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ABSTRACT This study focuses on fault-tolerant finite-time flight-path angle control for an aircraft in the
presence of external disturbances, unknown deadzone and actuator fault. To begin with, the longitudinal
model of aircraft is introduced for the subsequent controller design. Then, a new smooth deadzone inverse
model is presented to compensate for the deadzone nonlinearity in aircraft system. A robust adaptive fault-
tolerant finite-time control law is derived by using backstepping adaptive control approach, where a finite-
time stability criterion is adopted for developing practical finite-time control. In order to reduce the difficulty
of control system design, two finite-time differentiators are used to estimate the derivatives of virtual control
signals. The coupling errors of the deadzone and faults are properly dealt with by estimating the unknown
bounds. Finally, comparative numerical simulation results are provided to demonstrate the efficiency of the
proposed fault-tolerant finite-time flight-path angle control scheme.

INDEX TERMS Adaptive control, flight path angle, finite-time tracking, deadzone inverse compensation,
fault-tolerant control.

I. INTRODUCTION
Along with the rapid development of aviation technology and
aircraft manufacturing industry, aircrafts are more and more
widely used in martial and civil fields. In recent years, the
research on aircraft control technology has been one of the
hot topics. Due to fuel consumption and body deformation
during aircraft cruising, it is quite difficult to get a precise
model of aircraft system. In addition, there still exist high
nonlinearities and strong coupling in aircraft dynamics. These
disadvantages make the control issue of aircraft challenging
and nontrivial. Therefore, the precise control of aircraft is still
an open topic to be tackled.

In order to achieve better performance in aircraft trajectory
angle control, great efforts have been made to improve
control technique and exploit new methods. In [1], neuro-
adaptive backstepping method is developed for the control
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of flight-path angle. In [2], two nonlinear control techniques
are used in the design of flight-path tracking control laws
for a transport aircraft. In [3], an adaptive dynamic surface
controller was proposed for flight-path angle control. In [4],
an adaptive backstepping terminal sliding mode control
method for the control of flight-path angle was developed.
In [5], a neural-network based adaptive dynamic surface
control solution was presented for the flight-path angle
control of an aircraft with parameter uncertainties, multi-
disturbances and nonlinearities. These studies have strongly
promoted the development of aircraft flight-path angle
control techniques.

In most of the above results, the tracking errors can
converge to a small neighborhood of origin as time goes
to infinity. To make the tracking error converge to the
origin or its small neighborhood within a finite time, some
scholars have studied advanced control algorithms during
controller design for nonlinear systems [6], [7], [8]. In the
context of aircraft control, there exist a few literature results
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concerned with finite-time control design for improving
convergence speed [9], [10], [11], [12], [13], [14], [15], [16].
Among these algorithms, the adopted control strategies
mainly focus on terminal sliding mode control, predefined
time control, etc. As far as flight-path angle finite-time
convergence is concerned, the research on flight-path angle
finite-time convergence is still very few at present, and
the obtained results are mainly involved with backstepping
terminal sliding control [4], whose design is comparatively
complicated. In [6], Sun et al proposed a new finite time
stability criterion to easily design finite-time control law
for a class of nonstrict feedback systems. To the best of
our knowledge, hitherto, few literature results involved with
flight-path angle control design according to this finite-time
stability criterion have been reported. How to develop an
effective control scheme according to this finite-time stability
criterion is still unclear.

In controller design and control system analysis, to achieve
good performance, the effect of non-smooth nonlinearities
(saturation, deadzone, backlash and hysteresis) in actuators
should be taken into consideration [17], [18]. As the
most common nonlinearities, deadzones widely exist in
the actuators of many mechanical device and electrical
equipments, which damages the performance of control
systems more or less, and even leads to system instability
in severe cases. Therefore, it is of urgent need to take
appropriate compensation to offset the effects caused by
deadzones. So far, there have roughly been three mainstream
strategies for deadzone compensation. The first one is robust
compensation method, in which the deadzone is modeled
as a combination of a linear term and a disturbance-like
term, and the deadzone slopes in positive and negative
are assumed to be same [19]. Afterwards, Ibrir et al.
proposed an adaptive robust control algorithm suitable for
asymmetric deadzone situations [20]. Another alternative
approach is to apply neural networks or fuzzy systems
to approximate deadzones [21], [22]. The third strategy
is the adaptive compensation method based on deadzone
inverse model. The study in this aspect was initiated in [23],
where a discontinuous deadzone inverse model is constructed
to compensate for the actuator deadzone. Chattering phe-
nomenon may easily occur if non-smooth inverse is used
for controller design. For overcoming this disadvantage,
a smooth adaptive deadzone inverse model has been built
to offset the effect of unknown deadzone [24]. Inspired
by this, scholars have proposed some other inverse model
construction schemes [25], [26]. As for aircraft control,
robust compensation strategies are adopted for dealing with
deadzones in most related algorithms [27]- [30], However,
few research results on inverse model compensation for
aircraft deadzones have been reported.

Reliability plays an important role in the design and
operation of modern industrial engineering systems. Given
that a local fault may unexpectedly affect the entire system,
appropriate actions should be taken during the controller
design process to avoid the performance degradation of

closed-loop system. For this reason, fault-tolerant control
has become an increasingly important research topic for its
advantage of maintaining expected system performance even
if potential faults occur. Some fault-tolerant control methods
have been proposed for aircraft systems in the past few years.
In [31], Fekih proposed a fault-tolerant control approach
which can simultaneously compensate for actuator faults,
model mismatch and parameter variations in aircraft systems.
In [32], an aircraft fault-tolerant trajectory controller is
developed, with the incremental nonlinear dynamic inversion
approach used to deal with the uncertainties. In [33], based
on sliding mode and adaptive techniques, a fault-tolerant
flight control scheme against actuator failures is proposed by
incorporating both the actuator amplitude and rate bounds.
Overall, in the context of aircraft flight-path angle control,
the research achievements on fault-tolerant control have been
still few.

In many practical engineering systems, actuators are
simultaneously affected by actuator faults and deadzone
nonlinearities [34], [35]. To the best of our knowledge,
despite rapid progresses having been made in aircraft control,
there is a paucity of research on offsetting the hybrid effects
of unknown deadzone nonlinearities and actuator faults in
aircraft control system designs. How to address the issue
of flight-path angle control for an aircraft system subject to
both unknown deadzone and actuator fault, while meeting
the requirement of finite-time convergence, is a challenging
research topic.

Motivated by above discussion, this paper investigates
the flight-path angle control algorithms for aircraft systems
with deadzone nonlinearity and actuator faults. The main
contributions of this study are as follows.

1) A practical finite-time control algorithm is developed
to solve the flight-path angle tracking problem for
aircrafts, where no sliding mode surface is constructed
and two finite-time differentiators are used to estimate
the derivatives of virtual control signals, simplying the
control system design.

2) In the existing results on flight-path angle control [1],
[2], [3], [4], [5], neither unknown deadzone nonlinear-
ity nor actuator faults were considered. In this work,
both unknown deadzone nonlinearity and actuator
faults are considered during controller design.

3) A new smooth deadzone inverse model is constructed
to implement the compensation for unknown deadzone
nonlinearity in the aircraft system.

The remainder of this article is organized as follows.
In Section II, the longitudinal model of aircraft is established,
and the problem of flight path-angle control is formulated,
with standard assumptions, definition and lemmas. Then,
a smooth deadzone inverse, the detailed design procedure of
finite-time controller, and the stability analysis are presented
in Section III. Thereafter, in Section IV, an illustrative
example is presented to demonstrate the effectiveness of the
proposed control method. Finally, concluding remarks are
given in Section V.
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II. PROBLEM FORMULATION
In longitudinal aircraft dynamics, the flight path stands for the
route of an aircraft moving forward relative to the ground. The
direction of the flight path is called flight-path angle, whose
mathematical definition is as follows [1]:

γ = sin−1 ( ḣ
VT

), (1)

in which ḣ is the rate of change in altitude, and VT is the
aircraft’s airspeed. The time derivative of γ is determined by

γ̇ =
1

mVT
(L cosµ− D sinβ sinµ− Y sinµ cosβ

+ FT (sinα cosµ+ cosα sinβ sinµ) − mg cos γ )

(2)

where FT is thrust; L, D, and Y are lift force, drag force, and
lateral force, respectively; α, β and µ are angle of attack,
sideslip angle, and stability-axis roll angle, respectively;
m and g are the mass and gravity coefficient of the aircraft,
respectively.

In this work, the longitudinal motion of the aircraft is
considered, i.e., the aircraft motion is restricted to the pitch
plane. In this situation, Y = β = µ = 0,

γ = θp − α, (3)

and

γ̇ = θ̇p − α̇ (4)

hold, where θp is angle of pitch. The dynamics of α and θp
are defined by α̇ =

1
mVT

(−FT sinα − L + mg cos γ ) + q,

θ̇p = q,
(5)

where q is pitch angular velocity. In (5), the thrust term
FT sinα is much smaller than the lift term L, so FT sinα can
be neglected in system analysis and controller design. L is
regarded as the sum of two following terms:

L = Lo + Lαα, (6)

where Lα is the slope of the lift curve, and Lo is the
contributions of all other factors to lift [1]. Up to this point,
a simplified aircraft longitudinal model is given as follows:

γ̇ = L̄αα −
g
V

cos γ + L̄o,

α̇ = q+
g
VT

cos γ − L̄αα − L̄o,

θ̇p = q,
q̇ = Mo +Mδδ,

(7)

where δ is rudder deflection, L̄o =
Lo
mVT

, L̄α =
Lα
mVT

, Mδ is
pitch control moment coefficient, andMo is another moment
which usually can be estimated byMo = Mαα+Mqq. VT , γ ,
α, θp and δ are depicted in Figure 1. In this work,Mα ,Mδ ,Mq,
Lα , Lo, m, g, δ and VT are considered constant and unknown.

FIGURE 1. Schematic diagram of longitudinal model of aircraft.

Let x1 = γ, x2 = θp and x3 = q. Given that there exist
external disturbances, the aircraft longitudinal model may be
rewritten as

ẋ1 = a1(x2 − x1) + a2 − a3 cos x1 +11(t),
ẋ2 = x3,
ẋ3 = b1δ + b2(x2 − x1) + b3x3 +12(t),

(8)

where a1 = L̄α > 0, a2 = L̄o, a3 =
g
VT

, b1 = Mδ > 0,
b2 = Mα, b3 = Mq, and 11(t) and 12(t) are unknown but
bounded disturbances.

By taking the effect of unknown dead-zone nonlinearity
and actuator faults into account, the actuator expression is
described as

δ = ρf u(v) + φf (9)

where ρf ∈ (0, 1] denotes multiplicative actuator fault and φf
denotes the additive actuator fault, and u(v) is the output of
deadzone nonlinearity as

u(v) =


mr (v− br ), if v ≥ br ,
0, if br < v < bl,
ml(v− bl), if v ≤ bl,

(10)

in which br ≥ 0, bl ≤ 0 and mr > 0,ml < 0 are unknown
constants, v is the input and u(v) the output. A graphical
representation of the deadzone is shown in Figure 2.

The control target of this paper is to present a robust
adaptive fault-tolerant finite-time flight-path angle control
scheme for an aircraft with unknown deadzone and actuator
faults such that x1 can track the reference trajectory x1,d .

Before the controller design, two assumptions, a definition
and some lemmas used in this paper are given as follows:
Assumption 1: The lower bounds of unknown deadzone

slopes mr and ml are known, i.e., there exist two known
positive constants mr0 and ml0, satisfying mr ≥ mr0 and
ml ≥ ml0.
Definition 1 ( [6]): Let κκκ = 000 be the equilibrium point

of a nonlinear system κ̇κκ = fff (κκκ). If there are a positive
constant εc and a bounded settling time T (εc,κκκ0) such that
under the arbitrary initial condition κκκ(t0) = κκκ0, ∥κκκ(t)∥ < εc
holds while t > t0 + T (εc,κκκ0), then this system is called a
semiglobal practical finite-time stable (SGPFS) system.
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FIGURE 2. Ideal deadzone model.

Lemma 1 [6]: Consider a nonlinear system κ̇κκ = fff (κκκ).
Suppose that there exist a smooth positive definite function
fff (κκκ) and some scalars τ1 > 0, 0 < τ2 < 1 and 0 < τ3 such
that

V (κκκ) < −τ1V τ2 (κκκ) + τ3, t ≥ 0, (11)

then κ̇κκ = fff (κκκ) is a SGPFS system. For t ≥ Tr , κκκ ∈ �κ holds,

where Tr =
1

(1−τ2)τ1c0
[V 1−τ2 (κκκ(0)) −

τ3
τ1(1−c0)

1−τ2
τ2 ], �κ =

{κκκ|V τ2 (κκκ) ≤
τ3

τ1(1−c0)
}, 0 < c0 < 1.

Lemma 2 [36]: For h ∈ R and p > 0,

0 ≤ |h| −
h2√

h2 + p2
< pϒ (12)

holds, where ϒ =

√
0.5(5

√
5 − 11) ≈ 0.3.

Lemma 3 [38]: Consider the following finite-time second-
order differentiator:
ζ̇1 = ζ2

ε2ζ̇2 = −satϵb
(
sign(φα(ζ1, κ(t), εζ2))|φα(ζ1, κ(t), εζ2)|ι1

)
−satϵb

(
sign(ζ2)|εζ2)|µ

)
,

where ε > 0, 0 < µ < 1, ι1 =
µ

2−µ ,

φα(ζ1, κ(t), εζ2) = ζ1 − κ(t) +
sign(ζ2)|εζ2)|2−µ

2 − µ
, (13)

sat∗
(
•) ≜

{
•, if | • | < ∗,

∗sign(•), if | • | ≥ ∗.
(14)

For a continuous and piecewise two-order derivable sig-
nal v(t), there exists ι2 > 0 satisfying ι1ι2 > 2, such that

ζi − κ (i−1)(t) = O(ει1ι2−i+1) (15)

can be determined in a finite time.

Lemma 4 [39]: For any real variables ς and ψ , we have

|ς |
c1 |ψ |

c2 ≤
c1

c1 + c2
c3|ς |

c1+c2 +
c1

c1 + c2
c
−
c1
c2

3 |ψ |
c1+c2 ,

(16)

where c1, c2, and c3 are positive constants.
Lemma 5 For a real number 0 < ϑ ≤ 1 and wi ∈ R,

i = 1, 2, · · · ,m, the following inequality holds:

(
m∑
i=1

|wi|)ϑ ≤

m∑
i=1

|wi|ϑ ≤ m(1−ϑ)(
m∑
i=1

|wi|)ϑ . (17)

In this paper, the arguments of functions are possibly
omitted in the cases that no confusion arises.
Remark 1 [37]: In controller design, a smaller upper

bound can be achieved by using (12) instead of the following
inequality:

0 ≤ |h| −
h2√

h2 + p2
< p. (18)

III. MAIN RESULT
A. SMOOTH INVERSE MODEL FOR ACTUATOR DEADZONE
By defining

σr (t) =

{
1, u(v) > 0,
0, otherwise

(19)

and

σl(t) =

{
1, u(v) < 0,
0, otherwise,

(20)

we can rewrite (10) as

v =
u(v) + mrbr

mr
σr (t) +

u(v) + mlbl
ml

σl(t) (21)

which can be parameterized as

u(v) = −ϖϖϖ Tωωω, (22)

with ϖϖϖ = [mr ,mrbr ,ml,mlbl]T ,ωωω = [−σr (t)v, σr (t),
−σl(t)v, σl(t)]T . Note that mr , br ,ml, bl are unknown while
σr (t) and σr (t) are unavailable. To offset the effect of
deadzone, a new smooth deadzone inverse ( the solid line in
Figure 3) is proposed as follows:

v =
ud + m̂rbr

m̂r
φr (ud ) +

ud + m̂lbl
m̂l

φl(ud ), (23)

where ud is the input of inverse model, and φr (·) and φl(·) are
defined as follows: For z ∈ R,

φr (z) =
1
2

+
1
2
(

z
|z| + ℓ

),

φl(z) =
1
2

−
1
2
(

z
|z| + ℓ

),

in which

ℓ =

{
0, if |z| ≥

√
℘,√

℘ − z2, if |z| <
√
℘,

(24)

with ℘ > 0 being a design parameter.
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FIGURE 3. Deadzone inverse.

From (23), we can get

ud = −ϖ̂ϖϖ
T
ω̂ωω, (25)

where ϖ̂ϖϖ = [m̂r , m̂rbr , m̂l, m̂lbl]T , ω̂ωω = [−φr (v)v, φr (v),
−φl(v)v, φl(v)]T . On the basis of (22) and (25), we obtain

u(v) − ud = −ϖϖϖ Tωωω + ϖ̂ϖϖ
T
ω̂ωω

= (ϖ̂ϖϖ −ϖϖϖ )T ω̂ωω +ϖϖϖ T ω̂ωω −ϖϖϖ Tωωω (26)

in which du = ϖϖϖ T ω̂ωω − ϖϖϖ Tωωω. There exists an unknown
positive number d̄u, satisfying |du| ≤ d̄u for t ≥ 0 [24].
Thus, by combining (9) with (26), the actual fault model is

expressed as

δ = ρf (ud + (ϖ̂ϖϖ −ϖϖϖ )T ω̂ωω + du) + φf . (27)

B. BACKSTEPPING CONTROL DESIGN
Let z1 = x − x1,d , z2 = x2 − α1, z3 = x3 − α2. For i = 1, 2,
αi are virtual control laws to be designed.
Define

V1 =
1
2a1

z21. (28)

Taking the derivative of V1 with respect to time yields

V̇1 = z1(x2 − x1 +
a2
a1

−
a3
a1

cos x1 +
11(t)
a1

−
ẋ1,d
a1

)

= z1(z2 + α1 − x1 + ηηηT1ϕϕϕ1 +
11(t)
a1

), (29)

where ηηη1 = [ a2a1 ,−
a3
a1
,− 1

a1
]T ,ϕϕϕ1 = [1, cos x1, ẋ1,d ]T .

On the basis of (29), we design the virtual control law as

α1 = x1 − η̂ηη
T
1ϕϕϕ1 −

ϱ1

2𭟋 z2𭟋−1
1 −

ρ̂21z1√
z21ρ̂

2
1 + ϵ21

, (30)

˙̂ηηη1 = µ1z1ϕϕϕ1 − l1µ1η̂ηη1, η̂ηη1(0) = 0, (31)
˙̂ρ1 = µ2|z1| − l2µ2ρ̂1, ρ̂1(0) = 0, (32)

where ϱ1 > 0, 0.5 < 𭟋 < 1, ϵ1 > 0, µ1 > 0, µ2 > 0,
l1 > 0 and l2 > 0 are design parameters, and ρ̂1 is used to
estimate ρ1 := sup( |11(t)|

a1
).

By using Lemma 2 and substituting (30) into (29), we have

V̇1 ≤ −
ϱ1

2𭟋 z2𭟋
1 + z1z2 + z1η̃ηη

T
1ϕϕϕ1 + |z1|ρ1 −

ρ̂21z
2
1√

z21ρ̂
2
1 + ϵ21

≤ −
ϱ1

2𭟋 z2𭟋
1 + z1z2 + z1η̃ηη

T
1ϕϕϕ1 + |z1|ρ̃1 + ϒϵ1, (33)

where η̃ηη1 = ηηη1 − η̂ηη1, ρ̃1 = ρ1 − ρ̂1, and the definition of ϒ
is given in Lemma 2. The time derivative of V2 =

1
2 z

2
2 is

V̇2 = z2(z3 + α2 − α̇1). (34)

To mitigate the difficulty in derivative calculation, a tracking
differentiator is introduced to approximate α̇1 as follows:

χ̇1 = χ2

λ20χ̇2 = −satϵb
(
sign(φα(χ1, α1, λ0χ2))|φα(χ1, α1,

λ0χ2)|λ2
)
− satϵb

(
sign(χ2)|λ0χ2)|µ

)
,

in which 0 < λ0 < 1, 0 < µ < 1, λ1 =
µ

2−µ . By Lemma 3,
we can see that there exists λ2 > 2

λ1
, such that

χ2 − α̇1 = O(λλ1λ2−1
0 ) (35)

can be determined in a finite time.
It follows from (34) that

V̇2 = z2(z3 + α2 − χ2 + O(λλ1λ2−1
0 ). (36)

Based on (36), the virtual control law is designed as

α2 = χ2 −
ϱ2

2𭟋 z2𭟋−1
2 − z1 −

1
2
z2, (37)

where ϱ2 > 0, the value of 𭟋 is the same as that in (30).
Substituting (37) into (34) yields

V̇2 ≤ −z1z2 + z2z3 −
ϱ2

2𭟋 z2𭟋
2 + z2O(λ

λ1λ2−1
0 ) −

1
2
z22

≤ −z1z2 + z2z3 −
ϱ2

2𭟋 z2𭟋
2 +

1
2
O(λ2λ1λ2−2

0 ). (38)

Define

V3 =
1

2b1ρf
z23. (39)

Taking the derivative of V3 with respect to time yields

V̇3 = z3(
δ

ρf
+

b2
b1ρf

(x2 − x1) +
b3
b1ρf

x3 +
12(t)
b1ρf

−
α̇2

b1ρf
).

(40)

Similar to (35), we can construct the following differentiator
χ̇3 = χ4

λ20χ̇4 = −satϵb
(
sign(φα(χ1, α2, λ0χ2))|φα(χ1, α2,

λ0χ2)|λ2
)
− satϵb

(
sign(χ2)|λ0χ2)|µ

)
,
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such that

χ4 − α̇2 = O(λλ1λ2−1
0 ) (41)

can be determined in a finite time. With this in mind,
it follows from (27) and (40) that

V̇3 = z3(
δ

ρf
+

b2
b1ρf

(x2 − x1) +
b3
b1ρf

x3 +
12(t)
b1ρf

−
α̇2

b1ρf
)

= z3[ud + (ϖ̂ϖϖ −ϖϖϖ )T ω̂ωω + du +
φf

ρf
+

b2
b1ρf

(x2 − x1)

+
b3
b1ρf

x3 +
12(t)
b1ρf

+
1

b1ρf
(−χ4 + O(λλ1λ2−1

0 ))]

≤ z3(ud + (ϖ̂ϖϖ −ϖϖϖ )T ω̂ωω + ηηηT2ωωω2) + |z3|ρ2, (42)

where ηηη2 = [ b2
b1ρf

,
b3
b1ρf

, −1
b1ρf

]T ,ϕϕϕ2 = [x2 − x1, x3, χ4]T ,

ρ2 := sup(du +
φf
ρf

+
12(t)
b1ρf

+
O(λ

λ1λ2−1
0 )
b1ρf

).
In view of (42), we design

ud = −
ϱ3

2𭟋 z2𭟋−1
3 − z2 −

1
2
z3 − η̂ηη

T
2ϕϕϕ2 −

ρ̂22z3√
z23ρ̂

2
2 + ϵ22

,

(43)

in which

˙̂ηηη2 = µ3z3ϕϕϕ2 − l3µ3η̂ηη2, η̂ηη2(0) = 0, (44)
˙̂ρ2 = µ4|z3| − l4µ4ρ̂2, ρ̂2(0) = 0, (45)

where ϱ3 > 0, ϵ2 > 0, µ3 > 0, µ4 > 0, l3 > 0 and
l4 > 0 are design parameters, and ρ̂2 is used to estimate ρ2.
Substituting (43) into (42), we get

V̇3 ≤ −
ϱ3

2𭟋 z2𭟋
3 − z2z3 + z3(ϖ̂ϖϖ −ϖϖϖ )T ω̂ωω + z3η̃ηη

T
2ωωω2

+ |z3|ρ̃2 + ϒϵ2, (46)

where η̃ηη2 = ηηη2 − η̂ηη2, ρ̃2 = ρ2 − ρ̂2.
To ensure the estimates m̂r (t)) ≥ mr0 and m̂l(t) ≥ ml0, the

dead-zone parameter update law is designed as follows:

˙̂ϖϖϖ = Projϖ,ϖ (−µ5z3ω̂ωω − l5µ5ϖ̂ϖϖ ), (47)

where ϖ ∈ R,ϖ ∈ R,ϖ < ϖ$,Projϖ,ϖ (···) is a
projection operator. For τττ = [τ1, τ2, τ3, τ4]T ∈ R4,

Projϖ,ϖ (τττ ) ≜ [projϖ,ϖ (τ1), projϖ,ϖ (τ2), projϖ,ϖ (τ3),
projϖ,ϖ (τ4)]T , where

projϖ,ϖ (τi) =


0, if ϖ̂i = ϖ and τi ≤ 0
0, if ϖ̂i = ϖ and τi ≥ 0
τi, otherwise

(48)

with i = 1, 2, 3, 4. This projection operator satisfies the
following property:

−ϖ̃ϖϖ TProj(τττ ) ≤ −ϖ̃ϖϖ Tτττ . (49)

Remark 2: In this paper, two finite-time differentiators are
used to estimate the derivatives of virtual control signals,
such that the inherent differential explosion in backstepping
control is avoided.

Remark 3: For the design parameters ℘ in (24),
ϱ1, ϵ1, µ1, µ2, l1 and l2 in (30)-(32), ϱ2, in (37), ϱ3, ϵ2,
µ3, µ4, l3 and l4 in (43)-(45), µ5 and l5 in (47), it is
difficult to determine the optimal values theoretically. Their
recommended value ranges are as follows: ℘ ∈ [0.1, 1],
ϱ1 ∈ [5, 10], ϱ2 ∈ [5, 10], ϱ3 ∈ [5, 10], ϵ1 ∈ [0.001, 0.1],
ϵ2 ∈ [0.001, 0.1], µ1 ∈ [0.5, 10], µ2 ∈ [0.05, 0.5], µ3 ∈

[0.5, 10], µ4 ∈ [0.05, 0.5], µ5 ∈ [0.1, 5], l1 ∈ [0.01, 0.1],
l2 ∈ [0.01, 0.1], l3 ∈ [0.01, 0.1], l4 ∈ [0.01, 0.1] and
l5 ∈ [0.01, 0.1].

C. STABILITY ANALYSIS
Theorem 1: Consider the closed-loop flight-path tracking

control system (7) under Assumption 1, with the control
law (23) and (43), the virtual control signals (30) and (37),
tracking differentiators (35) and (41), and the adaptive
laws (31), (32), (44), (45) and (47). Then, practical finite-
time tracking performance can be guaranteed, while all
closed-loop signals are uniformly bounded.

Proof: Construct a Lyapunov function as follows:

Vσ = V1σ + V2 + V3σ , (50)

where

V1σ = V1 +
1

2µ1
η̃ηηT1 η̃ηη1 +

1
2µ2

ρ̃21 (51)

and

V3σ = V3 +
1

2µ3
η̃ηηT2 η̃ηη2 +

1
2µ4

ρ̃22 +
1

2µ5
ϖ̃ϖϖ Tϖ̃ϖϖ. (52)

By using (33), we get

V̇1σ ≤ −
ϱ1

2𭟋 z2𭟋
1 + z1z2 + z1η̃ηη

T
1ϕϕϕ1 + |z1|ρ̃1 + ϒϵ1

−
1
µ1
η̃ηηT1

˙̂ηηη1 −
1
µ2
ρ̃1 ˙̂ρ1. (53)

It follows from (31) that

z1η̃ηη
T
1ϕϕϕ1 −

1
µ1
η̃ηηT1

˙̂ηηη1 = z1η̃ηη
T
1ϕϕϕ1 −

1
µ1
η̃ηηT1 (µ1z1ϕϕϕ1 − l1µ1η̂ηη1)

≤ −
l1
2
η̃ηηT1 η̃ηη1 +

l1
2
ηηηT1ηηη1. (54)

Invoking (32), we obtain

|z1|ρ̃1 −
1
µ2
ρ̃1 ˙̂ρ1 = |z1|ρ̃1 −

1
µ2
ρ̃1(µ2|z1| − l2µ2ρ̂1)

≤ −
l2
2
ρ̃21 +

l2
2
ρ21 . (55)

From the above three inequalities, we obtain

V̇1σ ≤ −
ϱ1

2𭟋 z2𭟋
1 + z1z2 −

l1
2
η̃ηηT1 η̃ηη1 +

l1
2
ηηηT1ηηη1 −

l2
2
ρ̃21

+
l2
2
ρ21 + ϒϵ1. (56)

Combining (38) with (56), we have

V̇1σ+V̇2≤ −
ϱ1

2𭟋 z2𭟋
1 −

ϱ2

2𭟋 z2𭟋
2 −

l1
2
η̃ηηT1 η̃ηη1 −

l2
2
ρ̃21 +

l1
2
ηηηT1ηηη1

+
l2
2
ρ21 + ϒϵ1 +

1
2
O(λ2λ1λ2−2

0 ) + z2z3. (57)
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Invoking (46) and (52), we have

V̇3σ ≤ −
ϱ3

2𭟋 z2𭟋
3 − z2z3 − z3ϖ̃ϖϖ

T ω̂ωω + z3η̃ηη
T
2ωωω2 + |z3|ρ̃2 + ϵ2

−
1
µ5
ϖ̃ϖϖ T ˙̂ϖϖϖ −

1
µ3
η̃ηηT2

˙̂ηηη2 −
1
µ4
ρ̃2 ˙̂ρ2. (58)

Similar to (55), it can be inferred from (44) and (45) that

z3η̃ηη
T
2ϕϕϕ2 −

1
µ3
η̃ηηT2

˙̂ηηη3 = z3η̃ηη
T
2ϕϕϕ2 −

1
µ3
η̃ηηT2 (µ3z3ϕϕϕ3 − l3µ3η̂ηη2)

≤ −
l3
2
η̃ηηT2 η̃ηη2 +

l3
2
ηηηT2ηηη2 (59)

and

|z3|ρ̃2 −
1
µ4
ρ̃2 ˙̂ρ2 = |z3|ρ̃2 −

1
µ4
ρ̃2(µ4|z3| − l4µ4ρ̂2)

≤ −
l4
2
ρ̃22 +

l4
2
ρ22 . (60)

It follows from (47) that

− z3ϖ̃ϖϖ
T ω̂ωω −

1
µ5
ϖ̃ϖϖ T ˙̂ϖϖϖ

= −z3ϖ̃ϖϖ
T ω̂ωω −

1
µ5
ϖ̃ϖϖ TProj(−µ5z3ω̂ωω − l5µ5ϖ̂ϖϖ ). (61)

According to the property (49), from (61), we can get

− z3ϖ̃ϖϖ
T ω̂ωω −

1
µ5
ϖ̃ϖϖ T ˙̂ϖϖϖ

≤ −z3ϖ̃ϖϖ
T ω̂ωω −

1
µ5
ϖ̃ϖϖ T (−µ5z3ω̂ωω − l5µ5ϖ̂ϖϖ )

≤ −
l5
2
ϖ̃ϖϖ Tϖ̃ϖϖ +

l5
2
ϖϖϖ Tϖϖϖ. (62)

Combining (58) -(60) with (62), we obtain

V̇3σ ≤ −
ϱ3

2𭟋 z2𭟋
3 − z2z3 −

l5
2
ϖ̃ϖϖ Tϖ̃ϖϖ −

l3
2
η̃ηηT2 η̃ηη2

−
l4
2
ρ̃22 +

l5
2
ϖϖϖ Tϖϖϖ +

l3
2
ηηηT2ηηη2 +

l4
2
ρ22 + ϵ2. (63)

From (57) and (63), we get

V̇σ ≤ −
ϱ1

2𭟋 z2𭟋
1 −

ϱ2

2𭟋 z2𭟋2 −
ϱ3

2𭟋 z2𭟋3 −
l1
2
η̃ηηT1 η̃ηη1 −

l2
2
ρ̃21

−
l3
2
η̃ηηT2 η̃ηη2 −

l4
2
ρ̃22 −

l5
2
ϖ̃ϖϖ Tϖ̃ϖϖ +

l1
2
ηηηT1ηηη1 +

l2
2
ρ21

+
l3
2
ηηηT2ηηη2 +

l4
2
ρ22 +

l5
2
ϖϖϖ Tϖϖϖ + ϵ2 + ϵ1

+
1
2
O(λ2λ1λ2−2

0 ). (64)

By Lemma 4, the following five inequalities hold:

−
l1
2
η̃ηηT1 η̃ηη1 ≤ − (

l1
2
η̃ηηT1 η̃ηη1)

𭟋
+ (1 − 𭟋)𭟋

𭟋
1−𭟋 ,

= − (l1µ1)𭟋(
1

2µ1
η̃ηηT1 η̃ηη1)

𭟋
+ (1 − 𭟋)𭟋

𭟋
1−𭟋 ,

(65)

−
l2
2
ρ̃21 ≤ − (

l2
2
ρ̃21 )

𭟋
+ (1 − 𭟋)𭟋

𭟋
1−𭟋

= − (l2µ2)𭟋(
1

2µ2
ρ̃21 )

𭟋
+ (1 − 𭟋)𭟋

𭟋
1−𭟋 , (66)

−
l3
2
η̃ηηT2 η̃ηη2 ≤ − (

l3
2
η̃ηηT2 η̃ηη2)

𭟋
+ (1 − 𭟋)𭟋

𭟋
1−𭟋 ,

= − (l3µ3)𭟋((
1

2µ3
η̃ηηT2 η̃ηη2)

𭟋
+ (1 − 𭟋)𭟋

𭟋
1−𭟋 ,

(67)

−
l4
2
ρ̃22 ≤ − (

l4
2
ρ̃22 )

𭟋
+ (1 − 𭟋)𭟋

𭟋
1−𭟋 ,

= − (l4µ4)𭟋(
1

2µ4
ρ̃22 )

𭟋
+ (1 − 𭟋)𭟋

𭟋
1−𭟋 , (68)

−
l5
2
ϖ̃ϖϖ Tϖ̃ϖϖ ≤ − (

l5
2
ϖ̃ϖϖ Tϖ̃ϖϖ )𭟋 + (1 − 𭟋)𭟋

𭟋
1−𭟋

= − (l5µ5)𭟋(
1

2µ5
ϖ̃ϖϖ Tϖ̃ϖϖ )𭟋 + (1 − 𭟋)𭟋

𭟋
1−𭟋 .

(69)

Substituting (65)-(69) into (64) leads to

V̇σ ≤ −
ϱ1

2𭟋 z2𭟋
1 −

ϱ2

2𭟋 z2𭟋
2 −

ϱ3

2𭟋 z2𭟋
3 − (l1µ1)𭟋(

1
2µ1

η̃ηηT1 η̃ηη1)
𭟋

− (l2µ2)𭟋(
1

2µ2
ρ̃21 )

𭟋
− (l3µ3)𭟋(

1
2µ3

η̃ηηT2 η̃ηη2)
𭟋

− (l4µ4)𭟋(
1

2µ4
ρ̃22 )

𭟋
− (l5µ5)𭟋(

1
2µ5

ϖ̃ϖϖ Tϖ̃ϖϖ )𭟋 + ζ

≤ − ϱ̄

[
(
1
2
z21)

𭟋
+ (

1
2
z22)

𭟋
+ (

1
2
z23)

𭟋
+ (

1
2µ1

η̃ηηT1 η̃ηη1)
𭟋

+ (
1

2µ2
ρ̃21 )

𭟋
+ (

1
2µ3

η̃ηηT2 η̃ηη2)
𭟋

+ (
1

2µ4
ρ̃22 )

𭟋

+ (
1

2µ5
ϖ̃ϖϖ Tϖ̃ϖϖ )𭟋

]
+ ζρ, (70)

where ζρ = 5(1 − 𭟋)𭟋
𭟋

1−𭟋 +
l1
2 ηηη

T
1ηηη1 +

l2
2 ρ

2
1 +

l3
2 ηηη

T
2ηηη2 +

l4
2 ρ

2
2 +

l5
2ϖϖϖ

Tϖϖϖ + ϵ2 + ϵ1 +
1
2O(λ

2λ1λ2−2
0 ), and ϱ̄ :=

min(ϱ1, ϱ2, ϱ3, (liµi)𭟋), i = 1, 2, · · · , 5.
By Lemma 5, it follows from (70) that

V̇σ ≤ −ϱ̄V𭟋
σ + ζρ . (71)

According to Lemma 1, it can be inferred from (71) that
V𭟋

≤
ζρ

ϱ̄(1−c0)
holds for t ≥ tr where tr =

1
(1−𭟋)ϱ̄c0

[V 1−𭟋
−

ζρ
ρ̄(1−c0)

1−𭟋
𭟋 ], and the denotation of c0 can be seen in Lemma 1.

Further, we have

|z1(t)| ≤ 2(
ζρ

ϱ̄(1 − c0)
)

1
2𭟋 ,∀t ≥ tr . (72)
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FIGURE 4. Tracking result of flight path angle (RAFFFAC).

These results demonstrate that the closed-loop flight-path
tracking control system (7) is a SGPFS system, and the
tracking error falls in a small neighborhood of the origin
during a finite time.

On another hand, it follows from (71) that z1, z2, z3, ρ̂1, ρ̂2
and ϖ̂ϖϖ are guaranteed to be bounded. On basis of this, the
boundedness of α1, α2, ud , v, and δ can be achieved from
(30), (37), (25), (23) and (27). Further, the boundedness of
all other signals can be obtained.
In this study, both unknown deadzone nonlinearity and

actuator faults are considered during controller design.
In the process of controller design, no sliding mode surface
is constructed for accomplishing controller design, which
simplifies the control system design.

IV. ILLUSTRATIVE EXAMPLE
In this section, the numerical simulation results are presented
to show the performance of the proposed control scheme. The
control objective is to make the state x1 track the command
flight path angle x1,d = 5◦ sin(t). The actual parameter values
are L̄o = 0.1, L̄α = 1.0, Mα = 0.1, Mq = −0.02,Mδ = 1.0,
the actuator faults are ρf = 0.8 and φf is a random number
in the range of [−0.5, 0.5], and the true parameters of the
deadzone are br = 0.5, bl = −0.6,mr = 1,ml = 1.5 and
11(t) = 0.01 sin(2t),12(t) = 0.05 cos(2t), which are not
needed to be known durign controller design.

The robust adaptive fault-tolerant finite-time flight-path
angle control (RAFFFAC) law (23) and (43), the virtual
control signals (30) and (37), tracking differentiators (35)
and (41), and the adaptive laws (31), (32), (44), (45) and (47)
are used for simulation, taking 𭟋 = 97/100, ϵ1 = 0.01, ϵ2 =

0.01, µ1 = 1, µ2 = 0.1, µ3 = 1, µ4 = 0.1, µ5 = 0.5, l1 =

l2 = l3 = l4 = l5 = 0.1, ϱ1 = 5, ϱ2 = 5, ϱ3 = 5,ϖ =

0.2,ϖ = 10, ℘ = 0.5. The initial values are chosen as
follows: x1(0) = 2, x2(0) = 0, x3(0) = 0. The simulation
results are shown in Figs. 4-7. Fig. 4 shows the system output
curve and the reference trajectory curve for the case of using
RAFFFAC law. The tracking error is plotted in Fig. 5. The

FIGURE 5. Tracking error (RAFFFAC).

FIGURE 6. Angle of pitch (RAFFFAC).

FIGURE 7. Control input (RAFFFAC).

curve of pitch angle is depicted in Fig. 6. Fig. 7 displays the
control input curve under the action of RAFFFAC law.

To further demonstrate the advantage of our proposed
control scheme, two other control algorithms are adopted for
comparison.
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FIGURE 8. x1 and x1,d (PIDC).

PIDC). A traditional PID control (PIDC) law is introduced
as follows:

v = kp(x1,d − x1) + ki

∫ t

0
(x1,d (τ ) − x1(τ ))dτ

+ kd (ẋ1,d − ẋ1), (73)

where the design parameters are chosen as kp = 11, ki =

0.3, kd = 21.
ADSC). An adaptive dynamic surface control(ADSC)

law is given in [3] to solve the flight-path angle control
problem for aircraft systems with neither actuator deadzone
nor actuator fault as follows:

v = θ̂θθ
T
bϕϕϕb, (74)

whereϕϕϕb = [x2−x1, x3,
ρ2bS3
2εb

−ẋ3,d+ccS3]T ,
˙̂
θθθb = 0bϕϕϕbS3−

ηb0bθ̂θθb, S3 = x3 − x3,d . The signal x3,d is available from the
following filtering operation:

τ3ẋ3,d + x3,d = ẋ2,d − cbS2,

(75)

where S2 = x2 − x2,d , and the signal x2,d is available from
the following filtering operation:

τ2ẋ2,d + x2,d = θ̂θθ
T
aϕϕϕa + x1, (76)

in which ϕϕϕa = [1,− cos x1,
ρ2aS1
2εa

− ẋ1,d + caS1]T ,
˙̂
θθθa =

0aϕϕϕaS1 − ηa0aθ̂θθa, S1 = z1 = x1 − x1,d . In this simulation,
the values of parameters are chosen as follows: ca =

3, cb = 3, c3 = 3, 0a = diag(0.5, 0.6, 0.02), 0b =

diag(0.5, 0.5, 0.1), ηa = ηb = 0.001, εa = εb = 0.01,
ρa = ρb = 0.1.

The initial values of PIDC system and ADSC system are
chosen to be the same as those of RAFFFAC system. The
PIDC simulation results presented in Figs. 8-11 are system
output response, tracking error, angle of pitch and control
input, respectively. The ADSC simulation results presented in
Figs. 12-15 are system output response,tracking error, angle

FIGURE 9. Tracking error(PIDC).

FIGURE 10. Angle of pitch (PIDC).

FIGURE 11. Control input (PIDC).

of pitch and control input respectively. From Figs. 5, 8, 12,
we can see that x1 can track the reference trajectory in
three control schemes. According to the corresponding
tracking errors shown in Figs. 6, 9, 13, we can see that
the closed-loop RAFFFAC system possesses the smallest
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FIGURE 12. x1 and x1,d (ADSC).

FIGURE 13. Tracking error(ADSC).

FIGURE 14. Angle of pitch (ADSC).

steady-state position error among three closed-loop control
systems.

For further performance comparison, root mean squared
error (RMSE) is introduced to measure the performance as

FIGURE 15. Control input (ADSC).

TABLE 1. RSME value comparison.

follows:

RMSE =

√√√√1
n

n∑
i=1

z21(t), (77)

where n denotes the number of samples. The RMSE values
of three control algorithms are listed in Table 1, from which
we can see that the RMSE value of RAFFFAC is the smallest
among the three control schemes. The above results verify the
effectiveness of the proposed control scheme.

V. CONCLUSION
To achieve a finite-time flight-path angle-tracking perfor-
mance of aircraft systems with unknown deadzone and
actuator faults, a robust adaptive fault-tolerant finite-time
control strategy has been developed. A new smooth deadzone
inverse model has been established to compensate for dead-
zone nonlinearity. During the backstepping control design,
two finite-time differentiators are employed to estimate the
derivatives of virtual control signals. Simulation results show
the effectiveness of our proposed fault-tolerant finite-time
flight-Path angle control scheme.
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