study, a dual-input gated attention convolutional neural
network model is proposed for the accurate identification and
prediction of soil erosion in small-and medium-sized loss
areas. In the case study of a real-world soil and water loss
area, the accuracy of the model achieves more than 96%.
Furthermore, through the analysis of results from various
algorithms, it was observed that deep learning models exhibit
significantly higher performance in soil erosion prediction.
This is attributed to the complex terrain environment leading
to noise and a wealth of redundant information in the spectral
data, as well as the intricate interactions among various
erosion factors in soil erosion. Therefore, deep learning
models are more suitable for the computation of soil data.
For the classification of soil erosion at a medium and small
scale research area, the DGCS-CNN achieves more accurate
soil erosion localization and efficient, targeted management,
which holds significant importance for ecological restoration
and soil erosion prevention. The DGCS-CNN combines
attention mechanism with convolutional neural networks to
assign different weights to high spectral images in different
bands. The dual input of the DGCS-CNN is designed for the
soil erosion factors and remote sensing spectral images in the
study area. In the DGCS-CNN, the dual-input gating fusion
module aims to simulate the complex interactions between
erosion factors and multi-spectral images. This study better
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replicates the original appearance of the soil, resulting in
more realistic and reliable predictive outcomes.

Using the CBAM mechanism to strengthen the channel
weight ratio with greater impact on the spectral images
could further improve the accuracy of the model, especially
for the understory soil with a small amount of vegetation
cover in the erosion. The gated fusion mechanism also
demonstrates decent performance in the ablation study, and
compared with the advanced mainstream models, it has
obvious improvement. Overall, the fusion of different views
provides a new angle to conduct studies in soil erosion and
related area.
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