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ABSTRACT This paper presents an algorithm for a team of heterogeneous mobile robots to estimate
and adaptively sample a stationary, isotropic, Gaussian process. An estimation framework is proposed to
assimilate measurements from robots with differing sensing capabilities (i.e., measurement noise variance).
To improve computational efficiency of the Gaussian process regression, the survey area is divided into
regions that each use a common semivariogram matrix constructed with a truncated measurement set
determined by an adaptive selector. As the mission proceeds, a Voronoi-based algorithm periodically
partitions a density function—representing time-varying sampling priority—to identify high-value sampling
locations. The path for each robot is modeled as an mechanical system: a sequence of masses (waypoints)
are interconnected by springs and dampers and pulled towards Voronoi cell centroids. At each path planning
cycle the robots are iteratively simulated with heterogeneous dynamics (e.g., speed, turn radius) following
their respective waypoint paths as stiffness/damping parameters are adjusted to satisfy mission time
constraints. Numerical simulations show that the proposed approach reduces mapping error when compared
to non-adaptive lawnmower coverage of a survey area. The algorithm is demonstrated experimentally using
two cooperating autonomous surface vessels to map the bathymetry in a section of Lake Norman near
Charlotte, NC.

INDEX TERMS Adaptive sampling, Gaussian processes, multi-robot system, heterogeneous sensing,
Voronoi partition.

I. INTRODUCTION
Teams of robots equipped with sensors can coordinate their
actions to cover a large area and maximize information gain
using adaptive sampling (AS) algorithms [1], also known as
informative path planning (IPP) [2]. Robotic sensor networks
provide an automated, efficient, and scalable means to collect
continuous spatial data in applications such as precision
agriculture, terrain mapping, and environmental monitor-
ing [3], [4], [5], [6], [7]. Adaptive sampling algorithms
use a model of the spatiotemporal process to assimilate
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measurements and predict the underlying attribute of interest
in unsampled regions. Often the spatiotemporal distribution
of the attribute can be modeled as a Gaussian Process (GP).
A GP is a random process characterized by a mean and
a covariance function. GP regression (known as kriging in
the geosciences [8]) enables data-driven estimation of a
spatial attribute in unsampled locations as a weighted linear
combination of existing measurements. Adaptive sampling
algorithms that utilize GP-based models of continuous spatial
distributions have been widely studied, including for robotic
mapping of light intensity [7], water body salinity or
conductivity [4], [9], temperature [5], terrain height [10],
chemical concentrations [11], and soil moisture [3]. Themain
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idea in AS/IPP is to allocate sampling trajectories to
robots by periodically optimizing a performance metric
related to the quality of the estimated spatial map of the
attribute. In this way, robots can more efficiently estimate
a spatially distributed quantity of interest, especially when
there is not enough time to perform an exhaustive full
coverage survey.

Our aim in this paper is to design and demonstrate an
adaptive sampling algorithm for heterogeneous robot teams
that have continuous dynamics described by ordinary differ-
ential equations (ODEs) and to allocate sampling trajectories
that are cognizant of each robot’s differing dynamics and
sensing capabilities. Our approach considers the precise path
the vehicle will follow and corresponding mission time as
a constraint. The agents may have differing dynamics and
measure the same attribute but with varying sensor quality
(i.e., each robot’s sensor has differing measurement noise
variance). A Gaussian process regression is proposed to
efficiently handle this heterogeneous sensing scenario for a
stationary, isotropic spatial field. Then, an adaptive sampling
algorithm is developed that iteratively simulates the motion
of each robot (with its heterogeneous dynamics) through a
sequence of path waypoints from the current time to the
final mission time to periodically replan the path. Samples
are obtained at a fixed time intervals along the path and the
sampling path is designed to minimize mapping error.

A. RELATED WORK
The following section highlights prior work related to AS/IPP
algorithms and compares and contrasts how heterogeneity,
vehicle dynamics, and spatial process estimation has been
incorporated into prior problem formulations. Various tech-
niques used for optimizing the sampling path and the relation
of the proposed approach to prior work is discussed.

1) HETEROGENEITY
Many prior works have focused on AS/IPP for a single
vehicle [3], [4], [5], [7], [10], [12], [13], [14] or a set of
homogeneous vehicles [9], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27]. When increasingly
larger teams of robots are considered communication con-
straints [15], [28], [29], [30] and scalability [21], [31] must
be addressed. Heterogeneity arise when multiple vehicles
have differing platform dynamics and/or sensing capabilities.
In [28], vehicles with sensors that have varying fields of
view are tasked with inferring the state of an environment.
In [32], agents use differing sensor types to estimate a
latent phenomena that is correlated with the unique sensor
measurements. In [33] heterogeneous vehicles are equipped
with unique sensor suites and use a three-phase process
to scan a region and identify points of interest. In [31] a
general framework to consider multiple heterogeneity criteria
(speed, battery life, terrain traversability, sensor type etc.) is
developed using a heterogeneity cost space to leverage robot
capabilities. Other examples of heterogeneity in the context

of GP-based mapping include AS/IPP while performing
another task [34], for front detection [35], and for symbiotic
planning along a route with a second supporting platform to
conserve battery life [36]. AS/IPP and mapping/exploration
methods that consider heterogeneity outside the context of GP
models of spatial fields include [28], [37], [38], [39], and [40].
Some robotic applications may also consider classification
of spatial attributes sensed in the environment (rather than
regression of a scalar or vector field). In this context,
clustering for multi-modal datasets is of interest and methods
to handle heterogeneous types of noise, including corrupted
data, perturbations, and outliers, have been developed [41].

2) MODELS OF VEHICLE DYNAMICS
To reduce complexity, a common AS/IPP assumption is that
the vehicle moves along straight segments at a constant speed
without any turning dynamics [3], [4], [5], [7], [9], [12], [13],
[14], [17], [19], [20], [21], [25], [26], [27], [32]. Motion may
be in arbitrary directions, constrained to certain directions
(e.g., in the four cardinal directions) [21], constrained
between certain waypoints [32], or constrained to follow
continuous paths that are produced by the optimizer [15].
Ignoring vehicle turn dynamics is well justified when the
spatial length scale of the survey is much larger than the
length scale of vehicle turning maneuvers. Vehicle low-level
controllers are assumed to adapt to any environment factors
(e.g., wind, current) and account for other dynamic model
complexities. However, when operating in more constrained
environments, or when accurate accounting of energy expen-
diture or time is critical, a more sophisticated dynamic model
may need to be incorporated into the planning process. A few
authors have developed algorithms that explicitly utilize an
ordinary differential equation (ODE) model of the robot’s
motion. In [10] the motion of an autonomous surface vessel
is parametrized using a kinematic model with speed and turn-
rate constraints. In [28] continuous time integrator dynamics
are used to approximate the motion of a quadrotor with
a position controller following waypoints. In [24], three-
dimensional nonholonomic rigid body underwater vehicle
dynamics are considered. Other works that, in principle,
could incorporate vehicle dynamics include [22], [23] using
B-splines, or [14] and [42] using the steering subroutine of a
sampling-based motion planning algorithm.

3) ESTIMATION APPROACHES
GP regression and hyperparameter optimization is widely
used to estimate a spatiotemporal process of interest from
noisy measurements [5], [7], [9], [10], [13], [16], [17], [19],
[20], [23], [24], [25]. GP regression has been adapted to
consider special cases, such as localization uncertainty [11],
distributed estimation [43], correlation among several distinct
measured quantities and a latent process [32], mixtures
of GP models [26], [31], and when the variance depends
on the measurement itself [3]. However, one drawback
of GP regression (especially for robotic systems with
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TABLE 1. Comparison of this paper to related work that considers heterogeneity and/or the ordinary differential equation (ODE) describing the robot’s
dynamics.

limited onboard computation) is that the time-complexity
is O(N 3) [44, ch.8] where N is the number of samples.
To address this challenge GP-based adaptive sampling
algorithms with an iterated covariance update [13], truncated
measurements [15], and fixed-complexity [45] have been
proposed. Other approaches for improving scalability use
global or local approximations such as sparse GPs [24], [46].
Sparse GPs reduce the computational burden and can account
for time-varying environments by periodically re-estimating
the hyperparameters [4] and can be used for streaming
data [22] and distributed data [18].
Non-GP-based approaches have also been adopted to

model spatiotemporal processes for adaptive sampling, for
example, using Kalman filters to estimate the weights of a
set of basis functions [16], [42] or using sequential Bayesian
filters [28]. In the absence of a spatiotemporal process model
and estimation method, exhaustive or partial coverage paths
techniques that consider energy limitations of the robotic
team [12], [47], [48] can be used for information gathering.

4) OPTIMIZATION PROBLEM FORMULATION AND
APPROACH
Prior work has considered numerous optimization objectives
and techniques. When the planning space is sufficiently small
each candidate sampling location can be evaluated to identify
the optimal action at each iteration [3], [5], [7], [32]. In [5] an
objective function balances reduction in variance and gradient
intensity and searches a waypoint graph to determine the next
best survey line. In [7], Bayesian optimization selects the best
sampling location from a set using a metric that balances
the mean and variance of prediction with distance to travel.
In [3] both greedy and weighted randomized (Monte Carlo)
selection criteria are used to determine sampling points with
high kriging variance.

The adaptive sampling problem can also be formulated as a
combinatorial-optimization to visit a particular set of points
in an optimal sequence. In [36], prior knowledge is used to
identify potentially mislabeled (PML) points and a variant of
a traveling salesperson problem (TSP) is formulated to visit
either all of the points or maximize the number of PML points
visited subject to energy constraints. In [4] the sampling
locations are chosen from a pre-defined grid to maximize
mutual information using the predicted mean and variance
at each sample location. In [22] the inducing points of a

sparse GP are used as waypoints to formulate an assignment
problem.

Gradient-following techniques have been investigated
to maximize mutual information [28], balance energy
expenditure while minimizing error variances at target
positions [16], to minimize the average of the prediction
error variances at target positions [15], or to minimize
the posterior entropy after making a new observation [13].
Greedy approximations leverage spatial decompositions to
optimize mutual information [9] or to optimize condition
entropy [17]. Receding horizon cross-entropy trajectory
optimization has been investigated to maximize an upper
confidence bound [10]. Techniques that use coverage control
and geometric optimization (e.g., Voronoi partitions) have
also been applied [17], [18], [19], [26]. Other methods
include: using Markov Decision Process (MDP) [21] with
a policy gradient algorithm to maximize the accumulated
reward derived from a spatial adaptive scoremap, reinforce-
ment learning to reduce uncertainty balanced with trajectory
cost [20], evolutionary algorithms [23], [24], and sampling-
based methods [14], [42].

5) RELATION OF PROPOSED APPROACH TO PRIOR WORK
Table 1 highlights several prior works that have investigated
AS/IPP algorithms that consider (1) heterogeneous vehicle
motion and sensing, (2) differential constraints governing
vehicle motion, and (3) time or energy constraints computed
by considering the continuous path motion of the robotic
system. However, to our knowledge, no prior work considers
all three aspects simultaneously. This paper contributes to
the literature and methodologies available to tackle such
problems. Specifically, our paper builds on the work in [12],
which is an offline planning method for a single-vehicle to
maximize coverage with energy-constraints. Our approach
extends [12] to a multi-robot framework that considers vehi-
cle dynamics. We adopt the mass-spring-damper architecture
used for waypoint position tuning in [12] and extend it
into an adaptive framework that involves GP estimation
and periodic adaptation and path re-planning. Rather than
using a standard Voronoi diagram as in [12], our method
uses a centroidal Voronoi partition with a time-varying
surface (that changes as measurements are assimilated) to
represent sampling priority. The sampling piority surface is
used to identify high-value sampling locations that attract
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path waypoints. Moreover, the process of tuning spring and
damper constants in [12] is extended to allow for satisfying
a mission time constraint computed for the continuous
dynamics of each robot. To our knowledge this paper is the
first to make a connection between the two geostatistical
techniques of Common Data Neighborhoods (CDN) [49]
and heterogeneous measurement-error filtered kriging (HFK)
[50] with robotic informative path planning.

B. CONTRIBUTIONS
The contributions of this paper are (1) an efficient Gaussian
process regression framework to fuse measurements from
multiple robots with heterogeneous measurement noise using
an adaptive truncation with common data neighborhoods,
(2) an adaptive sampling approach that considers heteroge-
neous vehicle dynamics and sensing to allocate sampling
trajectories. The approach is compared to non-adaptive
lawnmower coverage of a survey area through numerical
Monte Carlo simulations. The feasibility of the method is
demonstrated by a field experiment in which two autonomous
surface vessels adaptively map the bathymetry in a subsection
of a lake.

C. ORGANIZATION
The remainder of the paper is organized as follows.
Section II introduces notation and mathematical background
on Gaussian process regression and centroidal Voronoi
tessellations. Section III formulates the optimization problem
by describing the robot dynamics, sensing, and the cost
function and constraints. Section IV proposes an efficient
approach for Gaussian process regression with heterogeneous
measurements. Section V describes the adaptive sampling
algorithm. Section VI provides results from simulations.
Section VII discusses a real-world demonstration of the
algorithm. The paper is concluded in Section VIII.

II. BACKGROUND
This section introduces notation used throughout the paper
and relevant background, including: Gaussian spatial pro-
cesses, ordinary and heterogeneous filtered-error kriging, and
centroidal Voronoi tessellations.

A. GAUSSIAN SPATIAL PROCESSES
A Gaussian process (GP) is a infinite collection of joint
random variables [51] from which any finite subset have a
joint Gaussian distribution. A GP is denoted by [44]

Z (x) ∼ GP(µ(x), k(x, x′)) , (1)

where the collection of random variables Z (x) have a mean
function µ(x) = E[Z (x)] and covariance function (or kernel)
k(x, x′) = E[(Z (x) − µ(x))(Z (x′) − µ(x′))], E[·] is the
expected value of a random variable, and x, x′ ∈ Rn are
two locations in the input space (e.g., a spatial domain).
Gaussian processes that are second-order stationary have a
constant mean µ(x) = m and a covariance function between

points x and x′ = x + h that is invariant under
translation [8], [50]

k(x, x+ h) = E[(Z (x)− m)(Z (x+ h)− m)] = k(h) , (2)

where h is known as the lag beween two points x and x′.
Covariance functions describe the amount of variation of the
process and the degree to which two points in the spatial
process are related (i.e., the smoothness of the process). This
paper uses the isotropic Gaussian covariance function

k(h) = σ 2
0 e
−3(||h||ω−1)2 , (3)

where σ 2
0 is the overall variance of the process and ω is the

length-scale of the GP. The factor of three in the exponent
of (3) ensures that covariance function is 0.05σ 2

0 when ||h|| =
ω, a standard feature in kriging for geosciences [8, p.78].

When sampling a real-world scalar field, the covariance
function of the model is generally unknown and must be
estimated. Often the covariance function is substituted with
the semivariogram, γ , which is a measure of dissimilarity of
measurements with spatial distance [8]. For GPs which are
second-order stationary, the covariance and semivariogram
are related by [8]

γ (h) = k(0)−k(h) . (4)

The semivariogram can be estimated by fitting a curve to a
scatter-plot of the average variation in measurements over a
given distance [8]. The fit curve is termed the experimental
semivariogram, γ̂ (h).

B. ORDINARY KRIGING
Gaussian processes can be conditioned on prior measure-
ments to make predictions at unsampled points of interest.
A type of GP regression developed for use in geostatistics
is known as ordinary kriging [8]. Ordinary kriging is
referred to as a Best, Linear Unbiased Estimator (BLUE)
because it minimizes mean square error using a weighted
combination of measurements for each estimate. Let Z(X) =
[z1, . . . , zM ]T be a vector of noise-free measurements of the
random function Z (x) at spatial locations X = {xi | i =
{1, 2, . . . ,M}}. The optimal weights in ordinary kriging,
λOK, and the Lagrange multiplier, µOK, for a desired a
prediction point, x0, are [50][

λOK
µOK

]
=

[
0̂(X)Z 1

1T 0

]−1 [
γ̂ (X, x0)

1

]
, (5)

where the elements of the semivariogram vector γ̂ (X, x0) ∈
RM×1 are γ̂ (X, x0)i = γ̂ (||xi − x0||), 1 ∈ RM×1 is a column
of ones, and the semivariogram matrix 0̂(X) ∈ RM×M has
elements [50]

0̂(X)ij = γ̂ (||xi − xj||) (6)

for xi, xj ∈ X . The estimate and variance of the estimation
error at the prediction point x0 are [50]

ẐOK(x0) = λT
OKZ(X) (7)

σ 2
OK(x0) = λT

OKγ̂ (X, x0)+ µOK , (8)
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FIGURE 1. Two-dimensional field estimation using ordinary kriging. The
surface representing Z (x) is characterized by a covariance function (3)
with θ = [ζ, ω, σ2

0 ]T = [0, 0.3, 1]T and with a mean µ = 5. A total of 20
measurements are represented by the red projections from the surface to
the x1-x2-plane. The coloring on the x1-x2-plane indicates estimation
variance; the darker the color, the lower the relative variance. At locations
where measurements were taken, the variance equals zero since the
measurements are noise-free.

respectively. This estimation can be repeated for various
spatial locations to produce an estimate of the underlying GP.
Figure 1 shows the result of ordinary kriging over a set of
uniformly spaced grid of prediction points.

C. HETEROGENEOUS ERROR FILTERED KRIGING
Ordinary kriging is an exact interpolator in the sense that
the prediction at sampled points is exactly equal to the
measurement observed at that sample point [50]. However,
when the measurements are corrupted by noise the filtered
kriging approach is used to produce a smoothed prediction of
the measurement-error-free value of the process [50]. Hetero-
geneous measurement-error filtered kriging (HFK) extends
ordinary kriging to the case of site-specific measurement
error with known variance [50]. Let

Z̃ (xi) = Z (xi)+ ϵ(xi) , (9)

represent the noise-corrupted measurement of the attribute
Z at location xi where ϵ(xi) is the realization of a zero-
mean Gaussian random variable with site-specific measure-
ment noise variance σ 2

η (xi). The vector of noise-corrupted
measurements obtained at locations X according to (9) is
Z̃(X). This site-specificity will be leveraged to account for
heterogeneity among robots in Sec. IV. Christensen [50]
proposed to account for noisy measurements (9) using the
HFK estimator

ẐHFK(x0) = λT
HFKZ̃(X) (10)

σ̂ 2
HFK(x0) = γ̃ TλHFK(X, x0)+ µHFK , (11)

where the optimal kriging weights, λHFK, and Lagrange
multiplier, µHFK, are found from[

λHFK
µHFK

]
=

[
0̃(X) 1
1T 0

]−1 [
γ̃ (X, x0)

1

]
. (12)

In (12), 0̃(X) and γ̃ (X, x0) are augmented semivariogram
matrices and vectors, respectively. Thematrix 0̃(X) is defined
by augmenting (6) with the average site-specific variance
along off-diagonal elements [50]

0̃(X)ij = γ̂ ∗(||xi − xj||)+ (1− δ||hij||)
σ 2
η (xi)+ σ

2
η (xj)

2
,

(13)

where δ||h|| = 1 when ||h|| = 0, and δ||h|| = 0 otherwise,
and γ̃ (X, x0) is defined by augmenting the ith element of the
semivariogram vector with half the site-specific variance of
the measurement [50]

γ̃ (X, x0)i = γ̂ ∗(||xi − x0||)+
σ 2
η (xi)

2
. (14)

In (13) and (14), γ̂ ∗ refers to the estimated semivariogram
of the noise-free process γ̂ ∗. In practice, the noisy obser-
vations Z̃ are used to estimate the semivariogram γ̂ of the
noise-corrupted process and a nugget term ζ is used to
account for a discontinuity in the covariance function at
h = 0 to model micro-scale variation/sensor measurement
error [51]. The semivariogram model used here follows
from (3) and (4) with the addition of a nugget term

γ̂ (||h||; θ ) = ζ (1− δ||h||)+ σ 2
0

(
1− e−3(||h||ω

−1)2
)
, (15)

and the vector of hyper-parameters is θ = [ζ, ω, σ 2
0 ]

T.
Several examples of hyperparameters and covariance

functions are shown in Fig. 2. The blue curve represents a
covariance function for a GP sampled with no sensor noise
or micro-scale process variation (i.e., ζ = 0). The blue
curve hyperparameters are the same as those used in the
example of Fig. 1. In comparison, the yellow curve represents
a GP that has greater magnitude variation (larger σ 2

0 ), greater
spatial variability (smaller ω), and a non-zero nugget ζ .
Comparing the red curve to the yellow curve, the GP has
statistically smaller changes in magnitude (smaller σ 2

0 ), but
greater spatial variability (smaller ω) and larger micro-scale
process variation or sensor noise (larger ζ ).

FIGURE 2. Example isotropic Gaussian covariance functions (left) and
corresponding semivariograms (right) for different nugget ζ , lengthscale
ω, and variance σ2

0 hyperparameters. The solid circular markers represent
the value of the covariance function at a spatial lag of ||h|| = 0.

In [50] it is proposed that the noise-free estimated
semivariogram γ̂ ∗ can be obtained from the noise-corrupted
estimated semivariogram γ̂ by subtracting the average of the
measurement-error variance across all M sampling locations
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FIGURE 3. Comparison of kriging methods for observations with mixed
measurement noise variance (low ζ = 0.01 and high ζ = 0.5). The true
field is a realization of a GP with lengthscale ω = 0.2 and σ2

0 = 1. Top:
Ordinary kriging using an average nugget ζ = (0.01 + 0.5)/2. Bottom: HFK
using site-specific nugget values. Root-mean squared error (RMSE) for OK
is 0.2743 and for HFK is 0.2403.

from the nugget estimated using the noisy measurements
[50], i.e., γ̂ ∗(||xi − xj||) = γ̂

(
||xi − xj||; ζ ∗, ω, σ 2

0

)
where

ζ ∗ = −
1
M

M∑
k=1

σ 2
η (xk ) . (16)

Figure 3 provides a one-dimensional example to illus-
trate the differences between OK using (7)–(8) and HFK
using (10)–(11). By considering site-specific observation
noise, in comparison to a single average observation noise,
the root-mean square error of the estimate is reduced. Addi-
tionally, near low noise observations the estimate variance
exhibits greater confidence. In this work, the site-specific
variances will be determined by which robot took the
measurement at a specific location and the corresponding
measurement noise of their sensor.

D. CENTROIDAL VORONOI TESSELATIONS
This work uses centroidal Voronoi tessellations (CVTs)
to identify high-value sampling locations. Recall that a
standard Voronoi tessellation (VT) partitions a planar region,
Q ⊂ R2, into a set containing k non-intersecting polygonal
cells, {Vi}ki=1, whose union equals Q. Given a set of
generating points {gi}

k
i=1 ∈ Qk , the Voronoi cell Vi is the

set of points within Q that are closer to the cell’s generating
point, gi, than any other generating point [52]:

Vi = {x ∈ Q | ||x− gi|| ≤ ||x− gj||} (17)

for all j = {1, 2, . . . , k} with j ̸= i. When a density function
is defined over the domain ρ : Q→ R, each cell has a mass

FIGURE 4. Left: An underlying density function ρ(x) and a Voronoi
partition for 10 randomly positioned generating points (black circular
markers). Right: Position of generating points and corresponding
centroidal Voronoi tessellation (CVT) after convergence with Lloyd’s
algorithm. The black curved lines indicates the trajectories of each point
as they converged to their new positions that coincide with the center of
mass of each cell.

and center of mass

MVi =

∫
x∈Vi

ρ(x)dx and cVi =
1
MVi

∫
x∈Vi

x ρ(x)dx ,

(18)

respectively. CVTs [52] are variants of VTs in which the
generating points of the VT are co-located with the associated
cell’s center of mass (i.e., gi = cVi ). In this work, (18) is
discretized by replacing the integrals with summations over
a uniform grid, and the CVT is computed using a variant
of Lloyd’s method [53]. Figure 4 illustrates the concept of
CVTs, including the time-history evolution of the generating
points as they converge to their final locations with Lloyd’s
method. In this work, the CVTs are repeatedly re-computed
to identify high-priority waypoints to guide sampling with a
density function that represents sampling priority. Note that
if the density function ρ represents a zero-mean Gaussian
process then the center of mass calculation may use |ρ(x, y)|
instead of (18) to converge to both peaks and troughs of
interest.

III. PROBLEM FORMULATION
This section describes the robot dynamics and sensing and
formulates the cost function and optimization problem.

A. HETEROGENEOUS AGENT DYNAMICS
Consider a set of N robots with heterogeneous dynamics.
Each robot is modeled as a differential thrust autonomous
surface vessels with equations of motion

ẍi =
1
mi
{[ur + ul] cos(θi)− biẋi}

ÿi =
1
mi
{[ur + ul] sin(θi)− biẏi}

θ̈i =
Li
2Ii

(ur − ul) , (19)

where (xi, yi) ∈ R2 is the planar position relative to a
fixed inertial reference frame with origin O and orthonormal
basic vectors {i1, i2, i3} and θi ∈ [0, 2π) is the heading
(see Fig. 5) for the ith robot with i ∈ {1, 2, . . . ,N }. This
choice of dynamics is motivated by our experimental work
(see Sec. VII) but it can be generalized to other vehicle
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FIGURE 5. The i th robot is modeled as a differential thrust vehicle. The
desired heading angle θd points the vehicle towards waypoint wj . Once
robot’s position (x, y ) is within a capture radius Rc of the waypoint the
next waypoint in the sequence becomes active.

models. In (19), mi is the mass, Ii is the rotational inertia,
Li is the distance between thrusters, and bi is a damping
coefficient (i.e., linear drag) of the ith robot. The left and
right thruster forces, ul and ur , respectively, are bounded:
ul, ur ∈ [umin, umax] where umin and umax are a minimum and
maximum thrust force. The ith robot follows a reference path
consisting of a set of waypointsW i = {wi,1,wi,2, . . . ,wi,Nw}
where wi,j ∈ Q for all j = {1, 2, . . . ,Nw} and Nw is the
number of waypoints in the path. For a given waypoint,
wi,j = (xw, yw) ∈ W i, the homing guidance law θd =

atan2(yw − yi, xw − xi) gives a desired heading and the
thrusters are commanded according to

ul = sat(δv − δθ ; 0, umax)

ur = sat(δv + δθ ; 0, umax) , (20)

where δv and δθ are the outputs of PID controllers tracking
a desired speed vd and the desired heading θd , respectively,
and sat(κ; al, ah) is the saturation function that bounds an
argument κ between a lower bound al and upper bound ah
such that al ≤ κ ≤ ah. Once the position of the ith robot is
sufficiently close to the jth waypoint, ||[xi, yi]T−wi,j|| ≤ Rc,
where Rc > 0 is a capture radius, the next waypoint in the
sequence becomes active by incrementing j. The closed-loop
dynamics of the ith robot can be summarized as

ṡi = f i(si,ui(si);W i) , (21)

where si = [xi, yi, θi, ẋi, ẏi, θ̇i]T ∈ R2
× [0, 2π ) × R3 is the

state of the system (19) rewritten in first-order form and ui(si)
is the guidance and control law (20).

B. HETEROGENEOUS AGENT SENSING
The team of N robots can have differing measurement noise
variance (e.g., due to differing sensors or signal processing
instrumentation). The measurement noise variance for each
robot σ 2

η,i = E[(Z − Z̃ )2] characterizes the expected differ-
ence between the true and measured values of the observed
scalar field according to (9). When robots sample the same
process, but with different quality sensors, the differences in
the measurement noise variance must be considered in the GP
regression. As will be described later (Sec. IV-A), the HFK
method developed for site-specific variance will be adapted
to handle assimilation of measurements from different robots
with discrepancies in measurement noise variance. The

robots are assumed to be in constant communication with a
centralized base station.

C. COST FUNCTION
Given a waypoint list W i, initial conditions si(t0), a sensing
time interval Ts, the closed-loop dynamics (21), and a
maximum mission time Tm, the map

φi(W i; si(t0), t0,Tm,Ts) = [qi,1, qi,2, . . . , qi,M ] (22)

returns the ith robot’s sampling locations arranged as columns
of a matrix in chronological order where qi,j ∈ Q for all j =
{1, 2, . . . ,M}. During optimization, these sampling locations
φi are obtained by numerically simulating the robotic team.
Let thematrixX ∈ R2N×M denote the stacked set of sampling
locations across all robots at the end of the mission

X(W ) = [φ1(W1)T, φ2(W2)T, . . . , φN (WN )T]T . (23)

The corresponding measurements made at each location in X
are denoted Z̃ ∈ RN×M .
The goal of the adaptive sampling algorithm is to design

waypoint paths for each robot to collectively minimize the
mapping error (ME)

ME(X, Z̃) =
1
|P|

|P |∑
i=1

|Ẑ (pi)− Z (pi)| , (24)

which is the average difference between the estimated field Ẑ
and the true field Z across |P| grid points at which the spatial
process is estimated. We consider P = {p1, p2, . . . , pm·n} to
be a uniform grid with m columns and n rows where pi ∈ Q
for all i = {1, 2, . . . ,m · n}.
An example of ME quantification is shown in Fig. 6 for

different number and arrangement of samples. The middle
panels of Fig. 6 exhibit similar mapping error (approximately
0.43–0.44) for the same number of 25 samples in a different
arrangement. Notice that the estimated field is a better
approximate of the actual field near where samples are
clustered. In unsampled regions the estimate tends towards
a constant value. When the two sets of samples are combined
(bottom left of Fig. 6) the ME reduces to 0.27. With
50 additional samples added (a total of 100 samples as shown
in the bottom right of Fig. 6) the ME reduces to 0.08 and the
estimate is very similar to the actual field.

D. PROBLEM STATEMENT
The optimization problem is to find the set of waypointsW∗

that minimize the mapping error:

arg min
W

ME(X(W ), Z̃) (25a)

subject to ṡi = f i(si,ui(si);W i) (25b)

si(t0) = (si)0 (25c)

umin ≤ ui(si) ≤ umax (25d)

T (wi,Nw ) ≤ Tm for all i = 1, . . . ,N , (25e)

Z̃ (xj) = Z (xj)+ ϵ(xj)

for all xj ∈ X(W .) (25f)
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FIGURE 6. Mapping error (ME) quantification example. Top panel shows
an actual GP field sampled by 25 red points, 25 black points, and 50 blue
points. In this example samples are noise-free. Successive panels show
the correspond GP regression and mapping error for different
combinations of samples. The ME is the average per-pixel error over the
50 × 50 pixel grid used to render the GP regression and the actual
GP field.

The cost (25) depends on the sampling locations X which
are, in turn, determined by the waypointsW to be optimized.
Heterogeneity in dynamics is encapsulated by the equations
of motion (25b), the initial conditions (25c), and the mini-
mum/maximum thrust input constraints (25d). The mission
time constraint is encoded by (25e) so that the estimated
capture time of the final mission waypoint is less than or
equal to the desired total mission time. In (25e) the function
T (wi,j) = ψ(wi,j;W i, si(t0), t0) denotes the time when
robot i reaches its jth waypoint given its list of waypoints
and the initial state. The variation between robots’ sensing
capability is described by (25f) which implicitly assumes
robot-dependent measurement noise variance, as described in
Sec. III-B.

The above optimization problem is addressed in two
parts. First, a method for Gaussian process regression is
introduced in Sec. IV that uses the measurements (25f) to
allow predicting the GP over the grid of points P . Next,
Sec. V describes the adaptive sampling algorithm to find
waypoint paths that aim to produce paths with low mapping
error (25). Path optimization is performed by a centralized
base station.

IV. EFFICIENT GAUSSIAN PROCESS REGRESSION
In this section, a modified kriging approach is proposed to
account for robots with heterogeneous measurement noise
variance and to improve computational efficiency.

A. FILTERED KRIGING WITH HETEROGENEOUS SENSORS
Consider a robotic sensor network of N robots that measure a
spatial attribute Z with heterogeneous measurement variance
σ 2
η,i for i = 1, . . . ,N . This work proposes to specialize

heterogeneous filtered kriging (HFK, see Section II-C) to
the case of heterogeneous sensing robots by replacing the
site-specific measurement variance with a robot-specific one.
Suppose that each robot collects measurements at the same
sampling rate and begins to sample at the same time. The
total number of measurements from each robot is equal and
all measurements taken from all robots are used to populate
the set Z̃. An indicator function, β(x), is defined that returns
the measurement variance σ 2

η associated with the robot that
took the measurement at x, assuming no two samples are co-
located. Thus, (13) and (14) become

0̃(X)ij = γ̂ ∗(||xi − xj||)+ (1− δ||hij||)
β(xi)+ β(xj)

2
(26)

γ̃ (X, x0)i = γ̂ ∗(||xi − x0||)+
β(xi)
2

, (27)

while (16) becomes

γ̂Z (xi, xj) = γ̂Z̃

(
xi, xj; ζZ̃ −

1
N

N∑
i=1

σ 2
η,i, ω, σ

2
0

)
. (28)

B. ADAPTIVE SPATIAL TRUNCATION
The time complexity of kriging is dominated by the inversion
of the semivariogram matrix in (5) or (12). To improve
efficiency, spatial truncation can be used to reduce the size
of this matrix by considering only nearby measurements
with strong correlations to an estimation point and rejecting
measurements that have little influence [8], [15]. Typical
truncation methods rely on geometric selector regions
(squares, circles, etc.) centered about an estimation point
to capture relevant measurements. This strategy is effective
when there is a sufficient number ofmeasurements around the
estimation point [15]; however, it performs poorly in sparsely
sampled regions (e.g., at the start of a mission or near the
boundary of the field).

To address these challenges, an adaptive method of
measurement truncation is proposed wherein a standard
rectangular geometric selector is used if it contains a
threshold Mmin number of measurements, and otherwise a
nearest-neighbor selector is used to guarantee a minimum
number of measurements (i.e., by considering measurements
outside the geometric selector, if needed). The geometric
selector is denoted GR(x,X;wG, hG) = {xi ∈ X | xi ∈
R(x;wG, hG)} for all i = {1, 2, . . . ,M}, where R(x;w, h) ⊂
R2 denotes a rectangular area centered on x = (si, sj) ∈
R2 with width w and height h. The nearest-neighbor selector
is denoted GNN(x,X;Mmin) ⊂ X and it selects the
subset of at most Mmin measurement locations that are
nearest-neighbors to x [54]. The adaptive selector is then

G(x,X) =

{
GR(x,X;wG, hG) if |GR(x)| > Mmin

GNN(x,X;Mmin) if |GR(x)| ≤ Mmin
,

(29)

where |GR(x)| is the number of measurements in the
geometric selector.
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FIGURE 7. Example of the proposed adaptive truncation strategy with
Mmin = 5. Black circles are grid points, and blue ‘x’s are measurement
locations. Two CDNs Di and Dj , centered on grid points pi and pj ,
respectively, are highlighted in purple. When estimating a point A in Di
the corresponding rectangular selector contains more than Mmin
measurements and these measurements are used to define 0̃ in (12).
When estimating a point B in Dj the nearest-neighbor selector is used to
define 0̃ instead since insufficient measurements are located within the
corresponding rectangular selector.

C. COMMON-DATA-NEIGHBORHOODS (CDNS)
Spatial truncation reduces the size of matrices required for
inversion during the estimation process. However, it still
requires inverting unique semivariogram matrices for every
point to be estimated (since the geometric selector moves
with the estimation point). Given many points of interest,
the computation time of inverting many truncated matrices
may exceed inverting the original (full measurement set)
semivariogram. To reduce the number of required matrix
inversions for kriging we modify the common data neigh-
borhood (CDN) approach proposed in [49]. A group of
estimation points are assigned a common semivariogram
matrix based on nearby measurements (i.e., a fixed adaptive
selector is used for multiple nearby estimation points). This
approach is implemented as follows. The set of common
data neighborhoods, D = {D1, . . . ,DND}, is defined as a
collection of ND disjoint rectangular regions whose union
covers the entire survey areaQ. Each data neighborhoodDi =

R(ni;wD, hD) is centered at a point ni ∈ R2 and is defined by
a width wD and height hD. Let Gi = G(ni,X;wG, hG,Mmin)
be the adaptive selector (29) for data neighborhood Di, with
wG ≥ wD and hG ≥ hD.

D. HETEROGENEOUS CDN KRIGING
The proposed estimation approach combines HFK spe-
cialized to heterogeneous robots, adaptive selectors, and
CDNs. Suppose that an estimation point lies with the ith
CDN, x0 ∈ Di. For all such estimation points, the HFK
estimator (12) is used with the modifications (26)–(27) and a
subset of measurementsX given by the adaptive selector (29).
Importantly, this same truncated data set is used for all
estimation points in Di and hence the inversion in (12) need
only occur once per neighborhood. The kriging weights and
Lagrange multiplier for the point x0 ∈ Di are[

λHC
µHC

]
=

[
0̃(G(ni,X)) 1

1T 0

]−1 [
γ̃ (G(ni,X), x0)

1

]
, (30)

and the estimate and variance are denoted with a sub-
script HC,

ẐHC(x0) = λT
HCZ̃(G(ni,X)) (31)

and

σ̂HC(x0) = γ̃ TλHC(G(ni,X), x0)+ µHC . (32)

This approach is amenable to parallelization and permits a
trade-off between computational efficiency and accuracy by
adjusting the minimum number of considered measurements,
Mmin, the dimensions of the common data/search neighbor-
hoods, wD, hD, wG, hG.

E. NUMERICAL COMPARISON
The heterogeneous, common-data-neighborhood kriging
(HC) estimator was compared through numerical simulations
to a HFK estimation [50] (without adaptive selectors or
CDNs) and to ordinary kriging. The simulations consisted
of generating a GP within a normalized domain Q =

[0, 1]2 using hyper-parameters θ = [ζ, ω, σ 2
0 ]

T
=

[0, 0.3, 1]T. Measurement locations were randomly selected
and the measurements were polluted with noise according
to (9). For half of the measurements, σ 2

η,1 = 0.1, for
the other half, σ 2

η,2 = 0.5 to represent data collection
by heterogeneous robots with different quality sensors. The
noisy measurements were processed by the HC estimator
with hD = wD = 0.5ω, hG = wG = ω and Mmin = 20. The
same measurements were also used to estimate the field with
HFK and OK using a naive approach for nugget selection:
ζ = (0.1+ 0.5)/2.

The estimate was computed over one hundred unique
realizations of the GP. For each realization, each method
(HFK, HC, ordinary kriging) was used with 500, 1000, and
2000 measurements and the mean ME (24) and computation
time were recorded. The results are shown in Fig. 8.
An approximately ten-fold computation time savings was
achieved when comparing HC to HFK and ordinary kriging.
Also, HFK with heterogeneous measurement noise variance
is superior to the naive approach of adjusting the nugget

FIGURE 8. A comparison between mapping error and computation time
for three kriging methods. Error bars indicate one standard deviation.
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when using ordinary kriging. The accuracy reduction with
HC compared to HFK is minimal. Note that accuracy did
not improve with increased number of measurements for
ordinary kriging—this is due to numerical instabilities in
inverting large matrices, an effect which is pronounced where
measurement noise is not considered.

V. ADAPTIVE SAMPLING ALGORITHM
Since the actual realization of the field Z (x) is not known to
the robots, the mapping error (24) cannot be computed online
for path planning. Moreover, online optimization of (25) for
adaptive sampling is intractable due to high-dimensionality of
the waypoint decision space and the nonlinear and differential
constraints. Instead, we propose to use a surface of sampling
priority

J (X, Z̃; p, α) = [α + σ 2(X; p)] · |Ẑ (X, Z̃; p)| , (33)

to guide the allocation of waypoints. Equation (33) is
evaluated over the grid of points p ∈ P to give a
time-varying surface that depends on themeasurements Z̃ and
corresponding sample locationsX that accumulate during the
mission. We hypothesize that by allocating waypoints where
sampling priority (33) is high a low cost (24) can be achieved.
The sampling priority (33) includes a constant parameter
α ≥ 0 and is a function of the uncertainty σ 2 and
the estimated value Ẑ at a point p computed using a GP
regression, such as (31)–(32). The term [α+σ 2(X; p)] assigns
a high priority to unexplored areas where the uncertainty
is large. Multiplying by the estimate |Ẑ | scales the priority
in areas that are uncertain and are predicted to deviate
significantly from the field mean (i.e., peaks or valleys).
Equation (33) assumes a zero-mean process but it can be
modified to account for a known or estimated mean. The
constant parameter α prevents the point-wise priority from
reaching zero in regions that have already been sampled.
Thus, α can be used as a tuning parameter to balance
exploring new regions with returning to previously visited
locations.

A. ALGORITHM OVERVIEW
The adaptive sampling algorithm proposed extends the
Voronoi-based path generation approach in [12] to consider
robots with heterogeneous sensing, heterogeneous dynamics,
and mission time constraints. As the mission proceeds,
a centroidal Voronoi tesselation algorithm periodically par-
titions the time-varying sampling priority surface to identify
high-value sampling locations. The path for each robot is
modeled as an mechanical system: a sequence of masses
(waypoints) are interconnected by springs and dampers
and pulled towards Voronoi cell centroids (see Fig. 9).
At each path planning cycle the robots are iteratively
simulated following their respective waypoint paths as
stiffness/damping parameters are adjusted to satisfy mission
time constraints under the robots’ heterogeneous dynamics.
A detailed implementation of the algorithm is described
below.

FIGURE 9. A constrained CVT of three waypoints visualized as gray circles
with mass m and associated capture radius. Voronoi cells are defined
by (17). Centers of mass are depicted as blue circles. The time-varying
sampling priority surface is indicated by the contour plot with warmer
colors representing regions of higher priority. Pairs of adjacent waypoints
are connected by a spring with stiffness kp and a damper with damping
coefficient b. Waypoints are connected to their associated centroids with
spring constant, kc , and a damper. A dynamically feasible trajectory
through the waypoints set is sketched in blue.

B. ALGORITHM DETAILED IMPLEMENTATION
Algorithm 1 begins with the initialization of N · Nw unique
waypoints W within the sample space Q [A1.2] (e.g., using
a nominal lawnmower coverage path for each robot). This
waypoint set is then discretized into Nc planning cycles
consisting of C = ⌈Nw/Nc⌉ waypoints per cycle [A1.3],
where ⌈·⌉ denotes the ceiling operator. The integer index
g denotes the current cycle. At each new planning cycle,
recently acquired measurements Z̃ at locations X are
assimilated via a GP regression (Sec. IV) from which the
sampling priority surface (33) is evaluated point-wise (at each
grid point in P) [A1.5] and arranged as a matrix

J =

J (X, Z̃; p1,1, α) . . . J (X, Z̃; p1,n, α)
...

. . .
...

J (X, Z̃; pm,1, α) . . . J (X, Z̃; pm,n, α)

 , (34)

where pi,j is the grid point associated with the ith row and
the jth column. For the first iteration, when no measurements
have been performed, the priority at all grid points is ini-
tialized to a non-zero constant. The sampling priority matrix
J is then passed, along with the initialized waypoints W ,
to a modified centroidal Voronoi path generation algorithm,
mCVPG [A.2].

The mCVPG [A.2] algorithm select high-priority way-
points without considering the differential constraints and
mission time. The supplied initial waypoints W are used
as generating points, and mCVPG recursively calculates the
Voronoi tessellation [A2.3] to determine Voronoi cell centers
of mass (using J) until a convergence criteria is met.
At each iteration the waypoints W are moved according to
the dynamics of a mass-spring-damper network. Waypoints
are treated as having equal mass m and are connected
by springs to their corresponding Voronoi cell center of
mass and to adjacent waypoints in the path for each agent.
Dampers are placed alongside each spring to model energy
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Algorithm 1 Satisfyingmission time constraint usingmCVPG
with multiple robots
Require: 1
Require: T1 ≥ 0 // mission time tolerance
Require: N // number of robots
Require: Nw // total num. waypoints in mission
Require: Nc // number of planning cycles
Require: γ 0 // init. spring, damp. constants
Require: Q ⊂ R2 // survey area
Require: P // evaluation grid points set
Require: I // maximum iterations
Require: Is // maximum iterations for mCVPG
Require: {v̄i}Ni=1 // robots’ target speed

1: X ← ∅, Z̃← ∅ // initialize samples
2: W ← initializeWaypoints(N ,Nw,Q)
3: C ← ⌈Nw/Nc⌉ // num. wpts per cycle
4: for g = {1, 2, . . . ,Nc} do
5: J← evaluateCost(X, Z̃,P)
6: {γ i}

N
i=1 ← initSDs(γ0)

7: b← 0 // iteration counter
8: while b < I do
9: W ← mCVPG(W ;N , {γi}

N
i=1, g,C, J, 10

−4, Is)
10: for i = 1, . . . ,N do
11: ti ← simulateAgent(W i; si(T (wi,gC )), g,C, v̄i)
12: ϵi ← Tm − ti // sim. time error
13: if |ϵi| > T1 then
14: γ i ← updateSDs(ϵi,Tm, γ i)
15: end if
16: end for
17: if |ϵi| ≤ T1 for all i = 1, . . . ,N then
18: break
19: end if
20: b← b+ 1
21: end while
22: (X, Z̃, tm)← collectData(W ,N , g,C,X, Z̃)
23: Tm ← Tm − tm // remaining mission time
24: end for

dissipation as the system comes to a rest at an equilibrium
position. The values of the spring constants, dampers, and
relaxed spring length are uniform across a robot’s path
but differ between robots, γ i = {kp,i, kc,i, bi, di} for i =
1, . . . ,N . The set of configuration parameters is initialized
at the beginning of each planning cycle with user-defined
values in initSDs [A1.6]. Figure 9 visualizes this spring-
mass-damper system for a series of three waypoints. Each
waypoint, wi,j, excluding the first and last elements, has three
linear spring and damper connections: one to its previous
neighbor wi,j−1, one to its next neighbor (wi,j+1), and one
to its corresponding center of mass (cVi,j ). The spring force
exerted upon the jth waypoint by its adjacent waypoints is:

f (p)i,j = kp,i[(||ri,j−1|| − di)r̂i,j−1 + (||ri,j+1|| − di)r̂i,j+1] ,

(35)

where ri,j±1 = wi,j − wi,j±1 is the vector distance between
waypoint j and the next waypoint, (j + 1), or the previous
waypoint, (j − 1). The normalized distance vector is r̂i,p =
ri,p/||ri,p||, di is the spring’s unstretched length, and kp,i is a
spring constant. The relaxed spring length is updated prior to
each planning cycle to be di = 0.5v̄i(Tm − T (wi,gC ))/(Nw −
gC), where v̄i is the ith robot’s target speed. This relaxed
spring length heuristic divides the expected distance robot
i will travel in the remaining time Tm − T (wi,gC ) by the

Algorithm 2Multi-robot centroidal Voronoi path generation
(mCVPG)
Require: {W i}

N
i=1 // waypoints

Require: N // number of robots
Require: {γi}

N
i=1 // spring, damp. constants

Require: g // current cycle
Require: C // number of waypoints per cycle
Require: Jk // sampling priority surface
Require: η // stopping criteria
Require: Is // maximum iterations
1: b← 0 // iteration counter
2: while b < Is do
3: V ← voronoiTessellation({W i}

N
i=1)

4: cV ← voronoiMassCentroid(V , Jk )
5: for i = 1, . . . ,N do
6: f i ← calcForce(W i, γi, cV )
7: (W i, Ẇ i)← movePts(W i, f i, g,C)
8: end for
9: if ||ẇi,j|| ≤ η for all i = 1, . . . ,N and j = 1, . . . ,Nw then
10: break // waypoints converged
11: end if
12: b← b+ 1
13: end while
14: return {W i}

N
i=1 // updated waypoints

number of remaining waypoints. The remaining Nw − gC
waypoints are then equally spaced along the remaining path.
The force exerted on the jth waypoint by its center of mass
is f (c)i,j = kci (cVi,j − wi,j) where kci is a nominal constant for
the centroidal attracting spring force stiffness. Additionally,
the linear damping force is f (b)i,j = −biẇi,j where wi,j is the
velocity of the waypoint. The total force [A2.6] acting on wi,j
is

f i,j = f (p)i,j + f
(c)
i,j ++f

(b)
i,j . (36)

The equation of motion for waypoint wi,j with mass m is
then ẅi,j = f i,j/m. The function movePts performs Euler
integration to determine the new position of each waypoint
given the associated total force (36). Waypoints that have
already been visited during the mission no longer need
updating. Thus, if a waypoint is associatedwith a future cycle,
i.e., the waypoint index is greater than gC , the position is
updated and the velocity is recorded. Otherwise, the waypoint
is frozen and the associated velocity is zero [A2.7]. The
system is numerically integrated until the speed of each
waypoint is below a desired threshold, η [A2.9] or amaximum
number of iterations is reached [A2.2].

Once mCVPG has returned an updated set of waypoints
each robot is simulated moving through its remaining
waypoints from its current state [A1.11] and the estimated
time to traverse all remaining waypoints is computed. This
simulation time, ti, is compared with the remaining mission
time [A1.13]. If the difference exceeds the user defined
mission time tolerance, T1, the spring-mass-damper system
parameters are updated (i.e., stiffness between waypoints and
Voronoi generating points is increased when the simulated
mission time is less than required and decreased otherwise).
In practice, a buffer E records the mission time error from
previous iterations for each robot [A1.12]. Let max(Ei) be the
maximummission time error for the ith robot. Similar to [12],
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the spring stiffness is updated for the next optimization
iteration as

kc,i←


kc,i

(
ϵi

max(Ei)
+ 1

)
if ti + T1 < Tm

kc,i

(
ϵi

max(Ei)
+ 1

)−1
if ti − T1 > Tm

kc,i if |ti − Tm| ≤ T1

.

(37)

and the damping coefficient for the ith robot as
bi = 0.5

√
max(kp,i, kc,i) [A1.14]. The optimization loop

[A1.8−21] runs, calculating a new constrained CVT solution
with updated parameters during each optimization step, until
the simulated mission time for all robots is met. A maximum
number of iterations of this outer loop optimization is
enforced [A1.8]. Once the optimized waypoints are found,
the robots execute them and the process repeats at the next
planning cycle. To account for any discrepancies between
simulated and actual mission time (relevant during real-
world experiments), the time elapsed since the previous
planning cycle is reported and the remaining mission time
is updated [A1.23].

C. ALGORITHM LIMITATIONS
The adaptive sampling algorithm can be applied to larger
multi-robot systems or scenarios that involve longer mis-
sions covering larger environments However, larger problem
instances will increase memory and computation require-
ments and eventually become impractical. The estimation
framework uses common data neighborhood (CDNs), so that
even when the number of measurements grows large only
those that are in close proximity to an estimation point are
required and thematrix inverse for regression is approximated
as a constant within each neighborhood. These factors,
along with the results of Fig. 8, suggest that the estimation
procedure will scale reasonably well up to a point. However,
as the size of the environment increases, so will the nominal
mission time and the number of evaluation points for the ME
metric, number of waypoints per robot, and overall number
of planning cycles. Moreover, the number of robots will
multiply the total number of waypoints and thereby increases
the computational complexity of the Voronoi path generation
and agent simulation loops. These factors will contribute to
increasing memory and computation requirements. Future
work should investigate how the computation times scale to
determine limits of practical implementation or the effect of
implementing new techniques to speed up the computation.

The adaptive sampling algorithm also has limitations
due to the underlying assumptions made. It is assumed
that the spatial field is well approximated by a stationary
GP model with known hyperparameters. In many practical
scenarios, however, the hyperparameters are not available
apriori. Real fields may also exhibit non-stationary behavior
or have other properties, such as trend surfaces, that invalidate
the GP assumption. Thus, the proposed approach may be
ineffective when the underlying GP assumptions are not met.

TABLE 2. Parameters used in Monte Carlo simulation. Simulations were
conducted using a length unit (LU) that resulted in a survey area with unit
width and height.

FIGURE 10. Example simulation scenario featuring a leader and follower
robot. The leader is assigned four swaths and the follower is assigned
three. Paths are positioned within the field for uniform coverage. The
dark shaded regions depict already surveyed regions of the field.

The presented adaptive sampling strategy can also become
ineffective in the presence of obstacles, irregular boundaries
for the survey region, or intermittent/partial communication
networks, since it has not been designed to handle these cases.

Some of these computational complexities mentioned can
be mitigated by employing optimized compiled code that is
tailored to the target platform computer architecture, as well
as developing new variants of the algorithm that employ
a fixed-memory and fixed-computation size or leverage
parallelization. To allow the adaptive sampling algorithm to
operate in a wider range of environments, GP hyperparameter
estimation can be incorporated, for example, by minimizing
the log-marginal likelihood. The computational efficiency of
the approach may potentially be improved by considering
other GP variations in conjunction with CDNs, such as sparse
GPs or sparse variational GPs [55].

VI. SIMULATION STUDY
A Monte Carlo simulation was designed to compare perfor-
mance of the adaptive sampling algorithm to a non-adaptive
lawnmower survey. The Monte Carlo simulation tested
30 unique GP realization for each combination of parameters
listed in Table 2, resulting in 3,600 simulations. Each GP
realization was constructed using θ = [ζ, ω, σ 2

0 ]
T
=

[0, ωt , 1]T as the hyper-parameters where ωt is a selected
entry from Table 2. The HC estimation parameters used were:
wD = hD = 0.5ω, wG = hG = 1.5ω and Mmin = 10.
Each trial compared mapping error (24) for an adaptive

and a non-adaptive/control pair of robots. First, the path of
the control robots was planned by designating one of them
the leader and assigned them a target speed and number of
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swaths (see Fig. 10). The waypoints were defined in terms of
swath width, cw = Qw/(Nl + 1) where Qw is the width of the
survey field and Nl is the total number of swaths. The points
were then inset from the border by a distance cw/2. The leader
was simulated following its assigned waypoints and the total
mission time was recorded. The follower robot’s target speed
was then iteratively adjusted to ensure that it achieved its final
waypoint at the same time as the leader. Once mapping error
for the control robots was quantified the adaptive robots were
simulated with an identical GP realization for that trial and
mapping error was recorded.

Figure 11 shows changes in mapping error for robots
with equal speed (0.1 LU/s) and for GPs with increasing
length-scale for both noisy and noise-free measurement
cases. In the case of noise-free measurements, the adaptive
algorithm exceeds the performance of the lawnmower pattern
in fields where the GP’s length-scale is less than 50%
of the the survey area’s length. These corresponds to GP
realizations with a high degree of variability. As the GP
length-scale approaches 50% of the survey area’s length,
the adaptive algorithm and lawnmower patterns converge to
similar mapping errors given that there is little variation in
the process to observe in the survey area. When comparing
the noisy measurements, the same trend exists but is less
pronounced. The smoothing effect of measurement error
filtered kriging adds difficulty to the estimation process
which makes path selection less efficient.

FIGURE 11. Monte Carlo simulation results given parameters specified in
Table 2 comparing final mean mapping error over all simulated
length-scales when both robots’ speeds are 0.01 LU/s and given no
measurement noise variance (noise-free measurements) and
σ2

1,η
= 0.15, σ2

2,η
= 0.05 for measurement error case (noisy

measurements). Error bars indicate one standard deviation.

Figure 12 compares the effect of heterogeneous dynamics
on the performance of the adaptive sampling algorithm for
a fixed GP length-scale of 0.2 LU. The abscissa is the
ratio of the the leader-to-follower number of swaths which
is approximately the speed ratio. In all cases the adaptive
algorithm reduces the mapping error substantially compared
to the non-adaptive path for the same mission time and
heterogeneous vehicle dynamics. For lower speed ratios, the
adaptive ME is about 50% of the non-adaptive ME, and for
higher speed ratios it is about 25% of the ME. This result
suggests that the heterogeneous dynamics of the two-robot

FIGURE 12. Monte Carlo simulation results comparing final mean
mapping error for a GP with a length-scale of 0.2 LU with different ratios
of leader/follower robot numbers of swaths (approximately the
heterogeneous speed ratio). The follower robot consistently travels three
swaths while the leader varies from six to 10 swaths. Error bars indicate
one standard deviation. The ratio of the mean adaptive to non-adaptive
mapping error from left to right is: 0.506, 0.411, 0.342, 0.283, 0.253.

team are exploited more efficiently by the adaptive method
as their disparity increases. Figure 12 also shows an overall
reduction in ME magnitude as the speed ratio (and number
of swaths) increases. This is expected due to the experiment
design — with higher speed ratios the total mission time
increases so more time is available for sampling.

Table 3 compares the simulation results for a small GP
length-scale (ω = 0.1) under different combinations of
heterogeneous dynamics and sensing. In all cases the adaptive
algorithm outperforms the non-adaptive lawnmower strategy,
although the advantage is greatest in the case of heteroge-
neous dynamics with equal sensing capabilities. Considering
the error bars of the simulation, the results suggest that
the proposed approach leads to statistically significant
improvements in performance by effectively leveraging
heterogeneous sensing and heterogeneous dynamics.

Lastly, Fig. 13 illustrates the multi-robot sampling tra-
jectories that result from adaptive sampling algorithm with
heterogeneous robots. Figures 13a–13d are the completed and
planned trajectories and sampling priority surface at different
stages during the mission.

A limitation of the above study is that only two heteroge-
neous robots are considered. Future work could investigate
the performance of the algorithm as it scales to a larger
team of robots with a diversity of dynamics and sensing
capabilities and characterize how mapping error is affected
by the heterogeneous characteristics of the robotic team.
In [6], a related problem of optimizing a homogeneous
mobile sensor network for data collection is considered.
The Buckingham 5 theorem was used in [6], to show that
the normalized sampling performance metric (an alternative
metric comparable to mapping error) is dependent on five
non-dimensional sampling numbers: the non-dimensional
size of the domain, shape of the domain, the normalized
sampling interval, normalized vehicle speed, and normalized
sensor noise. Future work might consider developing similar
sampling numbers and related analysis that consider het-
erogeneous team composition. Such heterogeneous sampling
numbers could provide insight towards questions related
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TABLE 3. Comparison of simulation results given all combinations of dynamics and measurement error variance. The bar graph indicates ratio of the
mapping error of the adaptive sampling mission to the control sampling mission. The red line represents parity, a ratio of 1:1. Simulations performed
over a scalar field with σ2

0 = 1 and ω = 0.1. Ninety simulations split evenly among the discrete mission classifications.

FIGURE 13. Examples of adaptive patterns given v=0.01 LU/s, Nl = 3, and ω = 0.2 given measurement noise σ2
1,η

= 0.15 for the red robot and

σ2
2,η

= 0.05 for the white robot. Panels (a)-(d) show the sampling priority surface and planned paths at different stages of the mission along with
the sampling priority surface. Panel (c) is the path of the control robots and Panel (f) is the actual field in this example.

to resource allocation—for example, what is the relative
performance of two candidate robotic teams that differ in
number of robots and distribution of dynamics and sensing
capabilities?

VII. EXPERIMENTAL DEMONSTRATION
The adaptive sampling algorithm was deployed on a pair
of autonomous surface vessels (ASVs) mapping bathymetry
in a small section of a lake. This section describes the
ASV platforms, the collection of ground truth data, and the
experimental results.

A. AUTONOMOUS SURFACE VESSELS
Two custom-built autonomous surface vessels were used in
the experiments. The control framework for each ASV was
run on an Intel NUC (10i7FNH) with a 4.7GHz i7 CPU and
32GB of RAM. Communication between each robot and a
ground station (Dell Vostro Notebook 7500) used Wi-Fi and

FIGURE 14. Experimental semivariogram computed using data gathered
during ground truth survey on Lake Norman, NC.

a 900 MHz radio (RFD900+ modem) for communication.
Each robot was outfitted with a BlueRobotics Ping Sonar
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FIGURE 15. Field experiment conducted in Lake Norman, NC. (a) The experiment used the two ASVs with a mission time Tm = 430 s and a speed
of v = 0.7 m/s to map the operating region indicated by the white box. (b) The beginning of each replanning cycle is shown as a colored
waypoint for a total of four cycles. (c) The samples used to estimate the bathymetry are shown as black markers plotted with the predicted
mean over the operating region. (d) The actual bathymetry determined from a ground truth survey.

capable of measuring depths up to 70 m. A pair of 14.8 V
and 6000 mAh LiPo batteries provided up to one hour
of mission time per ASV. The mechanical, electrical, and
software design is detailed in [56].

B. GROUND TRUTH SURVEY
Prior to adaptive sampling experiments, a survey was con-
ducted in an approximately 140 m x 140 m small rectangular
section of Lake Norman, NC to generate a ground truth
map of the bathymetry. The survey consisted of lawnmower
pattern with waypoints arranged to form eight swaths.
Approximately 5,000 data points were collected during the
survey and a semivariogram was fit to the binned data,
as shown in Fig. 14. The curve fit was used to determine the
hyperparameters θ = [ζ, ω, σ 2

0 ]
T
= [0, 153 m, 7.27m2]T.

C. EXPERIMENTAL DEMONSTRATION
The ability of our algorithm to improve performance under
heterogeneous sensing and mobility was illustrated in Sec.VI
through simulation results. For the experiment, the team was
limited to using available equipment consisting of identical
ASVs with the same onboard sensors and propulsion system
(see Fig. 15a). The purpose of the experiments was therefore
to demonstrate the technical feasibility of implementing the
algorithms onboard a real system and report lessons learned
in doing so, rather than to quantifying performance under
heterogeneity. Moreover, because of the limited variability of
the bathymetry in the survey area (i.e., a large length scale
similar to the rightmost comparison in Fig. 11) we expect
the adaptive and non-adaptive algorithms to produce similar
mapping error.

Experimental trials were conducted in the previously
surveyed operating region described in Sec. VII-B. The
adaptive sampling algorithm used the parameters listed in
Table 4. Several trials were conducted, each lasting between
7-10 minutes. This paper discusses one of the trials; further
experimental details can be found in [56].
Through testing the team discovered that several modifi-

cations were needed to the estimation and adaptive sampling
algorithms. To account for the computation time required
during planning, the re-planning cycle was modified to
start early within each cycle. That is, rather than waiting

TABLE 4. Common mission parameters among missions. [1] Site-specific
measurement noise variance is 0.5% of measured depth [57].

to complete all waypoints in the current cycle re-planning
started pr waypoints prior to the next cycle. The first
robot that reached this target triggered the computation on
the ground station. Although this strategy ignores some
measurements acquired near the end of each planning
cycle, it allows the ASVs to smoothly transition to updated
trajectories. To compensate for a non-zero pr , the waypoints
remaining in the current cycle are left unmodified along
with all previously reached waypoints in the movePts
function [A1.7].

Given bandwidth limitations with multi-robot communi-
cation, the sensing interval, Ts was set at 10 seconds. The
relatively low number of measurements justified the use of
HFK estimation rather than HC estimation. Themeasurement
noise used for both robots with HFK was σ 2

η (x) = 0.005d(x)
where d(x) is the depth measured at spatial location x based
upon the manufacturer’s specifications [57].

The trajectories of the ASVs during the experiment are
shown in Fig. 15b. The ASVs were launched from a nearby
dock and traveled to their first waypoint (indicated by a
red marker). The mission time allowed for three additional
planning cycles. Figure 15c depicts the samples that were
collected and the resulting kriging estimate computed using
the estimated semivariogram parameters (Fig. 14). The result
compares favorably to the actual bathymetry determined
during the ground truth survey (Fig. 15d) and to publicly
available bathymetric maps of the corresponding region.
During the experiment, the path of the left-most agent
deforms from the nominal lawnmower pattern (used to
initialize the algorithm) at two locations: near the valley
located at (x, y) = (35 m, 100 m) and towards the peak
located at (x, y) = (120 m, 140 m). The first upward swath

VOLUME 12, 2024 94421



M. Brancato, A. Wolek: Adaptive Sampling of a Stationary Gaussian Spatial Process by a Team of Robots

of the right-most agent maintains a near constant spacing
to the downward swath of the left-most agent and is also
pulled toward the peak located at (x, y) = (120 m, 140 m).
During the second half of the mission the right-most agent
allocates sampling effort in the central region of the space
where the gradients are large. The fact that the adaptive
algorithm looks similar to a lawnmower with small deviations
at a few points is not surprising and consistent with the
simulation results that show the adaptive algorithm and
non-adaptive lawnmower perform similarly when survey area
has limited variability. The adaptive sampling algorithm is
expected to be most effective in regions that exhibit more
variation. A survey over a much larger portion of the lake
with longer endurance/range vehicles outfitted with different
sensing and propulsion equipment would be more favorable
for illustrating our approach experimentally.

VIII. CONCLUSION
This paper presented an approach for adaptive sampling of a
stationary, isotropic, Gaussian process with a mobile sensor
network consisting of robots with heterogeneous dynamics
and varyingmeasurement noise variance. AGaussian process
regression was proposed to handle the heterogeneous noise
variance and use common data neighborhood to reduce
computational complexity. This estimation procedure is
combined with an adaptive sampling algorithm to peri-
odically replan the trajectory of each robot to visit high
priority sampling regions and meet mission time constraints.
The proposed strategy was evaluated through a numerical
Monte Carlo simulations and real-world experiments. The
numerical simulations showed that the adaptive sampling
strategy substantially reduced mapping error in comparison
to a non-adaptive lawnmower survey. The feasibility of the
approach was demonstrated by implementing the algorithm
on a team of two ASVs to survey a small section of a lake.

Future work should consider optimizing the adaptive
sampling algorithm to allow for efficient scaling for a
large number of robots in a decentralized framework,
sampling time-varying spatial processes, estimation of hyper-
parameters on-the-fly, and/or simultaneous estimation of
multiple spatial attributes that are statistically correlated (i.e.,
cokriging with heterogeneous measurement types). Outdoor
testing with different ASVs can allow for more extensive
experimental evaluation.
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